

Exploration of Methods for Characterizing Effects of Chemical Stressors to Aquatic Animals

United States Environmental Protection Agency

December 1, 2010

Acknowledgement

- Project team
 - Charles Delos
 - Russell Erickson
 - Matthew Etterson
 - Kristina Garber
 - Dale Hoff
 - David Mount
 - Sandy Raimondo
 - Keith Sappington
 - Charles Stephan
 - Patti TenBrook

Outline

- Introduction
- Species Sensitivity Distributions (SSDs)
- Extrapolation Factors (EFs)
- Potential applications of SSDs and EFs for OPP and OW
- Proposed Analysis
- Case Study

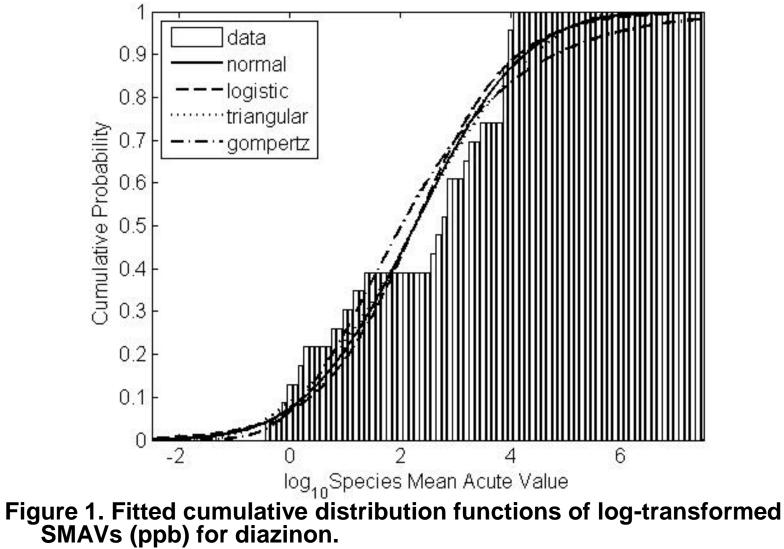
- Assessment Endpoints
 - an explicit expression of the environmental value to be protected
 - OPP and OW = survival, growth and reproduction of aquatic animals
 - OPP = taxa (fish and invertebrates are separated)
 - OW = community (fish + invertebrates)

Introduction

- Measures of Effect
 - Results from acute and chronic toxicity tests
 - OPP = lowest endpoints for fish and invertebrates
 - EC50s, NOECs
 - $OW = HC_5$
 - EC50s, MATCs or EC20s

Introduction

 The objective of this project is to examine how available toxicity data can best be used to characterize adverse effects on aquatic animals


- Definition
 - Cumulative distribution of responses of different biological taxa to the same stressor
 - Based on similar endpoints (*e.g.*, EC50s from acute toxicity tests)

- Regulatory uses
 - OPP SWAMP, ecological risk assessments
 - OW 1985 guidelines
 - Europe
 - OECD
 - Australia, New Zealand
 - UC-Davis methodology

- Distributions with large data sets
 - Toxicity test results are logtransformed
 - Normal, logistic, triangular, Burr, Gompertz
 - Cumulative distribution functions used to derive 5th percentile (aka HC₅) and other percentiles

- Distributions with small data sets
 - 2 Approaches are available to account for uncertainty in deriving HC₅
 - Approach 1:
 - Mean (x) and variance (s) are based on sample data (log-transformed data)
 - Use extrapolation constants (k)
 - Based on distribution shape and level of confidence
 - Equation:

$$HC_{5} = 10^{x-ks}$$

- Distributions with small data sets
 - 2 Approaches are available to account for uncertainty in deriving HC₅ (cont.)
 - Approach 2:
 - Mean (α) is based on sample, variance (β) is known (de Zwart 2002)
 - variance based on MOA
 - Equation:

$$HC_5 = 10^{\alpha - 2.94\beta}$$

- Distributions with small datasets
 - Methods available to derive chronic HC₅ values from acute toxicity data
 - De Zwart 2002
 - MOA is known, variance is known
 - Duboudin et al. 2004
 - Separate regressions for fish and invertebrates

Definition

- set values that are applied to available toxicity test results to account for various sources of uncertainty in extrapolating from individual species toxicity data to measures of effect
- available toxicity data are identified for a chemical and the lowest toxicity test result is divided by the EF

- Great Lakes Water Quality Guidance Tier II values
 - EFs based on the number of MDRs
 - EFs intended to be below the FAV (5th percentile of triangular distribution)
 - Lowest GMAV is divided by EF
 - Several similar approaches in use by regulatory agencies
 - Michigan DEQ, Ohio EPA, USDOE, UC-Davis method

- Scientific Literature
 - Pennington 2003 derived EFs based on de Zwart (2002)
 - Variability is known and based on MOA
 - Can be used to approximate HC₅ values for normal, logistic and triangular distributions

- OPP Aquatic Benchmarks
 - Based on OPP's ERA process
 - Lowest toxicity test result is multiplied by LOC
 - 4 animal benchmarks (FW)
 - Acute fish
 - Acute invertebrate
 - Chronic fish
 - Chronic invertebrate

- SSDs in ERA
 - Characterization of monitoring data and EECs
 - Characterization of measures of effect
- EFs can be used to derive various percentiles of SSD to accomplish above
- Aquatic Life Screening Value (ALSV)
 - ≤ 5th percentile
 - Derive scientifically defensible water quality standards

Acute ALSV

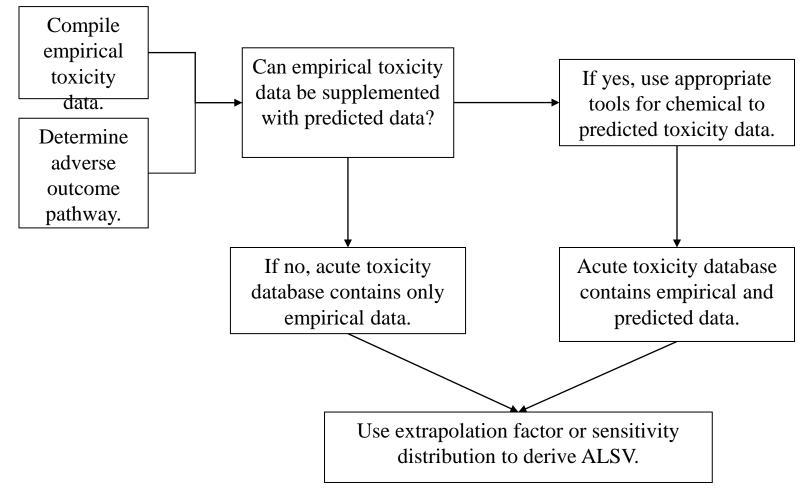
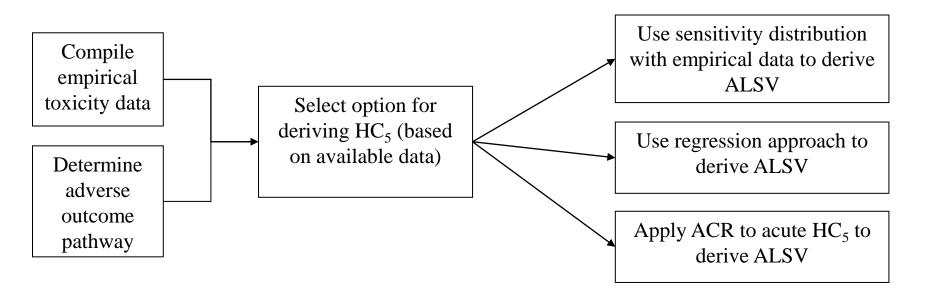



Figure 2. Conceptual framework for deriving acute ALSV.

Chronic ALSV

Figure 3. Conceptual framework for deriving chronic ALSV.

Proposed Analyses

- 3 Phases:
 - Analyses with "data-rich" chemicals
 - Analysis with "data-limited" chemicals
 - Empirical data only
 - Analysis with "data-limited" chemicals
 - Empirical and predicted data

- Phase 1: Analyses with "data-rich" chemicals
 - Use large data sets
 - Acute: from Web-ICE empirical database
 - Chronic: AquaChronTox database
 - Compare fit of several distributions
 - Derive reference percentile values (HC_p) for each chemical
 - including HC₅
 - Other percentiles will be considered

Proposed Analyses

- Phase 2: Analysis with "data-limited" chemicals
 - EPA will explore the accuracy of HCp estimates from limited subsets of the same data
 - Consider MOA
 - Use EF and SSD approaches to derive HC₅ values and other percentiles
 - Compare to "known" HC₅ values from full distributions
 - EPA will derive EFs

- Phase 3: Analysis with "data-limited" chemicals and predicted toxicity data
 - Evaluate various approaches described in tools paper
 - Acute and chronic methods
 - Compare estimated HC₅ values to "known" HC₅ values from phase 1

Case Study: Diazinon

- Organophosphate Insecticide
- MOA in animals: AChE inhibition
- Criteria and benchmarks are available

OPP Benchmarks	Value (ppb)	OW Criteria	Value (ppb)
Acute FW Fish	45	Acute FW	0.17 (FAV = 0.3397)
Acute FW inverts	0.105	(CMC)	
Chronic FW fish	<0.55	Chronic FW	0.17
Chronic FW inverts	0.17	(CCC)	

25

- Criterion derived from acute toxicity test results for FW fish and invertebrates
 - 23 species
 - 19 genera
 - Invertebrates represent the top 9 most sensitive species
 - cladocerans are top 4
 - SMAVs range 0.3773 11,640 ppb

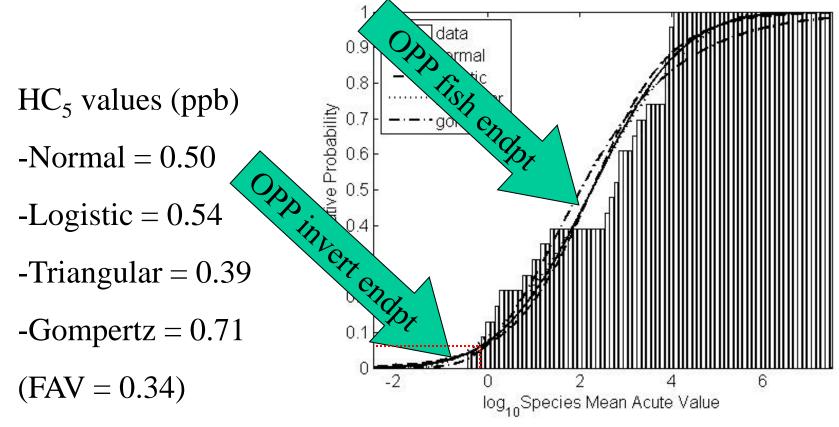


Figure 1. Fitted cumulative distribution functions of log-transformed SMAVs (ppb) for diazinon (from criteria).

- Scenario: data are only available for 3 animal species
 - Typical species tested to fulfill FIFRA data requirements
 - *Daphnia magna* EC50 = 1.05 ppb
 - Rainbow trout LC50 = 426 ppb
 - Bluegill Sunfish LC50 = 470 ppb

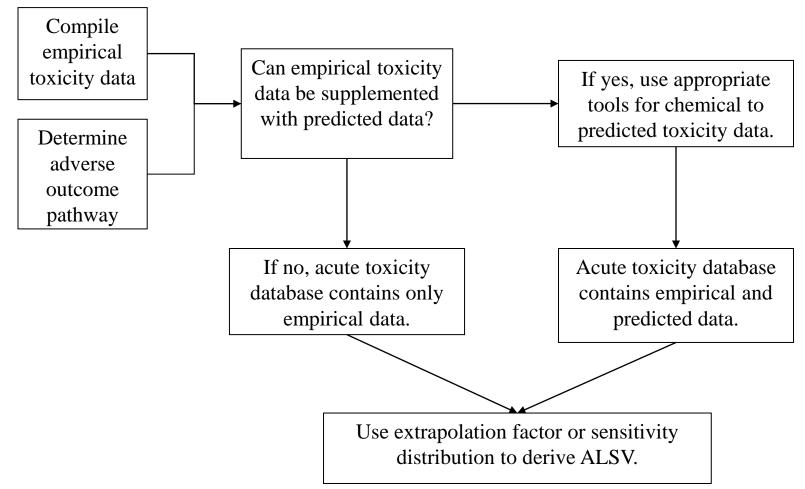


Figure 2. Conceptual framework for deriving acute ALSV.

- Example tool: Web-ICE
 - Can estimate EC50 values for several species
 - Need to consider
 - extrapolation outside of models
 - df<u>></u>3
 - MSE <0.22
 - close taxonomic relatedness

- Web-ICE estimates
 + logistic SSD
 - HC₅ = 29.8 ppb
 - Limitations:
 - All species are fish
 - based on the MOA of diazinon, invertebrates are expected to be more sensitive
 - The HC₅ may not be conservative (supported by fit data where HC₅ values were 2 orders of magnitude lower)

Species	Surrogate	EC50 (ppb)
Atlantic salmon	В	225
Brook trout	В	233
Apache trout	R	350
Yellow perch	В	367
Brown trout	R	393
Lake trout	R	396
Largemouth bass	В	400
Cutthroat trout	R	458
Spotfin chub	R	542
Green throat darter	R	557
Chinook salmon	R	588
Coho salmon	R	625
Cape fear shiner	R	723
Green sunfish	R	749
Razorback sucker	R	917

- If no tools are available for this chemical, SSDs or EFs can be applied directly to empirical data
- Diazinon toxicity data subset used for this case study
 - Daphnia magna EC50 = 1.05 ppb
 - Rainbow trout LC50 = 426 ppb
 - Bluegill Sunfish LC50 = 470 ppb

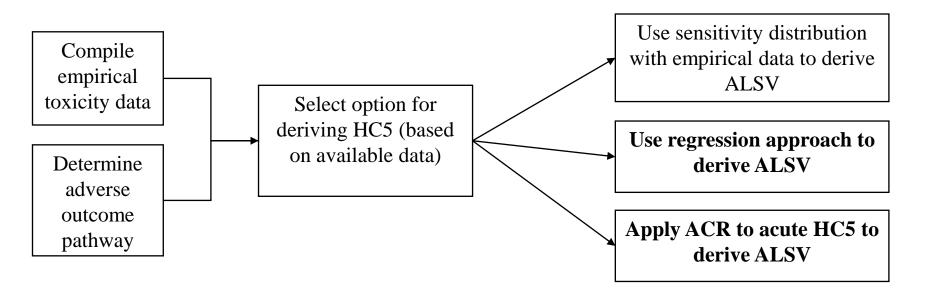
- SSDs for subset of diazinon toxicity data
 - Mean and variance is estimated from sample
 - Equation: $HC_5 = 10^{\bar{x}-ks}$
 - Mean (x) = 1.77 (log transformed)
 - Standard deviation (s) = 1.52

Distribution (method source)	Extrapolation constant (k)	Median HC ₅	HC ₅ - full data set
Log-normal (Aldenberg and Jaworska 2000)	1.94	0.0674	0.50
Log-triangular (Pennington 2003)	1.9	0.0775	0.39
Log-logistic (Aldenberg and Slob 1993)	2.05	0.0459	0.54

33

- SSDs for subset of diazinon toxicity data
 - Equation: $HC_5 = 10^{\alpha 2.94\beta}$ (de Zwart 2002)
 - Mean is estimated from sample
 - Mean (α) = 1.77 (log-transformed)
 - Variance is known
 - For AChE inhibition (by OPs), $\beta = 0.50$
 - HC₅ = 2.01 ppb

- Extrapolation factors for subset of diazinon toxicity data
 - Lowest toxicity value is divided by extrapolation factor
 - Extrapolation factor for n = 3
 - Lowest toxicity value = 1.05 ppb


Description (method source)	Extrapolation factor	Estimated HC ₅ (µg/L)	HC ₅ - full data set
Great lakes guidance	8	0.131	0.39
Log-normal (Pennington 2003)	10	0.105	0.50
Log-logistic (Pennington 2003)	12	0.0875	0.54
Log-triangular (Pennington 2003)	9.4	0.112	0.39

Case Study - Chronic

- ACRs (from criteria)
 - range 1.112-1.586 for aquatic invertebrates (2 species)
 - Range 23.84 to >903.8 for fish
 - None of these ACRs correspond to the data subset used above (*i.e.*, D. magna, bluegill, rainbow trout)
 - Scenario: no chronic data are available for the example chemical

Figure 3. Conceptual framework for deriving chronic ALSV.

Case Study - Chronic

- Can use MOA-specific ACRs (Raimondo et al 2007)
 - For OPs, median and 90th percentile ACRs are 6.2 and 77.8, respectively
 - If acute ALSV were based on the great lakes EFs (0.131 ppb), and the median ACR is used
 - the chronic ALSV would be 0.0211 ppb

- Can use SSD based on acute toxicity data (de Zwart 2002)
 - Regression equation:

$$\alpha_{chronic} = 1.053 * \alpha_{acute} - 1.430$$

- Mean of acute data (α_{acute}) = 1.77
- Use AChE inhibition variance (0.50)
- HC₅ equation: $HC_5 = 10^{\alpha 2.94\beta}$
- Chronic $HC_5 = 0.0930$ ppb

- EPA is currently considering 2 approaches for characterizing available toxicity data for aquatic animals
- These approaches can be used by OPP and OW for ecological risk assessment and criteria development

 EPA will evaluate available methods and tools to derive a process that OPP and OW can use to characterize the effects of chemicals with varying amounts of empirical data

Comments/Questions