

2014 Fire NEI Workshop:

Emissions Processing – SmartFire Details

Sim Larkin, USFS AirFire Team, PNW Research Station Sean Raffuse, Sonoma Technology, Inc.

Presented to EPA's 2015 Emission Inventory Conference San Diego, California April 13, 2015

NEI Method – Tying Information Together

Outline

- SmartFire 2 in detail
- How SmartFire 2 was set up for the 2011 inventory
- How SF2 methods are being improved for 2014

SmartFire 2 – What is it?

SmartFire 2 (SF2)

- is a framework for producing fire activity data
- is not a single algorithm
- does not calculate emissions, but provides activity
- is open source (GPL license, code available upon request)
- allows for the merging of multiple data sources into a reconciled set of fire information

The Fire Information Problem

There is no single complete, best fire information data source

- Coverage is limited (by size, type, jurisdiction) or incomplete (clouds)
- Timeliness varies from near real-time to years later
- Each data source has strengths and weaknesses and information can be redundant

Example Source: GeoMac Perimeters

Wildfire perimeters developed by GIS teams during wildfire incidents

- Coverage: mostly large wildfires
- Timeliness: currently available
- Strengths: accurate size and shape
- Weaknesses: limited timing information

2014 GeoMac Perimeters

Example Source: ICS-209 Reports

Compilation of daily situation reports from incident command teams

- Coverage: predominantly wildfires
- Timeliness: available for the 2014 NEI
- Strengths: identification of fire type and name, reasonable size and daily growth
- Weaknesses: no shape information, location is start only, error prone

Example Source: HMS fire detects

Compilation of satellite detected fires plus human quality control

- Coverage: detection rate decreases with fire size, no detection under thick clouds
- Timeliness: available in near real-time
- Strengths: many fires covered, daily information
- Weaknesses: fire size and type must be inferred

Three-Source Example

SmartFire 2 – What is it?

- Three key concepts
 - -Fire as a unit of information
 - Association of fires from multiple data sources
 - Reconciliation of the attributes of associated fires

Fire

A fire in the SF2 database has the following attributes:

- Location (latitude and longitude)
- Shape (perimeter)
- Size (total area burned)
- Type (WF, Rx, Ag)
- Start and end dates

- SF2 assigns this information for every data source
- Growth (fraction of area burned for each day)
- Name

WF = wildfire, Rx = prescribed, Ag = agricultural

Creating Fires – Example: MTBS*

MTBS perimeters are polygons providing a final burn outline

- Location, shape, and size come directly from the polygon
- Assign name and type based on the name field
 - If name includes "unknown" or "Rx": Rx
 - Else: WF
- Assign start date based on start date field
- Assign end date = start date
- Assign all growth to start date

 ^{*} MTBS not available for 2014 – GeoMac data are similar and will be substituted

Creating Fires – Example: MTBS

Name: EVANS ROAD

• Size: 41,561 acres

Type: WF

• Dates: 6/3/08-6/3/08

Growth curve:

Creating Fires – Example: ICS-209

ICS-209 raw data records are daily snapshots of activity for a fire or complex of fires

- Collect all records with the same fire ID field
- Assign location from latitude and longitude fields (ignition point)
- Assign size from area field of last report
- Assign name, type, and start date from fields
- Assign end date from contained date (if available) or last report date (for large fires) or start date
- Shape is circle centered on location with area = size
- Growth is based on area difference between daily reports

Creating Fires – Example: ICS-209

Name: Evans Road

Size: 40,704 acres

Type: WF

Dates: 6/1/08 - 9/24/08

Growth curve:

Creating Fires – Example: HMS

HMS raw data are a collection of points that represent the daily detection of actively burning locations

- Group all points that are close in time and space and draw circular buffers to create location, shape, start date, end date, and daily fraction of growth
- Assign placeholder name
- Assign type based on climatology analysis
- Assign size based on number of detects and vegetation type

Fire Type Climatology – Basis

- State-by-state analysis of two databases
 - FACTS (Forest Service ACtivity Tracking System)
 - FY '08 and '09
 - Rx burns
 - MTBS
 - 1984 2006
 - Mostly WF
- Some states had separable seasons

Determining Fire Type from HMS

Determining Default Fire Type – Next Steps

- Goal: refine our default fire type assumptions for data sources that do not provide type information
- Examine additional data sets over a longer time span
 - NASF fire occurrence
 - FACTS/NFPORS Rx burns
- Develop fire prescription conditions map
 - If a location is too dry, prescribed burns will not be lit
- The addition of local activity data to the inventory reduces the need for making these guesses in the first place

Determining Fire Size from HMS Detects

- Satellite detection varies by land cover
 - Grassland fires are fast and short-lived resulting in few detects per area burned
 - Forest fires often smolder longer resulting in more detects per area burned
- Assessed 2008 MTBS fires in 12 vegetation classes to determine characteristic acres per detect

Acres per HMS Detect

Creating Fires – Example: HMS

Name: Unknown Fire

Size: 141,960 acres

Type: Rx

Dates: 6/1/08 - 7/9/08

Growth curve:

Association Details – Abstract

- Goal of association is to avoid double-counting
- Hypothetical fire from data sources 1 (e.g., ICS-209) and 2 (e.g., MTBS)
- Boxes depict spatial footprint and time range
- Lines depict uncertainties
- Though they do not overlap in time and space, they will be associated as one fire because they overlap within the uncertainty range

Association Details – Uncertainties Used

Spatiotemporal uncertainty values used for the 2008 NEI

Data Source	Spatial Uncertainty (km)	Start Uncertainty (days)	End Uncertainty (days)
MTBS	0.5	1	30
ICS-209	5	1	4
HMS	4	2	3

These values were chosen based on expert judgment and should be refined with further study for future inventories.

Unless data sets are perfect, some double-counting is unavoidable and manual QC should be applied, especially for large fires.

Association – Evans Road Example

- Fires from multiple data sources that are nearby in time and space are associated.
- SF2 now knows the examples are three views of the same fire.

Reconciliation – Merging the Data

- We now have 3 sizes, 3 start dates, 3 names, etc. for this fire.
 Reconciliation gets us back to 1 size, start, date, name, etc.
- The method for reconciliation uses a ranking for each element (size, date, etc.) for each data source.

Example Reconciliation Table

Data Element	First Choice	Second Choice	Third Choice
Location/shape	MTBS	HMS	ICS-209*
Final size	MTBS	ICS-209 HMS*	
Daily activity	HMS	ICS-209	MTBS*
Fire type (WF/Rx)	ICS-209	MTBS	HMS*
Name	ICS-209 MTBS*		HMS*
Start date		First reported	
End date	HMS	ICS-209	MTBS*

^{*} These values must be inferred

Reconciliation Example – Evans Road

- Name: Evans Road
 - From ICS-209
- Size: 41,561 acres
 - From MTBS
- Type: WF
 - From ICS-209
- Dates: 6/1/08-7/9/08
 - First reported, HMS
- Growth curve:
 - From HMS

Why We Need Your Data

- There are 60,000 fires in the 2008 NEI.
- Of those, fewer than 2,000 have any information besides HMS satellite

detects.

- A typical case:
 - -6/1/08
 - Somewhere in Georgia
 - Size and type of fire must be inferred

Why We Need Your Data

Even HMS data are missing most of the fires < 100 acres in size

Potential for Improvement

Data Element	First Choice	Second Choice	Third Choice	Fourth Choice
Location/shape	Local data	GeoMac	HMS	ICS-209
Final size	Local data	GeoMac	ICS-209	HMS
Daily activity	Local data	HMS	ICS-209	GeoMac
Fire type (WF/Rx)	Local data	ICS-209	GeoMac	HMS
Name	Local data	ICS-209	GeoMac	HMS
Start date	Local data		First reported	
End date	Local data	HMS	ICS-209	GeoMac