

Active Trap Gears (except flume weir)

Advantages

- provides density estimate of numbers
- easy to target specific times
- easy to target specific habitats
- mortality typically low
- can be made with relatively inexpensive materials

- sample not integrated over time
- very low catch per effort
- biased towards smaller fishes
- small area sampled
- requires destroying habitat to remove fish
- some may not seal properly in heavy vegetation
- not commercially available
- very labor intensive

Seines

Advantages

- cheap
- commercially available
- easy to target specific times (day/night, morning/afternoon)
- mortality typically low easy to identify and return fish
- short sampling time

- qualitative samples only
- not consistently effective in even moderately vegetated habitats
- difficult to use in soft sediments
- catch biased towards smaller/slower fish
- cannot target specific sizes/life-stages
- somewhat labor intensive

Passive Trap Gears

Advantages

- integrated sample over time fished
- easy to target specific times (day/night, morning/afternoon)
- easy to target specific habitats (dehse/moderate/sparse vegetation)
- mortality typically low easy to identify and return fish
- wide range of sizes captured (20 mm and larger depending on mesh)
- can target specific sizes/life stages
- possible to assess direction of movement/migration patterns
- effective in all seasons (even under ice)
- relatively inexpensive (\$300-400/fyke- or trap-net)

- catch biased towards most active fish
- does not provide density estimate of numbers
- somewhat labor intensive
- some fish less "trapable" than others (e.g adult carp and bass)

tow sled

· hydraulic pumps

• fine-mesh seine

Summary of Adult/Juvenile Gear Characteristics

Gear Characteristics	Passive Traps	Active Traps	Electro- fishing	Seines
Density estimate		•	•	
Time integrated	•			
Time targeted	•	•	•	•
Habitat targeted	•	•	•	
Inexpensive	•	•		•
Commercial source	•		•	•
Quick			•	•
Mortality low	•	•	?	•
Habitat destructive		•		•
Size bias		•	•	•
Habitat bias			•	•
Labor intensive	•	•		•

Summary of Larval Gear Characteristics

Gear Characteristics	Fine-mesh seine	Tow- sled	Light trap	Drop box	Hydraulic Pump
Density estimate					
Time integrated	•		•		
Time targeted	•	•		•	•
Habitat targeted		•		•	
Inexpensive		•		?	
Commercial source		•		•	•
Quick					
Mortality low				•	
Habitat destructive	?			•	
Size bias				•	
Habitat bias					•
Labor intensive		•		•	•

Larval Fish Methods Comparisons

La Bolle et al. 1985 - Tow Net vs Drop Box

- littoral zone of Columbia River pool, sparse to moderate vegetation
- overall abundance and density estimates about equal
- deemed tow net slightly more versatile

Brazner and Jensen - 1994 (unpublished) - Tow Net vs. Light Trap

- Saginaw Bay coastal wetlands, sparse to dense vegetation
- abundance 5 times higher in tow nets for equal number of samples
- number of species slightly higher in tow nets
- density estimate only possible with tow net

Floyd et al. 1984 - Light Trap/Push-Seine/Drift Net Comparison

- in a small Kentucky stream, no flow to moderate flow habitats
- abundance 5-50 times higher in light traps.
- species richness 1.4-2.3 times higher in light traps

Drop Net/Pop Net/Electrofishing Frame Comparison

Dewey 1992 - < 1 m vegetated backwater lake habitat

- all sampled 5.6 m², Upper Mississippi R.
- ່ງກອສອນ ສປປ ກາອນກ່ວວໄຮ 30 ກາກutes prior to act of fishing

	Drop Net	Pop Net	Electrofishing Frame	
Number of species	Most	Intermediate	Least	
Number of fish	Most	Most	Least	

drop & pop nets deemed about equal for sampling small fish in shallow, vegetated habitats

pop net not well described

Drop Trap/Throw Trap Comparison

Kushlan 1981 - < 0.5 m moderately vegetated Everglades marsh

	Drop Trap	Throw Trap	Throw Trap	
	1 m ²	1 m ²	2.25 m ²	
Number of species	Least	Most	Least	
Number of fish	Least	Most	Most	
Accuracy and Precision	Worst	Intermediate	Best	
Sampling Time	Least	Intermediate	Most	

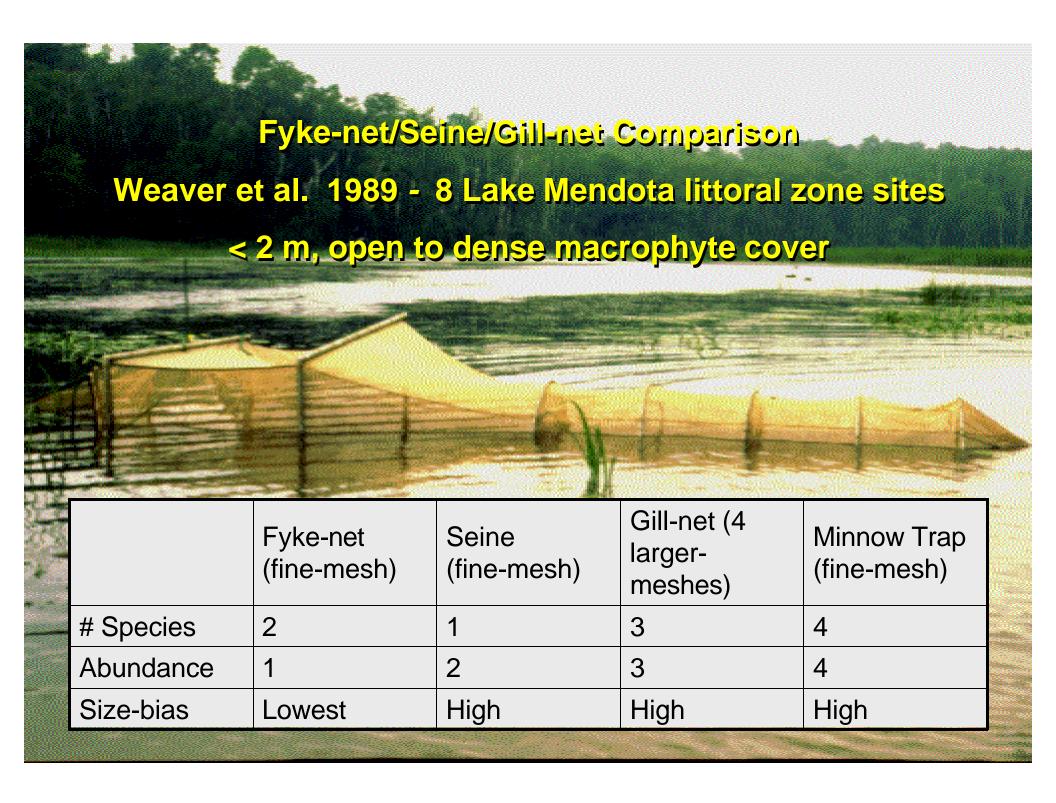
1 m² throw trap most effective and efficient

much easier to use than 2.25 m² trap

Pop Net/Seine/Electrofishing Boat Comparison

Serafy et al. 1988-< 01.5 m sparsely vegetated tidal freshwater Susquehanna R. habitat

- effort about equal across methods
- -preset nets 4-6 h pre pop, 15 min to set


	Pop Net	Seine	Electrofishing Boat
	18.6 m ²	465 m ²	4000 m ²
Species per m ²	Highest	Intermediate	Lowest
Fish Density	Highest	Intermediate	Lowest

- pop nets give most accrate density estimates
 - Species richness only high on aveal basis need lots of pops to match absolute richness of electrofishing because of huge diffs in area sampled

Shallow-Lake Fishing Gear Comparison Hayes 1989 - New Zealand, < 1.5 m, some vegetated littoral

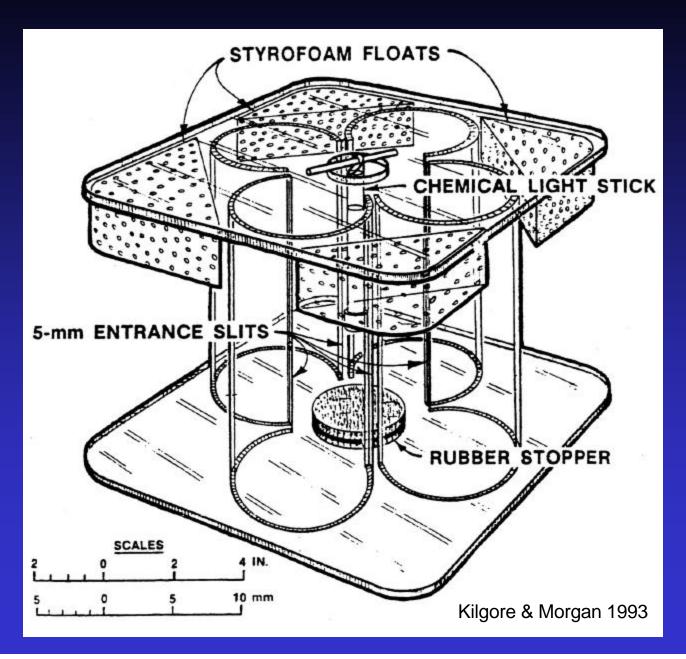
	Minnow Trap (Fine- mesh)	Fyke-net (large- mesh)	Trap-net (fine- mesh)	Gill-net (3 larger- meshes)	Beach Seine (fine- mesh)	Purse Seine (fine- mesh)
# Species	5 (least)	4	1 (most)	3	1	2
# Fish	6 (least)	3	1 (most)	4	2	5
Size Bias	High	High	Low	High	High	High

*** note differences in mesh-size in among gears

Flume Weirs (see Kneib 1991)

- quantitative sampling from vegetated intertidal marshes at high tide
- not destructive to habitat so repeated sampling possible
- virtually no bias to catch
- easy to target specific habitats within marsh
- easy to target specific times of day (w/i constraints of tide cycle)
- tide does the work
- high efficiency
- not size selective

- cannot target specific sizes/life-stages
- labor and time intensive to construct
- not commercially available


Electrofishing Gears

Advantages

- provides density estimate of numbers
- wide range of sizes captured
- easy to target specific times
- easy to target specific habitats
- relatively short sampling time
- commercially available (except for grid sampler)

- sample not integrated over time
 - catch biased towards larger fishes
- impact on fish unclear, some serious injuries likely
- can be very expensive (boat units)
- difficult to use in dense emergent vegetation
- cannot target specific sizes/life-stages
- not as effective spring and fall, or high/low conductivity waters
- heavy boat access can be difficult and lake crossings dangerous

Larval Light Trap

