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There are differing views on defining the stability of a stream channel and other waterbodies. 
From a navigation perspective, a stream channel is considered stable if shipping channels are 
maintained to enable safe movement of vessels. Landowners with property adjacent to a stream 
or shoreline might consider the waterbody to be stable if it does not flood and erosion is minimal. 
Ecologists might find some erosion of streambanks and meandering channels to be a part of 
natural evolution (i.e., changes that are not induced by humans) and consider long-term changes 
like these to be quite acceptable (Watson et al., 1999). In any case, new and existing 
channelization projects, construction and maintenance of dams, and streambank and shoreline 
erosion problems should be evaluated with these differing perspectives in mind and a balance of 
these perspectives should be taken into account when constructing or maintaining a project. 
Often, multiple priorities can be maintained with good up-front planning and communication 
among the different stakeholders involved. 
 

Key Geomorphic Functions of Streams 

Discharge, Slope, and Sinuosity 
Figure 2.1 is a cross-section of a typical stream channel. The thalweg is the deepest part of the 
channel. The sloped bank is known as the scarp. The term discharge is used to describe the 
volume of water moving down the channel per unit time (usually described in the United States 
as cubic foot per second (cfs)). Discharge is the product of the area through which the water is 
flowing (in square feet) and the average velocity of the water (in feet per second). If discharge in 
a channel increases or decreases, there must be a corresponding change in streamflow velocity 
and/or flow area. 

 
Figure 2.1 Cross-section of a Stream Channel (FISRWG, 1998) 

 
Channel slope is an especially key concept when dealing with hydromodification projects. It is 
the difference in elevation between two points in the stream divided by the stream length 
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between the two points. Stream sinuosity greatly affects stream slope. Sinuosity is the stream 
length between two points on a stream divided by the valley length between the two points. A 
meandering stream moving through a valley has a lower slope than a straight stream. 

Erosion, Transport, and Deposition of Sediment 
All streams accomplish three basic geomorphic tasks: 
 

• Erosion—the detachment of soil particles along the stream bed and banks 
• Sediment transport—the movement of eroded soil particles in streamflow 
• Sediment deposition—the settling of eroded soil particles in the water or on land as water 

recedes 
 

These processes largely determine the size and shape of the channel, both laterally and 
longitudinally. The ability to accomplish these geomorphic tasks is related to stream power, the 
product of slope and discharge. Slope directly affects flow velocity. Consequently, a shallow, 
meandering stream with low slope generates less stream power, and has lower erosion and 
sediment-transport capacity, than a deep, straight stream. 
 
In addition to sinuosity, roughness along the boundaries of a stream area is also important in 
determining streamflow velocity and stream power. The rougher the channel bottom and banks, 
the more they are able to slow down the flow of water. The level of roughness is determined by 
many conditions including: 
 

• Type and spacing of bank vegetation 
• Size and distribution of sediment particles 
• Bedforms 
• Bank irregularities 
• Other miscellaneous obstructions 

 
Tractive stress, also known as shear stress, describes the lift and drag forces that work to create 
erosion along the stream bed and banks. In general, the larger the sediment particle, the more 
stream power is needed to dislodge it and transport it downstream. When stream power decreases 
in the channel, larger sediment particles are deposited back to the stream bed. 

Dynamic Equilibrium 
One of the primary functions of a stream is to move particles out of the watershed. Erosion, 
sediment transport, and deposition occur all the time at both large and small scales within a 
channel. A channel is considered stable when the average tractive stress maintains a stable 
streambed and streambanks. That is, sediment particles that erode and are transported 
downstream from one area are replaced by particles of the same size and shape that have 
originated in areas upstream. Lane (1955) qualitatively described this relationship as: 
 
Qs * D ∝ Qw * S 
 
Where: Qs = Sediment discharge, D = Sediment particle size, Qw = Streamflow,  
S = Stream slope 

EPA 841-B-07-002   July 2007 2-2



Chapter 2: Background 
 

 
When all four variables are in balance, the channel is stable, or in dynamic equilibrium.  
 
Lane’s channel variable relationships can be visualized as a pan balance with sliding weights 
(Figure 2.2). Sediment discharge is placed on one pan and streamflow on the other. The hook 
holding the sediment load pan can slide back and forth based on changes in sediment size. 
Likewise, the hook holding the streamflow can slide according to changes in slope. 
 
If a disturbance or stream modification occurs that causes a variable to change, one or more of 
the other variables must change in order to maintain the balance. During an imbalanced phase, 
the scale indicator will point to either degradation or aggradation. This indicates that the channel 
will try to adjust and regain equilibrium by either increasing sediment discharge by scouring the 
bottom or eroding its banks (degradation) or decreasing sediment discharge by depositing 
sediment on the bottom (aggradation), depending on the circumstance. 
 
For example, if stream slope is decreased and streamflow remains the same (i.e., streamflow pan 
slides toward the center), the balance will tip and aggradation will occur (Figure 2.3). 
Alternatively, if streamflow increases and slope remains the same (i.e., more weight on the 
streamflow pan), degradation will occur. No matter the scenario, this basic relationship between 
the variables will hold true and aggradation or degradation will cease only when the system 
reaches equilibrium. This can occur naturally over time, or through management practices 
designed to deal with the “balancing” issue. 
 

 
Figure 2.2 Factors Affecting Channel Degradation and Aggradation (FISRWG, 1998) 

EPA 841-B-07-002   July 2007 2-3



Chapter 2: Background 
 

 
Figure 2.3 Example of Aggradation (Adapted from FISRWG, 1998) 

 

Longitudinal View of Channels 
The geomorphic processes that define the size and shape of channels can be observed in large 
and small scale longitudinal views. The overall longitudinal view of many streams can be 
divided into three general zones (Schumm, 1977): 
 

• Headwater zone—characterized by steep slopes with sediment erosion as the most 
dominant geomorphic process. 

• Transfer zone—characterized by more sinuous channel patterns and wider floodplains 
with sediment transfer as the most dominant geomorphic process. 

• Deposition zone—characterized by lower slope and higher channel sinuosity than the 
other zone and is the primary deposition area for watershed sediment. 

 
Key characteristics of each zone are summarized in Figure 2.4.  
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Figure 2.4 Three Longitudinal Profile Zones (FISRWG, 1998) 

 
 
At a smaller scale, natural-forming channels are usually characterized by a series of riffles, 
pools, and runs. These structures are primarily associated with the thalweg, which meanders 
within the channel (Figure 2.5). 
Riffles are shallow, turbulent, 
and swiftly flowing stretches of 
water that flow over partially or 
totally submerged rocks. 
Deeper areas at stream bends 
are the pools and can be 
classified as large-shallow, 
large-deep, small-shallow, and 
small-deep. Runs are the 
sections of a stream with little 
or no surface turbulence that 
connect pools and riffles. 
 
The distribution in streamflow 
velocity and stream power 
throughout the riffle/pool/run 
sequence impact the 
geomorphic tasks. The stream 
bottom of a riffle is at a higher 

Figure 2.5 Overview of a Pool, Riffle, and Run (USEPA, 1997b) 
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elevation than the stream areas surrounding it. Consequently, the water flowing in a run from 
riffle to pool has the highest velocity near the center of the channel just under the surface (i.e., 
away from the roughness associated with channel boundaries). On reaching a bend, angular 
momentum forces the highest velocity flow to the outside of the bend and, given enough tractive 
stress, causes erosion to the bank (cutbanks). Meanwhile on the inside of the bend deposition 
often occurs because of decreasing flow velocity. Importantly, these and other characteristics of 
the riffle/pool/run sequence create unique habitats which allow different species to live, 
reproduce, and feed. 

Disruption of Dynamic Equilibrium 
Changes caused by (or exacerbated by) hydromodification projects and other human activities 
can lead to a disruption of the dynamic equilibrium of the stream channel. If, for example, a 
modification occurs that causes a change in sediment discharge, channel slope, or streamflow, 
one or more of the other variables will be imbalanced and the channel will usually try to adjust 
and regain equilibrium by either increasing sediment discharge by scouring the bottom or 
eroding its banks (degradation) or decreasing sediment discharge by depositing sediment on the 
bottom (aggradation) (Biedenharn et al., 1997; Watson et al., 1999). In some cases, alterations to 
a stream channel can result in local or system-wide channel instability (FISRWG, 1998).  
 

General Impacts of Channelization and Channel Modifications 
 
Channelization and channel modifications are undertaken for many purposes including flood 
control, navigation, drainage improvement, and reduction of channel migration potential. 
Modifications also occur in association with the installation of culverts and bridges, urbanization 
of the watershed, and agricultural drainage. These changes may result in several physical and 
chemical impacts. 

Physical Impacts 
The most significant physical impact of channelization and channel modifications is the 
movement or deposition of sediment. Sediment erodes from stream banks and beds, is washed 
downstream in faster moving water, deposited in areas of slower flows, and transported into new 
areas of streams or other receiving waters. Critical habitat can be changed when channelization 
or channel modification projects alter the dynamic equilibrium of a stream and change sediment 
transport or deposition characteristics. Re-establishing equilibrium may take some time to occur 
and have long-lasting effects to habitat and water quality conditions. 
 
Channel modification and channelization can lead to increased erosion in some areas of the 
stream, which produces sediment. Sediment can be dislodged and transported directly from the 
waterbody’s shoreline, bank, or bottom. Sediment being transported by a stream is referred to as 
the sediment load, which is further classified as the bed load (those particles moving on or near 
the bed, or bottom of the channel) and the suspended load (those particles moving in the water 
column). Hydromodification typically results in more uniform channel cross-sections, steeper 
stream gradients, and reduced average pool depths. 
 

EPA 841-B-07-002   July 2007 2-6



Chapter 2: Background 
 

An increase in the sediment load could lead to increased turbidity, which then may cause an 
increase in stream temperature because the darker sediment particles absorb heat (USEPA, 
1997b). Changes in water temperature can influence several abiotic chemical processes, such as 
dissolved oxygen concentrations, sorption of chemicals onto particles, and volatilization rates. 
Water temperature influences reaeration rates of oxygen from the atmosphere. Dissolved oxygen 
concentrations in water are inversely related to temperature; solubility of oxygen decreases with 
increasing water temperature. In addition, sorption of chemicals to particulate matter and 
volatilization rates are influenced by changes in water temperature. Sorption often decreases with 
increasing temperature and volatilization increases with increasing temperature (University of 
Texas, 1998).  
 
An increased sediment load that contains significant organic matter can increase the sediment 
oxygen demand (SOD). The SOD is the total of all biological and chemical processes in 
sediment that consume oxygen (USEPA, 2003a). These processes occur at or just below the 
sediment-water interface. Most of the SOD at the surface of the sediment is due to the biological 
decomposition of organic material and the bacterially facilitated nitrification of ammonia, while 
the SOD several centimeters into the sediment is often dominated by the chemical oxidation of 
species such as iron, manganese, and sulfide (Walker and Snodgrass, 1986 from USGS, 1997; 
Wang, 1980). Increases in SOD can lead to lower levels of dissolved oxygen, which can be 
harmful to aquatic life. 
 
A channel that is deepened or widened can result in slower and/or shallower flow. Reduced 
stream velocities can result in more sediment deposits to a stream segment. When more sediment 
is deposited in an area of a stream, critical habitats can be buried, channels may become 
unstable, and flooding increases. In tidal areas, channel modification activities, such as 
deepening a channel to allow for larger ships to access a shoreline, may require frequent 
maintenance to remove accumulating sediment because of changes in flow patterns. 

Chemical Impacts 
A variety of chemicals can be introduced into surface waters when channelization and channel 
modification activities alter flow and sediment transport characteristics. Nutrients, metals, toxic 
organic compounds, pesticides, and organic materials can enter the water in eroding soils along 
banks and move throughout a stream as flow characteristics change. Changing temperatures and 
dissolved oxygen levels may lead to alterations in the bioavailability of metals and toxic 
organics. Complex chemical conditions can significantly change when stream flow and 
sedimentation characteristics change, resulting in new and/or potentially harmful forms of 
chemicals affecting instream or benthic organisms. 
 
It is important to remember that many of the physical and chemical changes are interrelated. For 
a more detailed discussion of the impacts associated with chemical and physical changes to 
surface waters, see Restoration of Aquatic Ecosystems (NRC, 1992). The following discussion 
provides examples of impacts that may be present as a result of different kinds of channelization. 
For a more detailed discussion of types of channelization projects and potential impacts, see 
Watson et al. (1999). 
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Biological and Habitat Impacts 
Pools, riffles, and runs create a mixture of flows and depths and provide a variety of habitats to 
support fish and invertebrate life (USEPA, 1997b). The shallow, turbulent, and swiftly flowing 
stretches of riffle water are well oxygenated and have a “patchy distribution of organisms,” 
which means that different types of organisms are naturally found in different parts of the riffle. 
Pools can also be large or small and shallow or deep and support a wide variety of aquatic 
species. Sediments can deposit in pools, which can lead to the formation of islands, shoals, or 
point bars. 
 
Changes in habitat and biological communities following hydromodification of a channel can be 
highly site-specific and complex. The physical and chemical alterations resulting from 
channelization impact various habitats and biological communities, including instream algae, 
fish, macroinvertebrate populations, and bank or floodplain vegetation. Mathias and Moyle 
(1992) compared unchannelized and channelized sections of the same stream and found a much 
higher diversity of many organisms, including aquatic invertebrates, fish, and riparian 
vegetation, in the unchannelized sections of the stream. Adams and Maughan (1986) compared 
the benthic community in a small headwater stream, prior to and after channelization. They 
found that the pathways of organic input shifted from materials associated with leaf fall and 
runoff to materials associated with periphyton production. Accompanying this change was a shift 
of the assemblage from shredder domination to grazer domination and a decrease in diversity. 
Biological and habitat impacts caused by channelization can result from increased stream 
velocity, decreases in pool and riffle habitat complex, decrease in canopy cover, increase in the 
solar radiation reaching the channel, channel incision, and increases in sediment.  
 
Channelization of a stream may increase velocity due to increased channel slope and decreased 
friction with the bank and bed material. Changes in the velocity may cause an impact to 
organisms within the channel. For example, fish may have to expend more energy to stay in 
swifter currents and their source of food may be swept downstream. Studies have demonstrated 
that fisheries associated with channelized streams can be far less productive that those of non-
channelized streams (Jackson, 1989). Increased rates of erosion as a result of increased velocities 
downstream of a channelization feature can also create unstable streambanks, which could lead 
to increased streambank erosion, higher risks of flooding, and ultimately negative impacts to 
aquatic organisms.  
 
Channelization can result in a more uniform stream channel that is void of the pool and riffle 
habitat complex or obstructions, such as woody debris inputs. As repeatedly observed, this can 
result in changes to the biological community. Negishi et al. (2002) observed a decrease in the 
total density of macroinvertebrates in the middle of a channelized stream and a decrease in taxon 
richness in the middle and edge of a channelized stream. An overall reduction in habitat 
heterogeneity is likely responsible for the reduction in species diversity and the increased 
abundance of those species favored by the altered flows that is typically observed (Allan, 1995). 
On medium-sized, unregulated rivers, Benke (2001) found that habitat-specific invertebrate 
biomass was highest on snags, followed by the main channel and then the floodplain. It was 
concluded that invertebrate productivity from these habitats has likely been significantly 
diminished as a result of snag removal, channelization, and floodplain drainage (Benke, 2001).  
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The survival of the Gulf Coast walleye (Stizostedion vitreum) relies on the availability of 
appropriate spawning habitat, such as large woody debris, that locally reduce current velocity. 
Channelization and the removal of structures have been identified as activities of concern that 
could threaten the survival of the species (VanderKooy and Peterson, 1998). In one experiment, 
an assessment of water quality using environmental indices, such as macroinvertebrate 
communities, found that channelization and deforestation resulted in a completely different and 
less varied biocommunity (Bis et al., 2000). A lower persistence of the macroinvertebrate 
assemblage in the channelized stream was attributed to the lower availability of flow such as 
backwaters and inundated habitats (Negishi et al., 2002). In a study by Kubecka and 
Vostradovsky (1995), low fish populations were attributed to channelization of the riverbed. 
 
The channelization of a river can also result in a decrease in canopy cover and an increase in the 
solar radiation reaching the channel. Bis et al. (2000) found that an increase in incident radiation 
on a river resulted in increased algal productivity and a significant decrease in scrapers, a 
macroinvertebrate that feeds on periphyton or algae growing on plant surfaces. Increased water 
temperatures can also lead to a shift in the algal community to predominately planktonic algal 
communities, which disrupts the aquatic food chain (Galli, 1991). The combination of increased 
water temperatures and loss of riparian vegetation falling into the stream (which provides both 
food and cover) may be responsible for the decrease in macroinvertebrates. Increased solar 
radiation on a channelized stream can act to decrease productivity by reaching the level of 
photoinhibition; a decrease in productivity due to excessive amounts of solar radiation. The 
temperature of the water can also be increased to the extent that it adversely impacts organisms. 
Elevated temperatures disrupt aquatic organisms that have narrow temperature limits, such as 
trout, salmon, and many aquatic insects.  
 
Incision of a channel, a common impact of channelization, disconnects the channel from the 
floodplain by lowering the riverbed relative to the floodplain and decreasing the occurrence of 
overbank flow. Channel incision or downcutting has rarely been found to directly affect the 
biotic ecosystem, but indirect changes in habitat conditions are significant. Channel incision 
decreases habitat heterogeneity and, as a result, biodiversity (Tachet, 1997). An analysis of forest 
overstory, understory, and herbaceous strata along a channelized and unchannelized stream 
showed that there was a difference in terms of size-class structure and woody debris quantity 
(Franklin et al., 2001). Loss of woody vegetation along riparian zones on a channel that is 
incised because of upstream channelization was attributed to a decrease in over bank flooding 
and a lowering of the water table as the stream became incised (Steiger et al., 1998). A 
comparison of a regulated and an unregulated river in Colorado’s Green River Basin found a 
difference in riparian vegetation composition. The regulated river supported banks with wetland 
species that survive in anaerobic soils and terraces with desert species adapted to xeric soil 
conditions. The unregulated river supported riparian vegetation that changed along a more 
gradual environmental continuum from a river channel to a high floodplain (Merritt and Cooper, 
2000). 
 
Sediment affects the use of water in many ways. When the rate of erosion changes, transport and 
deposition of sediment also changes. Excessive quantities of sediment can bury benthic 
organisms and the habitat of fish and waterfowl. Suspended solids in the water reduce the 
amount of sunlight available to aquatic plants, cover fish spawning areas and food supplies, fill 
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rearing pools, reduce beneficial habitat structure in stream channels, smother coral reefs, clog the 
filtering capacity of filter feeders, and clog and harm the gills of fish. Those fish species that rely 
on visual means to get food may be restricted by increased turbidity. Sedimentation effects 
combine to reduce fish, shellfish, coral, and plant populations and decrease the overall 
productivity of lakes, streams, estuaries, and coastal waters.  
 

Impacts Associated with Specific Hydromodification Actions 

Channel Straightening and Deepening 
Channels are straightened for a multitude of reasons, such as directing water away from a 
particular structure or area and reducing local flooding. Channelization that involves 
straightening of the stream channel increases the slope of the channel, which results in higher 
discharge velocities. Impacts associated with increased water velocities include more streambank 
and streambed erosion, higher sediment loads, changes in pools, riffle, and run structure, and 
increased transport of nutrients and other pollutants (FISRWG, 1998; Simons and Senturk, 
1992).  
 
Channelization can also result in alterations to the base level of the stream, including channel 
downcutting or incision of a section of the stream, which raise the height of the floodplain 
relative to the riverbed and decrease the frequency of overbank flow. When streams reach flood 
stage and flow into the floodplain, velocities decrease. The reduction in overbank flow reduces 
sediment deposition and the sediment storage potential of the floodplain (Wyzga, 2001). A 
change in the downstream base level of a stream can create an unstable stream system 
(Biedenharn et al., 1997). 
 
Headcutting is the deepening of a waterway caused by channelization or localized stream-bed 
mining. Headcutting severely impacts the physical integrity of a stream, as streambanks become 
unstable and are more prone to eroding and sloughing. Bank failures may result, removing 
streamside vegetation and introducing significant amounts of sediment into the waterway. As 
sediments build on the stream bottom, natural substrate is covered and stream depth decreases. 
Water quality often diminishes as temperatures rise due to less shading by riparian vegetation 
and increased water surface area with decreased depth. The rapid alteration to stream habitat 
caused by headcutting is usually detrimental to aquatic wildlife. Various organizations, such as 
the U.S. Army Corps of Engineers, the Natural Resources Conservation Service (NRCS), and the 
Missouri Department of Conservation, are involved in projects to reduce headcutting (CSU, n.d.; 
MDC, 2007; USGS, 2000). 

Channel Lining 
The sides of channels can be lined with materials such as metal sheeting, concrete, wood, or 
stone to prevent erosion of a particular section of stream channel or stream bank. The artificially 
lined areas can reduce the friction between the channel and flowing water, leading to an increase 
in velocity. The increased velocity and thus the increased erosive potential of the flowing water 
are not able to erode the artificially lined channel area and can result in augmented erosion 
downstream as well as increased downstream flooding (Brookes, 1998). Lining the channel also 
removes aquatic habitat and important substrates that are essential to aquatic life. 
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Channel Narrowing 
Narrowing of a stream channel often occurs when flood control measures such as levees and 
floodwalls are implemented. By narrowing a stream channel, the water is forced to flow through 
a more confined area and thus travels at an increased velocity (FISRWG, 1998). The increased 
velocity in turn increases the stream’s erosive potential and ability to transport sediment. This 
can lead to increased erosion of the streambank and shoreline in downstream locations.  
 
When a channel is made narrower, the water depth increases and the surface area exposed to the 
solar radiation and ambient temperature decreases, especially in the warmer months. This can 
cause a decrease in the water temperature. Increased depth may also reduce the surface area of 
the water in contact with the atmosphere and affect the transfer of oxygen into the water. 
 
In a naturally flowing stream, floods are responsible for such processes as redistributing 
sediment from the river bottom to form sandbars and point bar deposits. Stream channel 
modifications to reduce flood damage, such as levees and floodwalls, often narrow the stream 
width, increasing the velocity of the water and thus its erosive potential. This can lead to 
increased erosion of the streambank and shoreline in downstream locations (FISRWG, 1998).  

Channel Widening  
Channel widening is often performed to increase a channel’s ability to transport a larger volume 
of water. The design is often based on volumes of water that occur during flood events. The 
design of a channel modification project to increase the channel’s ability to transport a large 
volume of water will determine the characteristic of the water flow. The widening of a channel 
can result in a channel with a capacity to transport water that far exceeds the typical daily 
discharge. This results in a typical flow that is shallow and wide. As a result of increased contact 
with the streambed and streambank, there is increased friction and a decreased water velocity. 
The decrease in velocity causes sediment to settle out of the water column and accumulate within 
the stream channel. This accumulation of sediment can decrease the capacity of the stream 
channel. The decreased depth and increased surface area of the water exposed to solar radiation 
and ambient air temperatures can lead to an increase in water temperature. A change in water 
temperature can influence dissolved oxygen concentrations as dissolved oxygen solubility 
decreases with increasing water temperature. 
 
Where tidal flow restrictors cause impoundments, there may be a loss of streamside vegetation, 
disruption of riparian habitat, changes in the historic plant and animal communities, and decline 
in sediment quality. Restricted flows can impede the movement of fish or other aquatic life. Flow 
alteration can reduce the level of tidal flushing and the exchange rate for surface waters within 
coastal embayments, with resulting impacts on the quality of surface waters and on the rates and 
paths of sediment transport and deposition.  

Culverts and Bridges 
The presence of culverts and bridges along a channel can have an impact on the physical and 
chemical qualities of the water. A culvert can be in the form of an arch over a channel or a pipe 
that encircles a channel, and it functions to direct flow below a roadway or other land use. A 
culvert or the supports of a bridge can confine the width of a channel forcing the water to flow in 
a smaller area and thus at a higher velocity. Impacts associated with a higher flow velocity 
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include increased erosion. An arch culvert maintains the natural integrity of the stream bottom. 
In addition, as compared with the natural substrate that can be found using an arch culvert 
without concrete inverts (floors), a pipe culvert may create less friction with the water flow and 
result in an increased flow velocity. The chemical and physical changes associated with 
increased erosion and sediment transport capacity would then result.  
 
The culvert acts as a fixed point with a fixed elevation within the stream channel and as the 
stream attempts to adjust over time, the culvert remains stationary. Placement of this type of 
structure disturbs the natural equilibrium of a channel. A culvert sometimes may have beneficial 
attributes when it acts as a grade control structure, and as such, may serve to prevent upstream 
migrating incision (headcutting) from moving further up the channel. Depending on the 
watershed processes, the culvert may act to preserve the natural equilibrium of a channel. 

Urbanization 
As humans develop watersheds, the proportions of pervious and impervious land within the 
watershed change (most often increasing impervious areas and decreasing pervious areas). 
Development also results in reductions in vegetative cover in exchange for increases in houses, 
buildings, roads, and other non-vegetative cover. The result is a change in the fate of water from 
rainfall events. Generally, as imperviousness increases and vegetative cover is lost: 
 

• Runoff increases 
• Soil percolation decreases 
• Evaporation decreases 
• Transpiration decreases 

 
Increased volumes of runoff resulting from some types of watershed development can result in 
hydraulic changes in downstream areas including bank scouring, channel modifications, and 
flow alterations (Anderson, 1992; Schueler, 1987). The resulting changes to the distribution, 
amount, and timing of flows caused by flow alterations can affect a wide variety of living 
resources. As urbanization occurs, changes to the natural hydrology of an area are inevitable. 
During urbanization, pervious spaces, including vegetated and open forested areas, are converted 
to land uses that usually have increased areas of impervious surface, resulting in increased runoff 
volumes and pollutant loadings. Hydrologic and hydraulic changes occur in response to site 
clearing, grading, and change in landscape. Water that previously infiltrated the ground and was 
slowly released runs off quickly into stream networks. Development, with corresponding 
increases in imperviousness, can lead to: 
 

• Increased magnitude and frequency of bankfull and subbankfull floods 
• Dimensions of the stream channel that are no longer in equilibrium with its hydrologic 

regime 
• Enlargement of channels 
• Highly modified stream channels (from human activity) 
• Upstream channel erosion that contributes greater sediment load to the stream 
• Reduced dry weather flow to the stream 
• Decreased wetland perimeter of the stream 
• Degraded in-stream habitat structure 
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• Reduced large woody debris 
• Increased stream crossings and potential fish barriers 
• Fragmented riparian forests that are narrower and less diverse 
• Decline in water quality 
• Increased summer stream temperatures 
• Reduced aquatic diversity 

 
The hydraulic changes associated with urbanization have often been addressed with 
channelization and channel modification as a solution. Evaluating impacts from urbanization on 
a watershed scale and planning solutions on the same watershed scale can often prevent the 
transference of upstream problems to downstream locations. There are a variety of management 
activities that can reduce the impacts associated with urban development. When these urban 
impacts are reduced, additional hydromodification impacts, such as channelization and channel 
modification or streambank and shoreline erosion effects, may be reduced. Changes in urban 
development practices that result in reduced sediment in runoff can enhance reservoir quality and 
lessen the need for management activities to reduce nonpoint source impacts associated with the 
operation of dams.1  

Agricultural Drainage 
Some activities, including channelization and channel modification, that take place within a 
watershed, can lead to unintended adverse effects on watershed hydrology. Even when the 
intended effect of the watershed activity is to reduce pollution or erosion for an area within a 
watershed, the impact of the project to the entire watershed’s hydrology should be evaluated. 
Since hydrology is important to the detachment, transport, and delivery of pollutants, better 
understanding of these effects can lead to reduction of nonpoint source pollution problems 
(USEPA, 2003b).  
  
One example of an activity that has been shown to provide localized nonpoint source benefits, 
but can negatively affect the hydrology of a watershed, is an agricultural drainage system. The 
main purpose of agricultural drainage is to provide a root environment suitable for plant growth, 
but it can also be used as a means of reducing erosion and improving water quality. Despite the 
localized positive effects of drainage, when drainage water is poor in quality or contains elevated 
levels of pollutants, adverse impacts may occur downstream within a watershed. Concentrations 
of salts, nutrients, and other crop-related chemicals, such as fertilizers and pesticides can damage 
downstream aquatic ecosystems. Many agricultural drainage systems include drain tiles placed 
strategically throughout a field to create a network of gravity fed drains. The drain tiles empty 
into a collection pipe that drains to a waterbody nearby. With the drain system in place and 
operating, water will leave the affected area quicker and at one or more focused points. Water 
from the drainage system may erode the banks of unlined surface drains, contribute to flashier 
runoff events in the receiving water or downstream, and increase the load of sediment in 
drainage water (USEPA, 2003b).  

                                                 
1 For additional information on hydrologic problems associated with urbanization and management practices that 
address urbanization issues, refer to National Management Measures to Control Nonpoint Source Pollution from 
Urban Areas (USEPA, 2005d): http://www.epa.gov/owow/nps/urbanmm/index.html.  
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Because of these adverse effects, drainage planners should analyze effluents from these systems 
for nutrients and pesticides to determine possible downstream impacts. Care should also be taken 
with drainage water so that it does not negatively alter the hydrology of a watershed (FAO, 
1997). The degree to which management activities, such as agricultural drainage systems, affect 
watersheds beyond their intended purpose should be evaluated. In some cases, a thorough 
assessment and thoughtful discussion with key stakeholders is enough to evaluate the potential 
impacts of a project on hydrology. However, in many instances, some form of modeling is 
probably needed to integrate various small and large impacts of watershed activities. For more 
information on agricultural drainage and management practices related to agricultural drainage, 
refer to National Management Measures for the Control of Nonpoint Pollution from Agriculture 
(USEPA, 2003b).2 
 

Shorelines 
 
A shoreline is defined as the areas between low tide and the highest land affected by storm 
waves. The shape and position of shorelines are constantly being modified by the processes of 
erosion and deposition by waves and currents (Tarbuck and Lutgens, 2005). NOAA’s Coastal 
Services Center defines shoreline as “the line of contact between the land and a body of water. 
On Coast and Geodetic Survey nautical charts and surveys the shoreline approximates the mean 
high water line” (NOAA, 2006). 
 
The shoreline can be divided into three major areas: 
 

1) Coast—the land inland from the base of the sea cliff (produced by the undercutting of 
bedrock at sea level by wave erosion). 

2) Beach (shore)—the area between low tide level and dunes, sea cliff, or permanent 
vegetation.  This can be separated into backshore and foreshore.  

3) Offshore—the area continuously underwater, which can include a wave build platform.  

Shoreline Processes 
As mentioned above, the shape and position of shorelines are constantly modified by erosion and 
deposition by waves and currents. Waves are agents of erosion, transportation, and deposition of 
sediments. Waves can be formed by the following processes (Tulane University, n.d.; University 
of Alabama, 2006): 
 

• Wind-generated waves—formed by shear stress between water and air when the wind 
speed is higher than about 3 km/hr. Factors that determine the size of waves are wind 
velocity, wind duration, and fetch (distance the wind blows over a continuous water 
surface). 

• Displacement of water—can be caused by activities such as landslides. 
• Displacement of seafloor—can be caused by faulting and volcanic eruptions. 

 

                                                 
2 Available online at: http://www.epa.gov/owow/nps/agmm/index.html. 
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Wave refraction occurs where wave fronts approach the shore at an angle, but are bent to become 
more parallel to the shoreline by frictional drag on the bottom. The part of the wave in shallow 
water slows down because of bottom friction, while the part in the deep water keeps moving at 
regular speed. Wave refraction causes headland erosion and deposition in bays (Tulane 
University, n.d.; University of Alabama, 2006).  
 
Nearshore currents occur in the area from the shoreline to beyond the surf zone and consist of 
(Tulane University, n.d.; University of Alabama, 2006): 
 

• Longshore currents move parallel to shore in the same general direction as the 
approaching waves. They are produced by the movement of oblique waves in the surf 
zone, and can transport large amounts of sediment by longshore drift. 

• Rip currents are strong, narrow currents of surface water that flow seaward through the 
surf into deeper water. The currents develop in areas with lower wave heights (deeper 
water depths). 

Deposition and Erosion 
Wave erosion and rivers that open into the ocean or lakes can deposit sediment, transported by 
longshore currents, developing the following depositional features (Tulane University, n.d.; 
University of Alabama, 2006): 
 

1) Beaches—Any strip of sediment that extends from the low-water line inland to a cliff or 
zone of permanent vegetation, which is built of material eroded by waves from the 
headlands, and material brought down by rivers that carry the products of weathering and 
erosion from the land masses. Beaches are protected from the full force of water waves 
but are continually modified by wave and current erosion. 

2) Spits—A narrow ridge or embankment of sediment forming a finger-like projection from 
the shore into the open ocean. Spits typically develop when the sediment being carried by 
long-shore drift is deposited where water becomes deeper, such as the mouth of a bay. 

3) Baymouth bars—Sand bars that form as a result of longshore drift and completely cross a 
bay, sealing it off from the open ocean. 

4) Tombolo—A ridge of sand that connects two islands or an island with the mainland, 
formed as the result of wave refraction around an island. 

5) Tidal inlet—A break in a spit or baymouth bar, caused by storm erosion, through which 
tidal currents rush. 

6) Barrier islands—Low offshore ridges of sediments that parallel the coast and are 
separated from the mainland by lagoons.  

 
Wave erosion can also wear away land features, causing the following types of features to form 
(Tulane University, n.d.; University of Alabama, 2006): 
 

1) Sea cliffs—formed by storm wave erosion which undercuts higher land, making it 
susceptible to mass wasting. Sea cliffs can erode very slowly or rapidly, depending on the 
rock type and wave energy. 

2) Wave-cut terrace or platform—produced by the retreat of a sea cliff which slopes gently 
in a seaward direction.  
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3) Headlands—occur due to the seaward projections of shore eroded by wave refraction. 

Common Natural and Anthropogenic Causes of Coastal Land Loss 
Primary causes of coastal land loss, including both natural and anthropogenic causes, are 
summarized in Table 2.1 below (USGS, 2004). 
  
Table 2.1 Common Causes of Coastal Land Loss 

Agent Examples 
Natural Causes 
Erosion Waves and currents, storms, landslides 
Sediment reduction Climate change, stream avulsion, source depletion 
Submergence Land subsidence, sea-level rise 
Wetland deterioration Herbivory, freezes, fires, saltwater intrusion 
Anthropogenic Causes 
Transportation Boat wakes, altered water circulation 
Coastal construction Sediment deprivation (bluff retention), coastal structures (jetties, groins, 

seawalls) 
River modification Control and diversion (dams, levees) 
Fluid extraction Water, oil, gas, sulfur 
Climate alteration Global warming and ocean expansion, increased frequency and intensity of 

storms 
Excavation Dredging (canals, pipelines, drainage), mineral extraction (sand, shell, heavy 

mines) 
Wetland destruction Pollutant discharge, traffic, failed reclamation, burning 

 
Shorelines can also experience increased rates of erosion as a result of hydromodification 
activities. Alterations to the sediment sources for beaches can result in erosion. The sediment 
supplied to beaches or shorelines can come from a variety of sources including rivers, cliff and 
rocky foreshores, the seafloor, or windblown dune materials. Beaches and shorelines at the 
mouth of a river are often replenished by fluvial sediment. When changes within the river system 
decrease the sediment load carried to the mouth of the river, the result may be decreased 
sediment supplies to the shoreline or beach. While the design of each hydromodification system 
determines the impacts that will ensue, streambank and shoreline erosion is a common 
consequence. 
 

Impacts Associated with Dams 
 
The physical presence and operation of dams can result in changes in water quality and quantity. 
Some of the water quality impacts include changes in erosion, sedimentation, temperature, 
dissolved gases, and water chemistry. Examples of biological and habitat impacts, which may 
result from a combination of physical and chemical changes, include loss of habitat for existing 
or desirable fish, amphibian, and invertebrate species; changes from cold water to warm water 
species (or inversely, changes from warm water to cold water species); blockage of fish passage; 
or loss of spawning or necessary habitat. 
 
The impacts associated with dams occur above (upstream) and below (downstream) the dam. 
Upstream impacts occur primarily in the impoundment/reservoir created by the presence and 
operation of the dam. The area and depth of the impoundment will determine the extent and 
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complexity of the upstream and downstream impacts. For example, small, low-head dams with 
little impounded areas will exhibit different impacts than large storage dams. Sedimentation and 
fish passage issues at the smaller, low-head dam contrast with sedimentation, temperature, fish 
passage, flow regulation, and water quality issues that may be associated with the larger storage 
dam. The existence of the dam and associated impoundment results in much different water 
quality interactions than those associated with the preexisting naturally flowing streams or rivers. 
 
Above dams, activities within the watershed can have significant impacts on water quality within 
impoundments and in releases from dams to downstream areas. Watershed activities, such as 
agricultural land use, unpaved rural roads, forestry harvesting, or urbanization can lead to 
changes in runoff water quantity and quality. Agricultural and forestry practices that lead to 
sediment-laden runoff may result in increased sediment accumulation within an impoundment. 
Chemicals (e.g., pesticides and nutrients) that are applied on agricultural crops can be carried 
with sediment in runoff. Increases in urbanization that result in more impervious areas within a 
watershed often result in dramatic changes in the quantity and timing of runoff flows. These 
external sources are integrated by the dam and may result in short- and long-term water quality 
changes within an impoundment and dam releases. 
 
Water quality in reservoirs and releases from dams are closely linked and scrutinized to uses of 
the water. Often, there are multiple potential users who may have differing quality needs and 
perceptions. Management of dams includes balancing dam operations, watershed activities, 
reservoirs, and downstream water and uses. Dortch (1997) provides an excellent assessment on 
water quality considerations in Reservoir Management. Dortch (1997) notes the following about 
water quality: 
 

• Temperature regulates biotic growth rates and life stages and defines fishery habitat 
(warm, cool, and cold water). 

• Oxygen sustains aquatic life. 
• Turbidity affects light transmission and clarity. 
• Nutrient enrichment is linked to primary productivity (algal growth) and can cause 

oxygen depletion, poor taste, and odor problems. 
• Organic chemicals and metals may be toxic and accumulate when bound to sediment that 

settles in the reservoir. 
• Total dissolved solids may be problematic for water supplies and other users. 
• Total suspended solids are a transport mechanism for nutrients and contaminants. Solids 

may settle in reservoirs and displace water storage volume. 
• pH regulates many chemical reactions. 
• Dissolved iron, manganese, and sulfide can accumulate in reservoir hypolimnions that 

are depleted of oxygen and can cause water quality problems in the reservoir and release 
water. 

• Pathogens include bacteria, viruses, and protozoa that can cause public health problems. 
 
Water uses include water supply, flood control, hydropower, navigation, fish and wildlife 
conservation, and recreation (Dortch, 1997). All of the uses have varying water quality 
requirements, ranging from almost none for flood control to high quality needs for water supply, 
fish and wildlife conservation, and recreation. 
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Dams act as a barrier to the flow of water, as well as to materials being transported by the water. 
This can impact water quality both in the impoundment/reservoir created by the dam and 
downstream of the dam. Alteration to the chemical and physical qualities of water held behind a 
dam is often a function of the retention time of a reservoir or the amount of time the water is 
retained and not able to flow downstream. Water held in a small basin behind a run-of-river dam 
may undergo minimal alteration. In contrast, water stored for months or even years behind a 
large storage dam can undergo drastic changes that impact the downstream environment when 
released (McCully, 2001). A storage dam that impounds a large reservoir of water for an 
extended time period will cause more extensive impacts to the physical and chemical 
characteristics of the water than a smaller dam with little storage capacity.  
 
Several physical changes are possible when dams are introduced into a stream or river, including 
changes in: 
 

• Instream water velocities 
• Timing and duration of flows 
• Flow rates 
• Sediment transport capacities 
• Turbidity  
• Temperature 
• Dissolved gasses 

 
Similarly, changes to water chemistry are possible as a result of damming rivers and streams, 
including changes to: 
 

• Nutrients 
• Alkalinity and pH 
• Metals and other toxic pollutants 
• Organic matter  

 
The nature and severity of impacts will depend on the location in the river or stream, in relation 
to the upstream or downstream side of the dam, the storage time of the impounded water, and the 
operational practices at the dam. Many of the above impacts are also interrelated. For example, 
changes in temperature may result in changes in dissolved oxygen levels or changes to pH may 
result in changes to nutrient dynamics and the solubility of metals. 

Water Quality in the Impoundment/Reservoir  
As water approaches a dam from upstream, the stream velocity slows down considerably, 
creating a lake-like environment. The water builds up behind the dam and forms a basin (i.e., 
impoundment, reservoir) that is deeper than the previous stream flow. The height of the dam and 
its operational characteristics will determine how much water is stored and the length of storage. 
The extent of impacted stream area above the dam is influenced by the size of the dam installed, 
how much water is released, and how often water is released. For example, a small run-of-the 
river dam constructed to divert water for a millrace will have minimal storage capacity and may 
only store water for several hours or less. In this case, instream water velocities may decrease, 
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but with minimal upstream and downstream effects. Thus, the length of upstream channel that is 
impacted should be relatively small. 
 
In contrast, a large flood control dam and reservoir may have many months of storage and 
severely alter instream velocities for long distances upstream. Topography surrounding the 
original stream channel and storage volume will be important parameters determining the length 
of stream channel affected by the large dam. The volume and frequency of discharges from the 
dam will also determine how much of the upstream channel is impacted with lower instream 
velocities as a result of the dam.  
 
Dams act as a physical barrier to the movement of suspended sediments and nutrients 
downstream (McCully, 2001). When the stream flow behind a dam slows, the sediment carrying 
capacity of the water decreases and the suspended sediment settles onto the reservoir bottom. 
Any organic compounds, nutrients, and metals that are absorbed to the sediment also settle and 
can accumulate on the reservoir bottom.  
 
Turbidity associated with sediment varies, depending on particle sizes of the sediment and the 
length of time water is held. Longer holding times in the reservoir could result in periodic 
episodes of high turbidity from upstream storm events that carry sediment rich stormwater, 
especially if the sediment is predominantly very fine clay particles. Turbidity may also increase 
as a result of planktonic algal growth in a reservoir. 
 
The increased depth of the water in reservoirs reduces the volume of water exposed to solar 
radiation and ambient temperatures. Once the flow is controlled by the operation of the dam and 
the reservoir is mixed primarily by winds, temperature variations can become established within 
the reservoir. This can cause thermal stratification where, compared to the bottom, surface layers 
become warmer in the summer and cooler in the winter. In deeper reservoirs, the deepest layers 
may become nearly constant in temperature throughout the year. Changes in temperature can 
impact water quality and biological processes in the reservoir, including changes in predominant 
fish species. Since the density of water is a function of water temperature, thermal stratification 
creates density gradients within the impoundment. As density gradients become established, 
exchanges of gases and chemicals between gradients decrease. In a stratified impoundment well 
aerated surface waters often do not mix with hypolimnetic water and result in poorly oxygenated 
strata below the surface waters. 
 
Nutrient transport is affected by dams, which can trap the nutrients in the 
impoundment/reservoir. When nutrients accumulate, the reservoir might become nutrient 
enriched (i.e., eutrophic). In warmer seasons, concentrated nutrients in waters exposed to light 
can promote growth of algae and other aquatic plants, which consume nutrients and release 
oxygen (during photosynthesis) and carbon dioxide (during respiration). When algae and other 
aquatic plants complete their growth cycles, they die and sink to the bottom of an impoundment. 
Microbial decomposition of the highly organic dead plant materials may release nutrients back 
into the water column. Microbial decomposition of the dead plant and algal cells in aerobic 
conditions consumes oxygen, which can rapidly deplete bottom waters of dissolved oxygen. 
Under anaerobic conditions, microbial decomposition can produce potentially toxic 
concentrations of gases, such as hydrogen sulfide. 
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The operational characteristics of a dam will influence nutrient levels in water releases. For 
example, water released from the surface of an impoundment may contain seasonally varying 
forms and levels of nutrients. During periods of algal growth, releases may contain lower levels 
of dissolved nutrients and higher levels of organic materials (algae) containing nutrients. When 
algal growth is not occurring, releases may contain higher levels of dissolved nutrients. 
 
Anaerobic (oxygen-depleted) environments, which are typical of deeper waters in reservoirs, can 
result in several changes to the water chemistry. For example, as by-products of organic matter 
decomposition in an anaerobic environment, ammonia and hydrogen sulfide concentrations can 
become elevated (Freeman, 1977; Pozo et al., 1997). Highly acidic (or highly alkaline) waters 
tend to convert insoluble metal sulfides to soluble forms, which can increase the concentration of 
toxic metals in reservoir waters (FISRWG, 1998). 
 
Changes in one water quality parameter in a reservoir/impoundment can impact other water 
quality parameters, causing a cycling of events to occur. For example, increased sedimentation 
(from internal or external sources) can lead to more organic matter remaining in the reservoir, 
resulting in more biochemical oxygen demand, potentially lower dissolved oxygen, and other 
changes to water chemistry, such as pH and metal solubility. Periodic growth and then die-off of 
aquatic plants and algae creates additional variable cycling of organic matter in the reservoir. 
The following references may provide additional detail on the complex water quality changes 
that can occur in impoundments and reservoirs: 
 

• Holdren, C., W. Jones, and J. Taggart. 2001. Managing Lakes and Reservoirs. North 
American Lake Management Society and Terrene Institute, in cooperation with the 
Office of Water, Assessment and Watershed Protection Division, U.S. Environmental 
Protection Agency, Madison, WI. 

• Thornton, K.W., B.L. Kimmel, and F.E. Payne. 1990. Reservoir Limnology: Ecological 
Perspectives. John Wiley & Sons, Inc., New York. 

• U.S. Army Corps of Engineers. N.d. The WES Handbook on Water Quality Enhancement 
Techniques for Reservoirs and Tailwaters. U.S. Army Corps of Engineer Research and 
Development Center Waterways Experiment Station, Vicksburg, MS. 
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Water Quality Downstream of a Dam  
The physical and chemical changes that occur to the water quality in an impoundment/reservoir 
have a large impact on the water released downstream of a dam. As previously stated, the 
presence of a dam can alter water velocities above and below the dam. In smaller dams with little 
storage capacity, velocities may slow locally and recover to an undisturbed state shortly 
downstream from the dam. When dams store large volumes of water in a reservoir, the operation 
of the dam will have a major impact on the downstream velocities and flows. Unless the dam is 
operated to consistently release water at flows 
near pre-dam levels, downstream areas will have 
flows and velocities that are directly related to 
the volume of water released in a given time 
period. The downstream flow characteristics will 
become a function of the operation of the dam, 
including the timing and duration of releases, the 
depth of reservoir intakes, and other physical 
characteristics of the release. 

On the Columbia River, research found that 
prior to construction of dams, average water 
temperatures fluctuated more diurnally with 
cooler nighttime temperatures as compared 
with the existing average water temperatures. 
With the dams in place, cooler weather tends 
to cool the free flowing river but have little 
effect on the average temperature of the 
impounded river (USEPA, 2003c).  

 
When dams trap sediment upstream, water released from the dam may be starved of sediment 
and have an increase in erosive capacity. Along with trapping sediment, nutrients may also be 
trapped above the dam. When the nutrients are trapped and unavailable, sensitive downstream 
habitats and populations may be affected.  
 
Whether the water is released from the surface or bottom of the reservoir can have a large impact 
on the characteristics of the water. The impacts of water outflows below a dam are an outcome of 
the seasonal temperature fluctuations and the outflow positioning. Seasonal temperature profiles 
in reservoirs are highly variable and dependent upon a complex set of factors including tributary 
inflow, basin morphometry, drawdown and discharge characteristics, and the degree of 
stratification (Wetzel, 2001). Compared to natural temperatures, in summer elevated 
temperatures in surface water releases can increase downstream river temperatures, whereas 
bottom water releases can be expected to decrease water temperatures. The opposite effect is 
generally observed in the winter due to changes in the water temperature gradient (USACE, 1999 
in Fidler and Oliver, 2001).  

Suspended Sediment and Reduced Discharge 
Whether the release water originates from the surface or the bottom of the reservoir, the 
suspended sediment has typically settled out of the water column and thus the water released 
from behind the dam is usually relatively free from sediment (Simons and Senturk, 1992). This 
sediment-free water can easily pick up and carry a sediment load and have an increase in erosive 
capacity. Because of the rock lined channels of bank stabilization and navigation projects that 
usually occur below these reservoirs, the only place that the clear waters can find the sediments 
they need is in the streambed or navigation channel. This leads to channel deepening or bed 
degradation, which in turn lowers water tables and drains floodplain channels and backwaters 
(Rasmussen, 1999). Streambed and streambanks will continue to erode until an equilibrium 
suspended sediment load is established. Without sediment from upstream sources, downstream 
streambanks, streambeds, sandbars, and beaches can erode away more quickly (FISRWG, 1998). 
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A reduction in the discharge and sediment load generally results in degradation of the channel 
close to the dam and sedimentation downstream due to the increased supply from the erosion 
near the dam. Degradation may eventually migrate downstream, but is typically most dramatic 
the first few years following construction of the dam (Biedenharn et al., 1997). In addition, the 
physical impact of the discharge will depend, in part, on the channel substrate. A fine silt and 
sand channel bottom may experience more extensive erosion than a bed rock or cobble substrate.  
 
Lower flow conditions below a dam within a tidally influenced basin can lead to changes in 
water chemistry. The impact of lower freshwater flow into estuaries was extensively studied in 
San Francisco Bay. Nichols et al. (1986) provide a detailed history of changes to freshwater 
inflows to San Francisco Bay. They also provide a summary of the impacts, which include the 
ecological and water quality effects. A study comparing an unregulated river and a dam 
regulated river found a significant difference in the water quality chemistry, including an 
analysis of levels of sodium, potassium, calcium, phosphorus, electrical conductivity, and pH in 
the middle and lower reaches of the rivers. These differences were attributed to increased tidal 
influence as a result of lower outflow volumes of fresh water from the dam (Colonnello, 2001). 
In addition, a decreased discharge from the dam and increased tidal influence can prolong the 
flushing time or the time it takes water to move through a system. This causes the nutrients and 
pollutants within the water to remain concentrated in areas below the dam near an estuary.  

Biological and Habitat Impacts 
The presence of a dam may cause physical and chemical changes to the water quality. These, in 
turn, can have an impact on the entire biological community including fish, macroinvertebrates, 
algae, and streamside vegetation. Impacts to the biological community differ upstream and 
downstream of a dam. Dams may disrupt spawning, increase mortalities from predation, change 
instream and riparian habitat, and alter plant and benthic communities. Resulting fish populations 
after dam construction may thrive and become well established, but could be very different than 
populations prior to installing the dam. For example, upstream of the dam, a fish population may 
change from a cold-water salmonid fishery to one that is dominated by cool- or warm-water 
species. A once thriving native trout population may become a largemouth bass (Micropterus 
salmoides) and bluegill (Lepomis macrochirus) dominated system. Similarly, downstream 
conditions may also change. In southern states, streams that once supported catfish and other 
tolerant warm-water species may now be able to support a trout fishery because of cold-water 
releases from bottom waters behind a dam. Although the trout fishery may be viewed as positive 
by some, the displaced native warmwater species may not be perceived as beneficial. 
 
Dams prevent the movement of organisms throughout the river system (Morita and Yamamoto, 
2002). Researchers found that fragmenting habitat by damming a river caused the disappearance 
of a fish species in several upstream locations and further disappearances were predicted (Morita 
and Yamamoto, 2002). Recently, some individual cases involving movement of invasive, non-
native aquatic species note the presence of dams as a positive factor. In these cases, dams have 
blocked the movement of potentially harmful invasive species. 
 
Flood control and hydropower projects influence a river’s hydrograph. For example, in some 
regions normal river hydrographs featured a rise in water level elevation corresponding to spring 
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rains. Other geographic areas had stream hydrographs corresponding to snowmelt in the 
mountains, or fall rainfall. Native species evolved under these scenarios and used such water 
level rises to trigger spawning movements onto floodplains and in the case of birds, for nesting 
on islands. Additionally, the stream water level fluctuations were important in providing feeding 
and resting areas for spring and fall waterfowl migrations. Under managed scenarios for 
commercial navigation, river water level elevations are raised in the spring and held stable 
throughout the navigation season, virtually eliminating the triggering mechanisms native species 
used to reproduce and complete their life cycles. Because of this, many native riverine species 
often fail to spawn or nest, and are becoming increasingly threatened (Rasmussen, 1999). 
Additionally, stabilization of periodic flooding has also lead to the loss of ephemeral wetlands 
and may lead to the accumulation of sediments in nearshore areas, thus negatively affecting fish 
spawning areas (NRC, 1992). 
 
Dams may lead to increased predation of fish in several ways. A dam may cause populations of 
fish to concentrate on the upstream and downstream sides, which might lead to the likelihood of 
increased predation. Changes in the habitat adjacent to a dam can make conditions more suitable 
to predation. Dams may cause the migration process to be delayed, which also leads to increased 
predation (Larinier, 2000).  
 
The physical and chemical changes to water released from a dam, including reduced streamflow 
variability and decreased sediment loads, may also impact benthic communities. Increased water 
clarity and reduced streamflow variability just below a dam may result in a greater abundance of 
periphyton or other plants as compared with other locations in the river (Stanford and Ward, 
1996). A slowed stream flow velocity with decreased turbulence can also encourage the growth 
of phytoplankton blooms (Décamps et al., 1988). In contrast, the operation of some hydroelectric 
dams with large, sudden releases of water may scour the bottom of the downstream channel to 
the extent that there is a nearly complete removal of the plant communities (Allan, 1995). 
 

Impacts Associated with Dam 
Removal 

The effects of river damming were evaluated in a study 
comparing a regulated river to an unregulated river in the 
Green River Basin in Colorado. Prior to installation of the 
dam in Green River in 1962, Green River and the Yampa 
River were similar in riparian vegetation and fluvial 
processes. Comparison of the now regulated Green 
River and the free-flowing Yampa River found distinctive 
vegetation differences between the parks that surround 
the rivers. The channel form of Green River has 
undergone three stages of morphologic change that have 
transformed the historically deep river into a shallow 
braided channel. The Yampa River has remained 
relatively unchanged. The land surrounding the Green 
River now consists of marshes with anaerobic soil that 
supports wetland species and terraces with desert 
species adapted to xeric soil conditions. The meandering 
Yampa River has maintained its original surroundings. Its 
frequently flooded bars and high floodplains provide a 
wide range of habitats for succession of riparian 
vegetation (Merritt and Cooper, 2000). 

 
Removing a dam affects the flow of 
water, movement of sediment and 
chemical constituents, and the overall 
channel morphology (Academy of 
Natural Sciences, 2002) on the 
waterway where the dam was located. 
The impacts of removing a dam differ 
for the upstream and downstream 
sections of a waterway.  
 
Changes in the biological community 
following the removal of a dam are 
difficult to generalize, as they are 
highly site specific and can vary in 
recovery time from a few months to 
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more than a decade. With the removal of a dam, there are changes in the vegetative community 
surrounding the stream channel and changes in the biological community within the stream itself.  

Physical Changes: Upstream Impacts 
The removal of a dam allows the water formerly held behind the dam to flow and will likely 
cause the extent of the impoundment area or reservoir area to decrease. As a dam is removed and 
the water recedes, sediment is scoured from the bottom and a stream channel returns sometimes 
to its pre-dam pathway and sometimes to a newly carved channel. As a channel is formed, areas 
that were formerly beneath the impoundment area become exposed. This can leave large areas of 
unvegetated and unstable land exposed, which makes these areas likely to undergo erosion and 
gully development, increasing the sediment load to the stream. 
 
In time, vegetation will stabilize the newly formed stream banks, reducing erosion and allowing 
sediment transport levels to return to natural levels. The nutrient and metal constituents 
associated with the sediment will also return to natural levels. As the newly established channel-
like flow develops and the stagnant and deep conditions are removed, the natural temperature 
and oxygen levels will be reestablished. 

Physical Changes: Downstream Impacts 
Once the physical barrier of the dam is removed, a river can flow unrestricted. As the channel is 
reformed, the water discharge volume and the stream channel can reach equilibrium. As a result, 
a more natural stream flow rate is maintained.  
 
With the removal of a dam, the fate of the trapped sediments is of concern because flooding and 
downstream pollution problems can result. On a short-term time scale, the redistribution of the 
fine silt and sand sediments that accumulated behind the dam wall may cause an increase in 
turbidity and water quality problems. In addition, the impact can be greater if the sediments 
contain toxic pollutants, such as metals or bioaccumulative compounds such as mercury or 
PCBs. On a short-term time scale, the redistribution of the fine silt and sand sediments increases 
the turbidity and can damage spawning grounds, water quality, habitat, and food quality 
(American Rivers, 2002a). Suspended sediment loads can have a negative impact on a biological 
community and reach lethal levels during dam removal if preventive measures are not 
implemented (Doyle et al., 2000).  
 
After a dam is removed and the sediment that has been trapped behind the dam is redistributed, 
natural sediment transport levels return. As a result, the constituents typically sorbed to sediment, 
including nutrients and metals, are no longer found localized in excess. Normal sediment 
transport levels typically result in a river bottom with a higher percentage of rocky substrate. 
Gravel and cobblestones located below the sediment may be exposed or may be transported from 
upstream locations as the flow rate of the river increases. This unrestricted flow and transport of 
sediment and gravel may also play a key role in restoring sediments to downstream locations and 
coastal beaches (USDOI, 1995). The removal of a dam and the return of natural flow rates 
should also help to restore a river’s natural water temperature range and oxygen levels. 
 
Short-term chemical changes to the water quality, including the possibility of supersaturation of 
nitrogen gas directly following the removal of a dam, can cause aquatic animals to experience 
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adverse conditions. This can include gas bubble disease, in which nitrogen bubbles form in the 
blood and tissues and block capillaries by embolism (Colt, 1984; Soderberg, 1995). Adverse 
effects can be seen when the dissolved nitrogen level reaches 102% and at 105% widespread fish 
mortalities are possible (Dryden Aqua, 2002). Supersaturation was an issue in the 1992 removal 
of Little Goose Dam on the Snake River (American Rivers, 2002a). If a reservoir is drawn down 
slowly, the severity of the impact of supersaturation on aquatic organisms can be lessened 
(American Rivers, 2002a).  

Biological Changes: Upstream Impacts 
Following the removal of a dam, a return to the normal temperature range, flow rates, and 
oxygen levels supports the return of native aquatic vegetation species. Still water impoundments 
support aquatic vegetation that is free floating or that does not need to be strongly rooted, while 
free-flowing systems support plants that are rooted strongly enough to resist being uprooted by 
the water current (WRM, 2000).  
 
As the water recedes and the formerly impounded area becomes exposed, vegetation can begin to 
colonize the area. Sometimes, the exposed area may be colonized by invasive plant species, 
which are able to remain for several years and prevent other vegetation from becoming 
established. 
 
The removal of a dam and the subsequent drawdown of water from the impoundment area can 
affect the wetlands formerly bordering the impoundment area. As the dam is removed, the water 
table typically begins to drop. The elevation of the wetlands and the extent of the water table 
drawdown determine whether the wetland areas dry up and what changes will occur in the 
wetland species composition. Wetlands that develop alongside the newly carved channel are 
likely to be different than the wetlands formerly bordering the impoundment area in terms of 
plant and animal species composition.  
 
The biological changes associated with the removal of a dam can be described in phases, as the 
waterbody makes the transition from reservoir to river. This includes a pattern of relatively rapid 
recovery for invertebrates or short-lived taxa, followed by a second phase of slower recovery for 
fish or longer-lived taxa if the dam removal is not an especially large or disruptive event. 
Overall, the initial impacts, such as colonization by invasive species, typically determine the 
ecological recovery that follows (Doyle et al., 2000). 
 

Dam removal can allow for improved fish passage and unrestricted fish movement that provides 
access to spawning habitat upstream. For coastal rivers, the removal of a dam may enable tidal 
waters to reach upper portions of the stream that were formerly cut off by the dam, creating a 
spawning environment preferred by certain fish species. Access to upstream sections is 
particularly beneficial for some anadromous fish that live most of their lives in saltwater and 
swim upstream toward freshwater to spawn (Massachusetts River Restore Program, 2002). 
 
A dam can also act as a barrier between upstream and downstream fish populations. If a 
downstream community of fish is an invasive fish species the dam serves as a physical barrier to 
separate the invasives from the upstream community (American Rivers, 2002a). Thus, the 
removal of the dam can negatively impact the ecosystem if it allows for the movement of a 
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population of an invasive species that was previously prevented from traveling to a section of the 
stream because of the presence of a dam. 

Biological Changes: Downstream Impacts 
Downstream of the former dam, wetlands are likely to reappear along side the stream channel 
where they occurred prior to the construction of the dam (WRM, 2000). Revegetation of river 
beds and banks typically occurs within one growing season, following removal of a dam 
(Massachusetts River Restore Program, 2002). 
 
Recolonization of the stream banks by vegetation affects the biological community within the 
stream by providing shade, reducing water temperatures, and supplying a source of woody debris 
and organic matter to the stream.  
 
As streamside vegetation begins to recover and suitable habitat is restored, fish begin to return. 
Changes in flow as a result of dam removal lead to the development of side channels and ponds 
that provide habitat for fish and wildlife. Increased flow rates also allow for the transport of 
larger debris, including gravel and logs, which create spawning beds and pool and riffle habitat 
(River Recovery, 2001). In addition, the rocky substrate environment, which is typically exposed 
as a result of dam removal, provides habitat for aquatic insects and spawning fish. In the long 
term, the return to natural stream temperatures, oxygen levels, and flow rates all contribute to the 
reestablishment of a healthy aquatic and riparian ecosystem.  
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