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ABSTRACT 

Despite an increase in stack controls on electric generating units (EGU), states continue to seek 

innovative ways to meet air quality standards as EPA tightens the National Ambient Air Quality 

Standards (NAAQS) to protect public health and the environment. EPA acknowledged that energy 

efficiency and renewable energy (EE/RE) policies and resources are eligible emission reduction 

measures for Clean Air Act plans in the 2012 Roadmap for Incorporating EE/RE Policies and Programs 

in State Implementation Plans. In addition, the proposed Clean Power Plan utilizes EE/RE to 

demonstrate the best system of emission reductions for electric power sector CO2 emission rate 

reductions.  

This paper presents a novel approach, embodied in EPA’s AVoided Emissions and geneRation Tool 

(AVERT), to assist state and local air quality managers and stakeholders in estimating avoided CO2, 

NOx and SO2 emissions from EGUs due to the implementation of EE/RE policies and resources. 

AVERT employs a statistical algorithm, using the behavioral characteristics of individual EGUs from 

publicly available hourly historical generation and emissions data. AVERT circumvents several 

common assumptions inherent in simplified avoided emissions methods. The tool is publicly available.  

We review related existing approaches for analyzing avoided emissions, review the AVERT 

methodology and its validation, and demonstrate the tool’s capabilities through a short case study. The 

case study suggests that, across all ten AVERT regions, wind and baseload EE resources are more 

effective than solar or a representative portfolio of EE resources at reducing emissions of CO2. NOx is 

reduced with approximately the same efficacy by all four temporal profiles of EE/RE resources. We 

show that avoided CO2 and NOx emissions are sensitive to the composition of the underlying fossil fuel 

fleet within an AVERT region. 
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1. INTRODUCTION 

Over the last two decades, emissions of major criteria air pollutants (particularly SO2 and NOx) from 

electric generation units (EGUs) in the United States have declined markedly.1 From 2005 to 2012, the 

number of coal-fired EGUs reporting to the U.S. Environmental Protection Agency (EPA) operational 

flue gas desulfurization technology (FGD) nearly doubled from 23% to 44%, representing a 100-percent 

increase in the amount of coal generation covered by an FGD (from 32% to 66%).2 Similarly, the 

number of coal units reporting an operational selective catalytic reduction (SCR) system increased by 

half during that time period, from 21%-34% (representing 33% and 47% of coal generation, 

respectively). The installation of these technologies has resulted in significant local and regional air 

pollutant emissions reductions across the U.S. generating fleet. EPA has continued to protect public 

health by revising NAAQS based on current science, and states have sought innovative emission 

reduction measures to attain updated standards. At the same time, states and local agencies have 

recognized increasing investments in EE/RE, and have expressed interest in accounting for the emission 

benefits of these investments. In response to this interest, EPA released the Roadmap for Incorporating 

Energy Efficiency and Renewable Energy in State Implementation Plans in July 2012. This document 

provided clarifying guidance for states on incorporating (EE/RE) into ozone and particulate matter (PM) 

State Implementation Plans (SIPs).3 

Energy efficiency and renewable energy have the potential to reduce multiple pollutants by avoiding 

generation from fossil resources, and because many of these resources are cost effective even without 

emissions benefits, they pose an important opportunity to states, tribes, and territories to meet multiple 

clean air standards through low-cost, transformative technologies. However, emissions reductions from 

EE/RE are “indirect” and difficult to characterize. The temporal and spatial variation inherent in 

different EE/RE resource options (e.g., demand reduction at different, non-uniform times of day; the 

unpredictability of physical meteorological effects), and the complexity with which EE/RE resources 

interact with the underlying electricity systems (e.g., existing supply resource base, market 

characteristics) makes quantifying avoided emissions challenging. Determining from which EGUs 

production is avoided, and thus which emissions are reduced and where, is neither intuitive nor obvious.  

To address this difficulty, a number of methods have been proposed and variously used. The simplest 

methods tend to make implicit assumptions that may incorrectly characterize a system; the most 

complex methods are often inaccessible to regulators. This paper presents a novel modeling tool, the 

Avoided Emissions and geneRation Tool (AVERT), to assist state and local air quality managers, the 

U.S. Environmental Protection Agency (EPA), and other interested stakeholders in estimating the NOx,
 

SO2, and CO2 emission impacts of EE/RE resources from stationary electric generating units (EGUs). 

AVERT is a statistical tool, deriving behavioral characteristics of different generating units from hourly 

historical generation and emissions data collected and made publicly available by EPA.  

The sections that follow provide a discussion of related literature and the key limitations of existing 

approaches for studying avoided emissions; an overview of the AVERT methodology, its contribution to 

the literature, and its validation; a demonstration of the tool through a short case study; and a concluding 

discussion about next steps and future research opportunities. 
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2. BACKGROUND 

Quantifying and characterizing avoided emissions from EE/RE resources has been an active area of 

research over the past decade. When new EE/RE is brought online, it avoids the need to dispatch 

existing EGU or, over the long-run, build new incremental generation to serve load. The generation 

which is not dispatched because of EE/RE is the avoided generation, and the consequently reduced 

emissions are termed the “avoided” emissions. Over the short run, new EE/RE resources avoid 

generation and emissions from existing EGU. However, determining from which EGUs generation is 

avoided, and when, is notoriously difficult to quantify. 

In most circumstances, generation from EGUs is avoided on the basis of variable cost and availability, 

which in turn is dictated by operational and transmission constraints. However, without a priori 

knowledge of costs and constraints, we cannot specify from which EGUs generation is avoided.  Even 

with such information, the interaction between each EGU in a system is complex; models are required to 

determine how multiple EGUs should be economically dispatched. In electric system dispatch, 

increasingly expensive EGUs are brought online as load (demand) increases. At any given time, the last 

EGU to be brought online is termed the “marginal” EGU. Across an area there may be multiple EGUs 

that are marginal, or near marginal, at any given moment, and this cohort of EGU may change 

significantly from hour to hour.  

The difficulty in determining how EE/RE impacts an electrical system, and thus avoids emissions, is 

demonstrated by a simple example (see Figure 1). In this illustration, a 1,000 MW system is served by 

six EGU, two of which are coal-fired and four of which are natural gas-fired. In the ideal circumstance, 

units are dispatched in economic merit order, with lower variable cost (but higher emissions rate) coal 

dispatched first and higher cost (and lower emissions rate) gas dispatched after. The imposition of a new 

200 MW solar program avoids generation almost exclusively from gas resources (CO2 rate 0.5t/MWh) 

and little coal (CO2 rate 1.0 t/MWh), having an avoided emissions rate of 0.52t/MWh. In this example, a 

larger 600 MW solar program avoids coal unit generation as well, leading to a higher avoided emissions 

rate of 0.59t/MWh. This size dependency cannot be captured without knowledge of the system’s 

dispatch dynamics.  
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Figure 1. Simplified example of system dispatch over a three day period, and avoided generation from a solar 

program. (A) Base case; (B) 200 MW solar; (C) 600 MW solar. 

 

The example here is highly simplified: in reality, units are dispatched with consideration to their ramp 

rate, transmission constraints, and ability to cycle. So wherein the simple case the smaller Coal B unit is 

simply shut off for two hours, accommodating the unit’s limited ramp rate might require that Coal A 

also ramp down, allowing Coal B to maintain a limited level of generation. Or Coal B might decommit 

(i.e. shut down completely) for a full outage cycle, returning online the next day, if it were economic to 

do so. Similarly, the reduction during the peak hour might avoid generation at both the highest cost 

resource and some of the next highest cost resource – or it might avoid generation at  a fraction of 

several high cost resources, or even allow several otherwise low-cost resources to ramp down slightly 

from an overclocked level of output to a more sustainable level. In many cases there are effectively 

multiple simultaneous marginal EGUs. Load increases or reductions may thus impact multiple EGUs 

simultaneously all subject to differential costs, operating constraints, and transmission limitations. 

Backing out these constraints to estimate how EGUs, and thus emissions, respond to EE/RE is difficult. 

A number of methods have been proposed (and used) to estimate how emissions are reduced from 

EE/RE. The most common methods fall into one of two general categories—statistical methods based 
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on historical data, or numerical electricity dispatch models. There are inherent tradeoffs and differences 

between the two categories. Statistical methods, spanning the gamut from simple calculations to detailed 

data deconstructions, are grounded in historical data and may be accessible, but can be limited and 

subject to implicit and untested assumptions. Numerical dispatch models can represent systemic changes 

in the power system well, but can often be burdensome with respect to data requirements, and are 

limited in reality about market structure and other constraints. Within these categories, models differ 

with respect to the level of detail, the exogenous and/or implicit assumptions they rest upon, and the 

level of accessibility for decision-makers and other key stakeholders. 

A widely used “statistical” approach for estimating avoided emissions is to simply calculate an average 

emissions rate of all operating EGUs in a region. By including all units this method may significantly 

underestimate real emissions reductions where there are numerous non-emitting (and non-marginal) 

EGUs such as nuclear, hydroelectric, and renewable resources, or overestimate avoided emissions in 

regions with significant coal capacity.* As a refinement, some methods distinguish between EGUs that 

maintain baseload operations and those that directly respond to changes in demand, and provide the 

emissions rate of this subset of generating units as an avoided emissions rate.† These methods make 

significant assumptions about the relative weight of those units in the analysis, and rely on broad 

assumptions about how units operate.4,5,6,7,8, 9
  

Some statistical methods exploit more detailed historical data to estimate avoided emissions. At the 

simplest level, a “slope factor” simply assumes that the slope of a best-fit line between generation and 

emissions in a region represents a regional marginal emissions rate.‡ This mechanism is highly 

aggregated and takes into account neither temporal patterns nor specific EGUs.10,11, 12 Modifications to 

the slope-factor method have been proposed and used, including reviewing the slope hourly changes in 

generation and binning to account for total generation levels,13 and using reduced form models to define 

avoided emissions by level for wind generation, implicitly accounting for fossil output. While these 

methods seek to identify a cohort of units that were likely on or near the margin (and thus determine an 

avoided emissions rate), they tend to rely on a set of exogenous assumptions about how close to the 

margin different units reside and have difficulty examining more geographically detailed avoided 

generation.  In a paper designed to examine the impact of renewable energy on avoided health impacts, 

Siler-Evans et al. (2013) refined the slope factor method to examine hourly incremental changes in 

emissions against incremental changes in energy, and divided the year into bins of total generation to 

account for fundamentally different dispatch at different load levels.13 While this method captures 

discrete emissions changes at different load levels and allows for temporal differentiation, the results are 

aggregated on a regional basis. 

The second category of methods used to calculate avoided emissions from EE/RE resources employ, 

directly or indirectly, numerical dispatch models. In 2002, researchers from the EPA proposed the 

Average Displaced Emissions Rate (ADER) model.14 The ADER model generalized the results of 

specific runs conducted in the Integrated Planning Model (IPM), where each run represented a different 

EE/RE load shape; the ADER model characterized how blocks of units responded to imposed changes in 

generation. This method, based on the output of a simulation model, may have circumvented concerns 

from using historical data, but relied on a coarse-resolution model with non-chronological dispatch. Zhai 

et al.15 studied the potential for avoided emissions from solar PV in the US using the EnergyPLAN 

                                                 
* Our simplified example in Figure 1 has an average emissions rate of 0.82t/MWh. 

† The “load following” emissions rate of the responsive gas units in our simplified system is 0.50t/MWh (assuming only the 

gas units are “responsive”). 

‡ The slope factor of our simplified illustrative system is 0.55t/MWh. 
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model, a medium-resolution electricity dispatch optimization model representing technologies in groups. 

A goal of the research was to use a simple, low-input requirement model, but this traded off the ability 

to represent critical unit-level decisions such as unit-commitment. Denny and O’Malley used a similar 

approach using a dispatch optimization model without unit commitment to study avoided emissions 

potentials for wind power in Texas.16  

Other researchers have used finer-resolution production cost models with hourly chronological dispatch 

and unit-commitment to evaluate EE/RE avoided emissions. Denholm, Margolis and Milford (2009) 

employ ABB’s PROSYM production cost model to evaluate how deep penetrations of solar energy (up 

to 10%) in western US states could avoid generation and emissions throughout the west.17 Fisher et al. 

(2011) also used the PROSYM engine to test how a series of EE/RE projects in California could impact 

individual generators across the Western U.S., specifically examining emissions reductions in California 

air districts. Fisher et al. found that, depending on the location of the EE/RE resource, avoided emissions 

could either be highly localized or based on generators across state lines.18 Coal generators were also 

impacted more than might be expected based on traditional indicators of marginal units. As a third 

example, Valentino et al. (2012) constructs an optimization model with unit-commitment and electricity 

dispatch to estimate emission reductions from increased wind power in Illinois.19 

AVERT, presented here, captures some of the same statistical elements as Siler-Evans, but makes 

important methodological departures to capture the behavior of individual fossil generators. The basis of 

AVERT extends the work of James and Fisher (2008),20 who proposed a Load-Based Probabilistic 

Emissions Model (LBPEM), a mechanism of deriving statistics from historical behavior of individual 

fossil generators. LBPEM and AVERT predict future behavior from statistical relationships between 

individual generators. When overlaid with a temporal EE/RE profile, these models then calculate 

generation and emissions differences on an hourly basis. Overall, while these methods are not without 

their limitations—they are unable to capture transmission constraints or predict changes in behavior in 

systems that have undergone systemic change—the tool presented here aims to be public data driven, 

transparent, and highly accessible. 

 

3. METHODOLOGY 

The AVERT Model 

AVERT belongs to the statistical class of models that predict behavioral changes. Unlike traditional 

engineering cost-based electricity system dispatch and unit-commitment optimization models, AVERT 

does not use operating costs to estimate how and when a unit should be dispatched to meet load 

requirements. Rather, the model predicts unit operation based on historical patterns and use. Two 

significant advantages of this approach are that (a) the model is driven entirely by historical, publicly 

available data (the actual generation output and emissions of real units in the recent past), and (b) the 

model makes few, if any, explicit or implicit assumptions about unit behavior, fuel, operations, or 

requirements.  

Using a historical dataset of hourly emissions and generation, the model replicates actual unit generation 

“behaviors” such as baseload, intermediate, and peaking operation patterns, must-run designations (i.e., 

requirements to operate for reliability reasons), and forced and maintenance outages. In addition, the 

model accurately represents the relationship between unit generation and emissions, with modeled 

characteristics such as a decreasing heat rate (i.e., increasing efficiency) at higher levels of output, 

higher emissions from units that are spinning up, and seasonally-changing emissions for units with 

seasonal environmental controls. All of these behaviors are derived quantitatively from historical hourly 
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data with no user intervention. AVERT is built upon a platform that allows non-expert users to easily, 

quickly, and flexibly evaluate the individual unit reductions from EE/RE resources with a high degree of 

accuracy, and at a low cost per use. The tool is publicly available from the U.S. EPA 

(www.epa.gov/avert) and is provided free of charge. 

AVERT is divided into two key components, a Statistical Module that provides the key calculations and 

estimates of electric generating unit behavior, and a Main Module, which estimates hourly avoided 

generation and emissions for each unit based on a user-defined hourly EE/RE profile. The effect of 

different types of EE resources, as well as wind and solar technologies§ on the magnitude and location—

at the county, state, and region regional level—of avoided sulfur dioxide (SO2), nitrogen oxides (NOx), 

and carbon dioxide (CO2) emissions can be evaluated. The model currently maintains historical data 

from 2007 through 2014, and is expected to be updated annually in the first quarter of each year. 

Analyses are conducted by region, with the continental United States divided into ten reasonably 

autonomous electricity-market trading and dispatch areas. These AVERT regions are based on 

aggregations of the eGRID subregions used by EPA, and are similar, but not identical, to North 

American Electric Reliability Corporation regions. Figure 2 below shoes a map of the model’s regions, 

several of which represent electricity market areas or balancing authorities. Analysis based on smaller 

regions, such as eGRID regions, risks missing important interdependencies between the EGUs in a 

larger region (e.g., the impact of New Jersey load reductions on Ohio EGUs). Using still larger regions, 

such as the Eastern Interconnect, spreads the influence of load reductions too widely, making it difficult 

to ascribe load reductions at a particular location to a reasonable cohort of EGUs. 

 

 

Figure 2. Map of AVERT’s ten regions. 

 

 

For each region, the Statistical Module provides the model’s core statistical analysis. The model begins 

by summing up all fossil-fuel generation in each hour under analysis to arrive at a total regional fossil-

                                                 
§ AVERT has the capability of estimating emission impacts of many other renewable energy technologies. 

http://www.epa.gov/avert
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fuel generation served (termed “fossil-fuel load”) by hour. These hourly sums of fossil-fuel generation 

are sorted from lowest to highest generation level and grouped into forty-two (42) fossil-fuel load “bins” 

for the purpose of collecting statistics for each EGU at each approximate load level. Forty of the bins 

contain information from the same number of hours (approximately 220); the bins for the lowest and 

highest fossil-fuel loads contain just 20 hours each to best represent these extreme load levels. Because 

bins are dynamically determined such that they hold the same number of hours (rather than being set at 

specific load levels), the size and range of the bins vary by region and year.  

AVERT’s core algorithm first gathers statistics about how each EGU responds to the generation 

requirements of each fossil-fuel load bin. Three types of probability distributions are constructed: 

frequency of operation by fossil-fuel load bin, generation level by fossil-fuel load bin, and heat input and 

emissions by generation level. These distributions are represented in Figure 3, below. 

 In the first set of probability distributions (Figure 3a), AVERT calculates the share of hours 

within each fossil-fuel load bin for which a particular unit is turned on (i.e., has generation 

greater than zero).  

 The second set of probability distributions (Figure 3b) calculated by AVERT describes 

generation output for each EGU in operation in each fossil-fuel load bin.
 

AVERT divides each 

EGU’s generation into evenly-spaced “unit generation bins.”
 

For each of the fossil-fuel load bins, 

AVERT determines the number of hours in which the unit generated at an amount within each of 

the unit generation bins. In this way, the model creates a discrete probability distribution of 

generation for each fossil-fuel load bin during all hours in which the EGU is in operation.  

 The final set of probability distributions (Figure 3c) relate EGU heat input and SO2, NOx, and 

CO2 emissions to unit generation. For heat input and emissions, statistics for the ozone season 

and non-ozone seasons are gathered and stored. AVERT creates eight discrete probability 

distributions—ozone season SO2, NOx, and CO2 emissions and heat input, and nonozone-season 

SO2, NOx, and CO2 emissions and heat input—for each EGU at each of the unit generation bins.  
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(a) 

 
(b) 

  

(c) 

 
Figure 3. AVERT’s statistical algorithm: (a) determine fraction of time units are online, (b) determine generation of 

units at different load requirements, (c) determine emissions level at generation output 

 

After baseline statistics have been gathered, AVERT estimates how units may respond outside of the 

range of historical fossil-fuel load bins. The algorithm extrapolates each EGU’s statistics below and 

above base-year regional load requirements. Two sets of probability distributions are subject to 

extrapolation: probability of operation and generation level for each fossil-fuel load bin. 

Finally, the Statistical Module calculates the expected value of generation, heat input, and emissions for 

each EGU at each of the fossil-fuel load requirement bins, from zero MW up to the coincident maximum 

generation of all of fossil-fuel EGUs in a region. A Monte Carlo analysis uses discrete probability 

distributions to estimate key variables’ range and expected values for each EGU in each fossil-fuel load 

bin.  
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AVERT’s Main Module estimates the avoided emissions from EE/RE resources for every individual 

fossil-fuel EGU in a region; for general users, this information is aggregated to the county level 

(although users can also aggregate to state and regional levels). The Main Module uses the expected 

value of generation and emissions at each load level for each EGU to estimate hourly output both before 

and after EE/RE. Users enter or choose an EE/RE profile, and the Main Module calculates the before, 

after, and difference in EGU-specific generation and emissions. The differences between emissions 

resulting from the base year load curve after the adjustment to include the load impact profile of an 

EE/RE program are the “avoided emissions.” Additional details about AVERT’s methodology and 

algorithms are available in model’s user manual.21 

Data 

AVERT uses Air Market Program Data (AMPD) from EPA’s Clean Air Markets Division (CAMD).22 

For the purposes of tracking and verifying emissions, and monitoring emissions trading programs, 

AMPD collects extensive operational data from nearly all operating fossil-fuel EGUs with generating 

capacities greater than 25 MW in the lower 48 states (i.e., excluding Alaska and Hawaii). Data collected 

in AMPD include reported gross generation (in megawatt hours per hour, or MWh/h), steam output (in 

tons, from combined heat and power facilities), heat input (in million metric British thermal units, or 

MMBtu), and emissions of sulfur dioxide (SO2), oxides of nitrogen (NOx), and carbon dioxide (CO2). 

Each quarter, CAMD consolidates information from the previous quarter (i.e., there is typically a three-

month delay in releasing data) and produces text-based datasets for each of these factors for each fossil-

fuel EGU for each state. 

Annual hourly capacity factors for utility PV were obtained from the National Renewable Energy 

Laboratory’s PVWatts v.1 tool.23 Each hourly capacity factor assembled for each AVERT region is 

based on the average PV capacity factor for four to ten cities in the region. The number and location of 

the sampled cities were chosen to provide a representative distribution of each AVERT region’s 

insolation (energy from sunlight) at the largest load centers. 

Wind capacity factors were developed from annual 6-hour datasets of modeled wind speeds at 80-meter 

turbine (hub) heights obtained from the Global Model Database developed by AWS Truepower for 2011 

through 2013. Depending on the size of the region, between five and 15 locations were used to provide a 

representative distribution of hypothetical wind turbine installations. Once hourly wind speed data for 

each site were created by interpolating each of the 6-hour intervals, 2011-2013 hourly wind speed 

datasets were averaged and were then applied to a power density curve for a Vestas V112 3 MW Wind 

Turbine.  These hourly data were divided by total regional wind nameplate capacity to produce hourly 

capacity factors. Hourly capacity factor datasets from all sites within a region were then averaged to 

produce a regional hourly dataset for capacity factors. Further details about the datasets used with the 

AVERT modules are described in the user manual.21 

Model Validation 

The structure of AVERT includes several unavoidable design limitations, known prior to the 

development of the model. The three most significant limitations of the model are (a) the ability to 

model transmission constraints, (b) the departure from operational reality with hard boundaries around 

regions, and (c) the ability to capture chronological constraints such as minimum downtime or unit 

commitment constraints. There are three primary impacts of these limitations.  First, the location of 

EE/RE resources cannot be specified with greater geographical precision than at the level of the entire 

region.  Second, the generation avoided by the stimulus can only occur within the boundaries of the 

specified region.  Third, EGU forced and maintenance outages are effectively modeled as de-rates (i.e. a 
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generation reduction, rather than discrete outages). As a part of EPA’s peer review, we performed a 

validation study in order to better understand how results from AVERT compare to those of standard 

industry models such as ABB’s Market Analytics models. The study also highlighted the most 

appropriate uses of AVERT and the types of questions that AVERT is not best-equipped to answer. As 

such, a comparative analysis across three distinct levels of geographic resolution was performed to best 

test the performance of AVERT against an industry standard model, PROSYM. The full validation study 

will be described in a forthcoming paper, and a summary is provided in Appendix A. 

Market Analytics (MA) and other electricity dispatch models provide services that cannot be replicated 

in the current version of AVERT, such as the ability to forecast and implement different commodity 

price futures, to alter specific characteristics at existing fossil units (such as heat rates or fuel use), or to 

implement EE/RE at specific geographic locations with implications for different parts of the grid. 

However, with caveats made clear, AVERT seems to offer a high level of service for the review of the 

impact of EE/RE resources on avoided emissions, and appears to provide credible results generally 

commensurate with MA. 

 

4. CASE STUDY 

Description  

The capabilities of AVERT to assess the emissions benefits of energy efficiency and renewable energy 

resources is shown through a select case study, designed explicitly to draw out the unique features of 

this new tool. The case study demonstrates AVERT’s ability to evaluate avoided emissions benefits at 

the regional, state, and county level across the U.S. It also implicitly highlights the temporal and unit-

specific resolution on which the model operates, specifically AVERT’s ability to capture the varying 

degrees of avoided emissions that correspond to different EE/RE resource options within the same 

AVERT region. 

The avoided NOx and CO2 emissions effects of four EE/RE resources are compared across AVERT’s 

ten regions, and between each other within a single region, to answer the following questions about the 

role of electricity-sector EE/RE resources in the U.S.: 

- What type of EE/RE resources are most effective at avoiding emissions? 

- Are certain EE/RE resources more effective at avoiding NOx or CO2? 

- Are certain U.S. regions more responsive to EE/RE resource options with respect to avoided 

emissions? 

- What is the variation in avoided emissions at the county level? 

The four EE/RE resources studied include (a) a portfolio of energy efficiency programs equivalent to a 

proportional reduction in load in every hour (portfolio EE), (b) a “baseload” energy efficiency program 

with a constant MWh reduction (baseload EE) (c) a regionally aggregated onshore wind profile, and (d) 

a regionally aggregated utility solar PV profile. Representative three-day profiles of each of these 

programs for the MidAtlantic AVERT region are shown in Figure 4, below. Each EE/RE resource 

represents the same amount of energy overall, or a 3% load reduction. 
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Figure 4. EE/RE resources tested in case study. 

 

The portfolio EE resource is based on the load shape of fossil-fuel generation, and modeled as a 

fractional reduction in every hour. This option represents a mix of energy efficiency resources that target 

some or all hours of the year, but preferentially target higher hours with greater demand. The baseload 

EE resource models a reduction of annual fossil-fuel generation by total megawatt-hours (MWh). This 

option represents a rough approximation of baseload-only reductions where the total number of MWh 

reduced over the course of a year is known and is expected to be equally distributed over all hours of the 

year. Renewable wind and utility solar PV resources are modeled using hourly capacity factors that are 

broadly representative of the selected region. Given the differences in the underlying energy supply 

resource base and size of each system, each of the four resource options is modeled as an equivalent % 

avoided energy (MWh) reduction. A 3% avoided energy equivalent is modeled, as well as sensitivities 

between 1 and 15%, with a base year of 2013. Results are shown below. 

Preliminary Findings and Discussion 

Emission benefits across U.S. regions and different EE/RE resource  

Table 1 and Table 2 show avoided CO2 and NOx emissions, respectively, from the four EE/RE resource 

options. CO2 and NOx emissions are reported as an “avoided emission rate” (avoided tons per avoided 

MWh and avoided pounds per avoided MWh, respectively) to show results as an emission benefit by 

mitigation effort. Overall, results for CO2 show little sensitivity within a region across EE/RE options 

with respect to avoided emission rates; baseload EE and wind resources net generally higher avoided 

CO2 emission rates than utility PV or portfolio EE resources. NOx emission benefits from EE/RE 

resources are more varied, as no single resource option maps to highest emission reductions across 

regions.   
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Table 1. Avoided CO2 (tons per MWh) by AVERT region for equivalent 3% avoided generation of an EE/RE 

resource. 

 Wind Utility PV Portfolio EE Baseload EE 

Northeast 0.52 0.53 0.54 0.53 

Great Lakes / Mid-Atlantic 0.78 0.77 0.77 0.77 

Southeast 0.66 0.67 0.67 0.67 

Lower Midwest 0.82 0.78 0.79 0.81 

Upper Midwest 0.91 0.89 0.89 0.90 

Rocky Mountains 0.85 0.83 0.83 0.84 

Texas 0.67 0.64 0.64 0.66 

Southwest 0.57 0.56 0.56 0.56 

Northwest 0.68 0.68 0.66 0.68 

California 0.49 0.49 0.49 0.49 

 

Table 2. Avoided NOx (lbs per MWh) by AVERT region for equivalent 3% avoided generation of an EE/RE resource. 

 Wind Utility PV Portfolio EE Baseload EE 

Northeast 0.62 0.68 0.72 0.65 

Great Lakes / Mid-Atlantic 1.27 1.30 1.31 1.29 

Southeast 0.97 1.02 1.02 1.00 

Lower Midwest 1.59 1.62 1.61 1.60 

Upper Midwest 1.55 1.54 1.54 1.54 

Rocky Mountains 1.63 1.56 1.57 1.59 

Texas 0.66 0.68 0.68 0.67 

Southwest 0.91 0.85 0.79 0.84 

Northwest 1.32 1.35 1.38 1.37 

California 0.73 0.70 0.67 0.70 

 

Error! Reference source not found.shows the variation in avoided NOx and CO2 rates across the 

country, with the concentration in the Midwest and adjoining regions.  Figure 6 shows the underlying 

electricity supply resource base. For both CO2 and NOx, higher avoided emission rates from EE/RE 

appear to be concentrated in the regions with the highest percentage of coal-fired EGUs— Great 

Lakes/Mid Atlantic (57%), Midwest (48-66%), Rocky Mountain (56%), and Northwest (53%). Broadly, 

these results match previous studies that have shown EE/RE can avoid significantly more baseload 

fossil-generation, and therefore emissions, than might be suggested by casual estimates of marginal unit 

types.18  
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Figure 5. Regional distribution of avoided NOx (left side) and CO2 (right side) (tons per MWh) from a 3% avoided 

generation portfolio energy efficiency resource. 

 

 

Figure 6. Electricity generation resource base in US regions. 

 

A sensitivity analysis was performed on avoided emissions from a range of penetration levels of 

portfolio EE (equivalent to between 1% and 15% avoided energy) to explore the robustness of the 

variation in impact across different regions, and investigate the general magnitude of avoided emissions 

from increasing levels of energy efficiency.  The regional differences in overall impact persist—higher 

avoided emissions for both NOx and CO2 continued to be concentrated in areas with the highest 

percentage of coal-fired EGUs.  However, and more notably, results showed that avoided CO2 is 

relatively insensitive to level of energy efficiency, but avoided NOx is quite sensitive to the level of 

energy efficiency employed. In many regions, each increment of additional EE/RE has a slightly smaller 

effectiveness in reducing NOx emissions. A review of the data suggests that the first fraction of EE/RE 
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resources effectively avoid high NOx peaking units; the next increment of EE/RE avoids lower 

emissions rate intermediate units. The result appears to be consistent with those of studies such as 

Denny and O’Malley.19   

County-level NOx emission benefits within one AVERT region 

AVERT’s unit of analysis is the individual EGU, allowing for a fine resolution in avoided emissions 

analysis and opportunity to study location(s)-specific origins of avoided generation. County-level 

emission analysis helps state air quality planners demonstrate that an EE/RE resource is impacting an 

area that may not be attaining a National Ambient Air Quality Standard.  Therefore, here we have also 

studied avoided NOx emissions during ozone season at the county-level. Specifically, Figure 7 shows 

results of county-level avoided NOx emissions from a 3% avoided energy by a portfolio EE resource 

during ozone season in the Great Lakes-Mid Atlantic region, as well as nearby ozone non-attainment 

areas (including some outside of the AVERT region). The EGUs in the region are also identified in this 

map.  

The map shows the dispersed nature of county-level effects: emission reductions are widespread 

throughout the region. However, some individual counties have significant reductions, and non-

attainment areas within the region, shown in blue outline, are proximate to some of the highest levels of 

avoided generation.  These county level outputs show how AVERT is uniquely qualified to provide 

significant value to state and local air quality regulators in assessing options to address Clean Air Act 

compliance. 

 

Figure 7. Avoided ozone season NOx emissions in the Great Lakes / Mid-Atlantic region from a 3% avoided 

generation portfolio energy efficiency program. 
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5. CONCLUSIONS and DISCUSSION 

Summary 

The potential to reduce NOx, SO2, and CO2 emissions by avoiding fossil fuel generation poses an 

important opportunity to states, tribes, and territories for meeting federal, state, tribal, and local Clean 

Air Act standards through cost-effective and potentially transformative technologies, as opposed (or in 

addition) to controls at a point-source stack or to boilers. However, these “indirect” emissions reductions 

are challenging to characterize, and most methods are either inaccessible to policymakers, or operate at a 

level of aggregation that doesn’t specify localized benefits.  Temporal and spatial variation inherent in 

different EE/RE resources and hourly behaviors of fossil fuel generators do, in fact, affect the avoided 

emission rates across the US and across different EE/RE technologies. In addition, the ability to localize 

the multi-pollutant emission reduction within a region can create greater access and utility.   

This paper presented a novel methodology embodied in AVERT, to assist regional state and local air 

quality planners, the U.S. Environmental Protection Agency (EPA), and other stakeholders in estimating 

avoided NOx
, SO2,and CO2 emissions from stationary electric generating units. AVERT is a statistical 

tool, deriving behavioral characteristics of individual generating units from hourly historical generation 

and emissions data collected and made publicly available by EPA. While not without its own challenges, 

the structure of the model avoids several common exogenous assumptions about commonality within 

blocks of different technologies, pre-determined marginal units, and constant system characteristics 

during coarsely defined levels of demand. Additionally, AVERT is the first model of its class that has 

been made publicly available for regulator use for Clean Air Act Plans and industry stakeholders to 

study different scenarios. 

This new tool’s capabilities are demonstrated through a short case study that compared the emissions 

effects of four different EE/RE resource options—a portfolio of energy efficiency resources, a baseload 

energy efficiency program, wind, and utility solar PV—across ten U.S. regions.  Given the refined 

temporal and spatial scale in AVERT, the case study also presented a snapshot of results on the 

proximity of county-level avoided NOx emissions (from portfolio EE) to EPA’s most recently proposed 

ozone non-attainment areas in the Great Lakes/Mid-Atlantic region.  

Overall, results show that wind and baseload EE resources avoid the greatest levels of CO2 of the 

different resource options; but that there is no clear winner across resource options for avoided NOx. An 

exploration of the data and temporal patterns suggests that onshore wind and baseload EE resources 

have proportionally higher generation during off-peak hours, thus preferentially avoid generation at 

higher CO2 coal-fired units.   Solar and portfolio EE resources, in contrast, target peak hours (on a 

relative basis) and thus preferentially avoid peaking generation, such as gas units. This pattern is also 

repeated in the sensitivity analysis, where higher penetrations of energy efficiency tended to have 

decreasing effectiveness (per increment) in reducing NOx emissions because generation from high NOx 

peaking units is avoided  with increasingly smaller increments of energy efficiency (as generation 

avoided from more intermediate lower NOx units increases). This study does not, however, capture unit 

commitment dynamics wherein more dynamic EE/RE resources (such as wind) may be balanced with 

additional peaking generation, and thus potentially offset some NOx emissions reductions from avoiding 

generation at existing resources. 

Across regions, areas with higher percentages of coal-fired EGUs had greater NOx and CO2 emissions 

reductions, per MWh of EE/RE than predominantly gas-fired regions. Finally, the case study illustrated 

the dispersed and varied nature of county-level effects, and demonstrates the ability for AVERT results 

to show the proximity of non-attainment areas to some of the highest levels of avoided emissions. 
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Next Steps  

Future research using AVERT will follow two paths: (a) detailed, county or local level air quality 

modeling, and (b) ongoing improvements and evaluation of the modeling methodology.  Immediate next 

steps involve inquiry into the air quality benefits of renewable energy resources in the Eastern US. 

AVERT has the capability of producing output files that are compatible with the Sparse Matrix Operator 

Kernel Emissions (SMOKE) modeling system. SMOKE is designed to create gridded, speciated, hourly 

emissions for input into advanced air quality models such as the Community Multi-scale Air Quality 

Model (CMAQ), Regional Modeling System for Aerosols and Deposition (REMSAD), Comprehensive 

Air Quality Model with Extensions (CAMx), and Urban Airshed Model - Variable Grid (UAM-V). 

Preliminary results of avoided NOx emissions in Illinois are shown in Figure 8 below. This research will 

assess ozone benefits of wind and solar installations within multiple AVERT regions, and project future 

air quality impacts in 2018 using CMAQ. The ability to assess air quality benefits of avoided emissions 

further opens up new opportunities for research on the public health impacts of EE/RE resources at 

spatial and temporal resolutions that have not yet been studied.  

 

Figure 8. SMOKE model output of county-level avoided NOx from EE/RE in Illinois. 

 

Ongoing improvements and evaluation of the current modeling methodology will focus on comparing 

the sensitivity of results from AVERT to other similar statistical methods for calculating avoided 

emissions that have done so using coarser temporal and/or spatial resolution. The goal is to produce an 

appropriate level of detail for use in air quality models for the purposes of assessing air and health 

benefits from EE/RE. As described in the literature review above, other researchers have generated 

strong results using coarser models, and it will be valuable to understand the tradeoffs between model 

resolution, insight generated, and level of detail needed for policy decision support. Additionally, the 

underlying methodology of AVERT is applicable to any geographic location or power system (subject to 

data availability); using the tool to guide decision making in other regions and countries is an additional 

valuable line of research. 
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APPENDIX A: Validation Study Summary 

As a part of EPA’s peer review process for AVERT, results from AVERT were compared to those of 

standard industry models.  The study highlighted the most appropriate uses of AVERT, and the types of 

questions AVERT is not best-equipped to answer. A comparative analysis across three distinct levels of 

geographic resolution was performed to best test the performance of AVERT against an industry 

standard model, PROSYM.  A detailed description of the full validation process, with extensions, will 

be presented in a forthcoming paper.  This appendix provides a summary of the initial study.   

PROSYM is an enterprise-level production cost model engine licensed by ABB on the Market Analytics 

(MA) platform. The model engine is a commonly used tool within the electric industry, often used to 

forecast market prices, or anticipate fuel and maintenance expenses. PROSYM solves for optimal 

dispatch given load requirements, generating unit characteristics, and thermal transmission constraints. 

The zonal version of the MA platform, used here, divides large regions (in this case, the entire Eastern 

Interconnect, or “EI”) into smaller transmission “zones”. These zones represent balancing authority 

areas usually comprised of one or more load distribution companies (utilities). MA models thermal 

transmission constraints between zones. Each zone contains both load (customers) and generation 

(power plants). Transmission zones are modeled as being connected by simple “pipes” that are 

characterized by the thermal capacity limit and wheeling charges of the aggregate transmission lines 

between zones. 

Identical energy efficiency (EE) resources in similar geographic regions in both AVERT and MA were 

compared. The EE program modeled was a constant 150-MW reduction in demand in each hour of the 

year taking place in the PJM region in 2012. In AVERT, the PJM region is broadly contained within the 

MidAtlantic region, while in MA, PJM is composed of ten smaller zones within the larger EI region. 

Annual and ozone-season results of these runs were compared in two ways: aggregated across every unit 

in the entire region for each model (MidAtlantic for AVERT and the EI for MA) and aggregated only 

across units common to both models. For AVERT, the EE program (the “stimulus”) occurred across the 

MidAtlantic region, and avoided generation and emissions from each generator in the MidAtlantic 

region were measured. In MA, the entire EI was modeled in each run. The stimulus occurs in one of five 

particular “stimulus zones” in the PJM region and avoided generation and emissions is measured from 

generators across the entire EI. The impact of identical EE resources implemented in Ohio, Eastern 

Pennsylvania, Kentucky / Ohio, Chicago, and New Jersey were compared. 

The results from the MA model across the EI vary by stimulus zone, but in all cases capture avoided 

generation within 5% of the anticipated result. Variation may be due to transmission losses. Restricting 

the analysis to review only the units in common between the two models that are within PJM, the fuel 

mix of avoided generation shifted towards more avoided coal in both models, and the models were in 

closer agreement. Finally, when examining the outcome of MA and AVERT for PJM units that are 

common to both models, but in the ozone season only, results displayed close agreement again. The 

geographic patterns remain similar in the analyses restricted to the units in common. The benchmarking 

study indicates that AVERT and MA are in close agreement when stimulus zones are near the center of 

AVERT regions, but diverge when stimulus zones are near the edges of AVERT boundaries. The MA 

analysis also indicated that EE/RE impacts may be spread across a large area of the Eastern 

Interconnect.  
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