Methods for Incorporating Aquatic Plant Effects into Community Level Benchmarks

EPA Development Team

Regional Stakeholder Meetings January 11-22, 2010

- **Purpose and Scope**
- Existing data requirements and approaches for estimating aquatic plant effects
- Key research questions/issues
 - **Evaluation of approaches**

Purpose and Scope

- Consider existing approaches used by OW and OPP for characterizing plant aquatic ecological effects
- Describe the best integrated use of existing tools for incorporating plant effects into aquatic community-level benchmarks.
- Characterize the uncertainty and robustness of current data for aquatic plants

OPP's Approach to Evaluate Aquatic Plant Effects

- □ Tier I (Limit test)
 - Needed for all pesticides with outdoor uses
 - 4 microalgae + Lemna: laboratory tests with Technical Grade Active Ingredient (TGAI)
 - If >50% effect, Tier II testing required
- Tier II (Dose-response test)
 - Pesticides that are known phytotoxins also tested at Tier II
 - 4 microalgae + *Lemna:* laboratory tests with TGAI
 - If >50% effect, Tier III testing may be required
- □ Tier III (Field test)
 - 4 vascular plant families, 3 seedless vascular plant families, 10+ families of algae, 1 bryophyte family tested with typical end-use product to determine detrimental effects at critical growth stages
 Rarely required by the Agency

Typical Aquatic Plant Surrogates Used in US Regulatory Testing

Non-vascular plants

Pseudokirchneriella subcapitata

Navicula pelliculosa

Anabaena flos-aquae

Skeletonema costatum

Lemna gibba, a free-floating vascular macrophyte

OW's Approach to Evaluate Aquatic Plant Effects

- Minimal plant data are required for the derivation of Water Quality Criteria (typically not used since less sensitive)
- "Results of tests with plants usually indicate that criteria which adequately protect aquatic animals and their uses will probably also protect aquatic plants and their uses."
 - May not be supported when addressing certain chemical classes (e.g., herbicides)
- Plant value based on a 96-hr test conducted with an alga or a chronic test conducted with an aquatic vascular plant
- Final Plant Value: lowest value from a test with an "important" plant species where test concentrations are measured, and endpoint is biologically "important".

Approaches Used Internationally

Canada

 At least one vascular plant or alga to derive guidelines (if the compound is highly phytotoxic, 4 species are required)

Safety factors

- 10 applied for LOEC
- 100 for acute data on persistent chemicals
- 20 for acute data on non-persistent chemicals

European Union

- Requires a green algae test (for herbicides, tests on an alga and a vascular plant)
- Safety factor of 10 to the lowest plant test value

State Approach (MN)

- Protect overall integrity of plant community from significant impacts; protect the most sensitive species
- For 2 herbicides: target 20th percentile level of protection
- Acute criterion derived using Great Lakes Initiative Tier II methodology with standard animal data
- Chronic criterion derived using distribution of plant data only
- Both EC₅₀ values and/or maximum acceptable toxic concentration (MATCs) were collected and put in separate distributions; distributions with most robust data set were used to derive criteria
 - 5th percentile of EC₅₀ distribution
 - 20th percentile of MATC distribution

Minimum/type of data requirements to document aquatic plant sensitivity

- aquatic plant grouping into subsets to draw better surrogates
- representativeness of current microalgal species for non-vascular plants
- representativeness of *Lemna* for aquatic macrophytes

Endpoint selection

- The appropriateness of the current plant measurement end points (ECx versus NOAEC)
- Specific measurement endpoint-related questions

Miscellaneous

- 1. Types/Minimum Data to Document Sensitivity
- Do we need to group aquatic plants into new subsets to draw better surrogates
 - Non-vascular vs. vascular (currently used)
 - Habitat
 - Life history patterns
 - Physiology

Key Issues

- Are the sensitivities of current microalgal species representative of non-vascular plant sensitivities?
 - Limited information available for comparison of sensitivities of standard algal species to other non-vascular families such as mosses and liverworts
 - Many tests compared sensitivities of various freshwater microalgal species - great variation (2 to 10 orders of magnitude) between species for same toxicant
 - Sensitivities of freshwater vs. saltwater algae are not well understood

Key Issues

- Is the sensitivity of *Lemna* representative of vascular plants sensitivity?
 - Lemna, a free floater, may not be a suitable surrogate to represent the diversity of types of aquatic vascular plants (emergent, submerged, rooted floating, and free floating)
 - Many vascular plants are rooted in the sediment, which could provide another route of exposure

2. Endpoint Selection

- Appropriateness of ECx vs. point estimates such as NOEC/MATC
- Are plant endpoints acute or chronic?
- Use of plant and animal data in the same SSD
- Use of non-traditional endpoints
- Inclusion of reproduction-based endpoints
- Can endpoints from different test methods, test durations, and light intensities be combined? If so how?

3. Miscellaneous

How should plant recovery be incorporated?

- Exponential growth over short periods vs. aquatic animal life cycle and reproductive strategies
 - Current frequency and duration for acute and chronic effects to aquatic animals is once in 3 years – appropriate for plants?

How to address community level impacts

Community shifts?

Other measures?

Strategy for Addressing Key Issues

- Toxicity data of at least 2 herbicides with "large" data sets will be utilized
- What approaches to take when only OPP data are available?
- What approaches to take when more data are available?
- Application of safety factors? (as used by Canada, EU/Denmark etc.) – are there other factors that are more scientifically defensible?

Summary

- Aquatic plant testing needs are becoming more apparent.
- Key issues
 - Representativeness of current tested species
 - Determining minimum data set
 - Potential use of safety factors
 - Use of non-traditional or reproductive endpoints
- Issues discussed in white paper will need to be readdressed in the future.