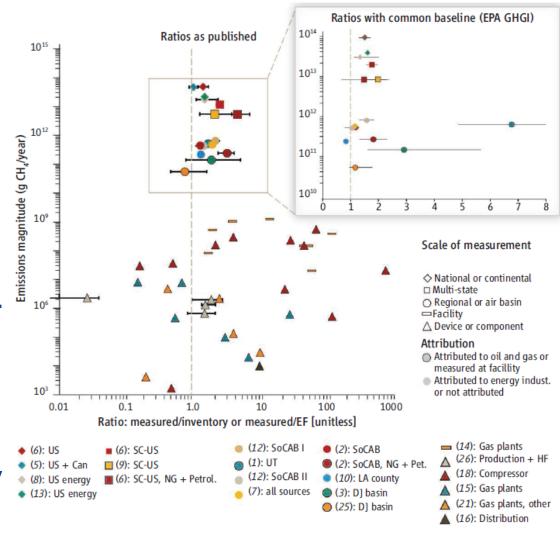
# Comparing top-down & bottom up estimates of oil & gas CH<sub>4</sub> emissions: A spatially-resolved emission inventory for the Barnett Shale Region

David Lyon
Ramón Alvarez
Steven Hamburg


Daniel Zavala-Araiza Robert Harriss Virginia Palacios



### Top-Down vs. Bottom-Up

- Miller et al. 2013
  - analysis of national atmospheric data
  - top-down 1.5Xhigher than EPAGHG Inventory

- Brandt et al. 2014
  - meta-analysis
  - top-down 1.25 –1.75X higher thanEPA GHG Inventory



Brandt et al. 2014

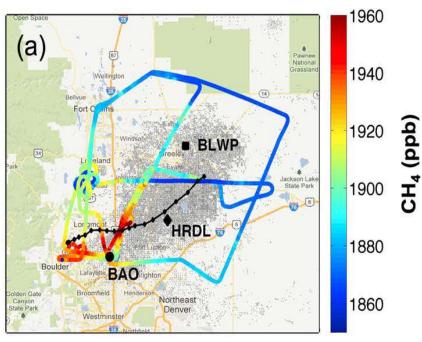


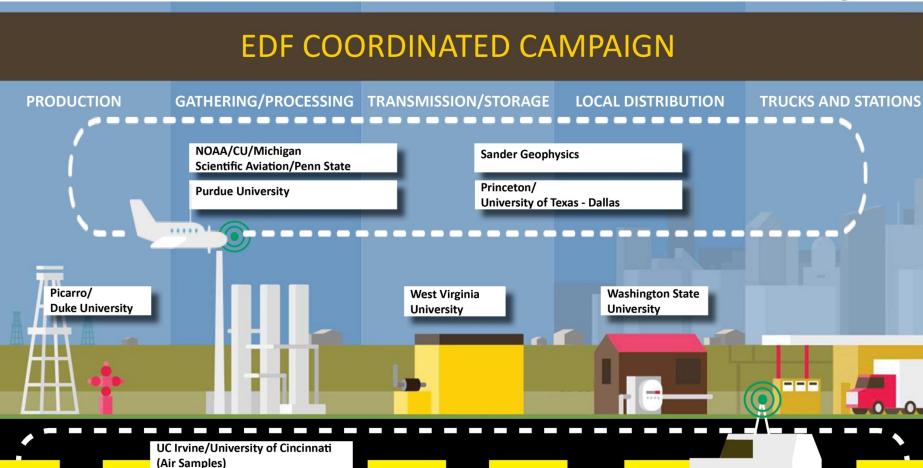

figure: Petron et al. 2014 photo credit: U. of Texas



## Different approaches have pros & cons

#### **Top-Down**

- Total emissions from large area
- Difficult to distinguish sources
- Typically from short time period


#### **Bottom-Up**

- Accurate data at the source
- Expensive to sample many sites
- Emission sources may be missed
- Sites may not be representative
- Activity data may be incomplete



### Barnett Shale October 16 – 30, 2013





**University of Houston** 

Aerodyne



### **Barnett Campaign**

- Bottom-up direct component measurements
  - West Virginia U. → 5 compressor stations
  - Washington State U. → 13 local distribution M&R stations
- Ground-based near-field measurements
  - Picarro → 186 well pads
  - U. Houston → 152 well pads, midstream facilities, & landfills
  - Aerodyne → 224 well pads, midstream facilities, & landfills







### **Barnett Campaign**

- Aircraft-based near-field measurements
  - Purdue → 8 midstream facilities & landfills
  - Princeton/UT-Dallas (remote-control model aircraft) → repeat measurements of one compressor station
  - Sander Geophysics/Shell Global Solutions → locations & emission rate of sources in survey areas by Markov Chain Monte Carlo analysis
- Aircraft-based top-down regional measurements
  - NOAA/CU/Scientific Aviation/U. Michigan/Penn State → mass balance estimates on 8 days







### **Barnett Campaign**

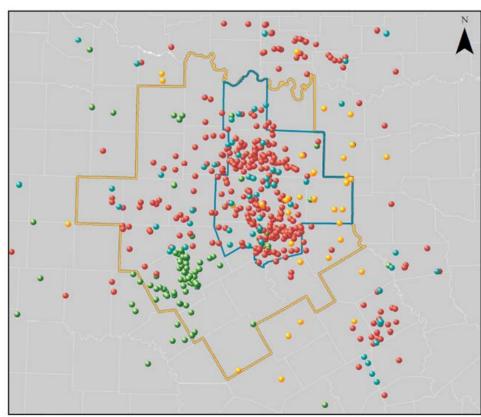
- Source apportionment
  - − UC-Irvine/U. Cincinnati  $\rightarrow \delta^{13}$ C-CH<sub>4</sub>,  $\delta$ D-CH<sub>4</sub> & hydrocarbon ratios of 119 source & background air samples
  - Picarro/Duke → δ¹³C-CH₄ of well pad plumes & background air
  - U. Michigan → aircraft mass balance of ethane and regional
     O&G C2:C1 to estimate fossil fraction
- Synthesis
  - spatially-resolved methane emission inventory
  - comparison of top-down & bottom-up estimates





### **Spatially-Resolved Activity Factors**

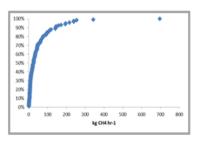
- EPA Greenhouse Gas Reporting Program
- EPA National Emissions Inventory
- TCEQ Barnett Shale Special Inventory (2009)
- TCEQ Permits
- Drillinginfo DI Desktop


#### Industry

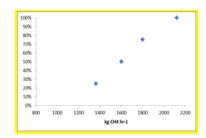
- CAFO
- Compressor Station
- Landfill
- Processing Plant
- Barnett Shale core counties
- RRC Barnett Shale Boundary



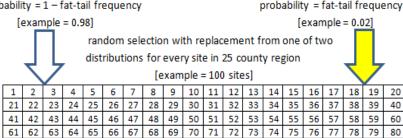
Google Earth

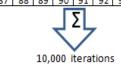




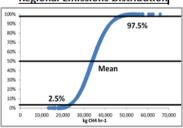


### **O&G Facility Monte Carlo Simulations**

- Unbiased sample
  - Production sites
    - Picarro = 186 well pads
  - Midstream facilities
    - Mitchell et al. 2015
      - 100 compressor stations
      - 9 small & 16 large processing plants
- Targeted sample (fat-tail)
  - Production sites
    - U. Houston, Aerodyne
    - functional superemitters (paper by Zavala-Araiza)
  - Midstream facilities
    - U. Houston, Aerodyne, Purdue
    - 9 stations & plants


#### Sampled Distribution




#### Fat-tail Site Distribution




probability = 1 - fat-tail frequency





#### Regional Emissions Distribution



Divide mean, 2.5th percentile, and 97.5th percentile regional emissions by number of sites in 25 county region (example = 100 sites)



#### 95th confidence interval emission factor

[example = 343 (228 - 470) kg  $CH_4 hr^{-1} site^{-1}$ ]

[mean emission factor 25% higher from fat-tail sites]

### Other O&G Sources

- Well completions
  - location & production-based emissions (DI Desktop)

- Gathering & transmission pipelines
  - location(DI Desktop) & EFs (EPA GHG Inventory)

- Local distribution
  - 2013 pipeline miles (PHMSA) and M&R station counts (GHGRP) & EFs (Lamb et al. 2015)

### Other Thermogenic Sources

- Industrial facilities
  - EPA GHG Reporting Program 2013 facility emissions
- Residential & Commercial End Use
  - TX 2013 gas delivered (EIA) prorated by population with assumed leak rate
- Gasoline & Diesel Vehicles
  - EPA 2011 NEI county-level emissions
- Natural gas vehicles
  - TX 2013 vehicle fuel delivered (EIA) prorated by vehicle miles traveled with assumed leak rate

picture credit: https://consumeraffairs.global.ssl.fastly.net/files/news/natural\_gas.jpg

### Other Thermogenic Sources

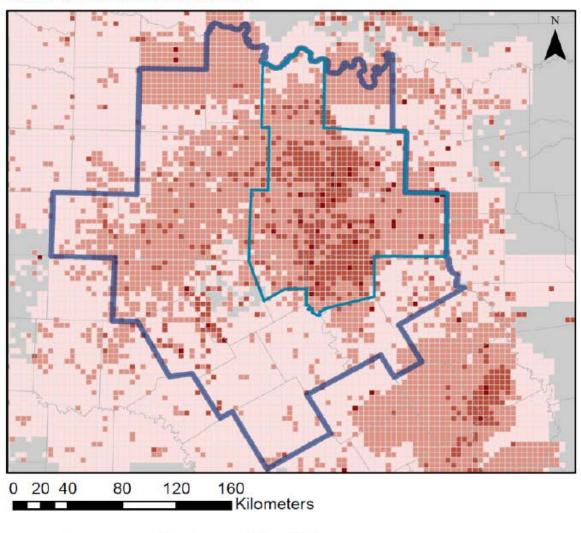
- Abandoned wells
  - location (DI Desktop) & emission factor (Kang et al. 2014)

- Geologic seepage
  - global microseepage EF (Etiope & Klusman 2002)

### **Biogenic Sources**

### Livestock

CAFO point source (TCEQ) and county-level (NASS)
 2013 cattle population & EFs (EPA GHG Inventory)


### Landfills

 GHGRP 2013 facility emissions adjusted up 18% for ~700 non-reporting landfills

### Wastewater treatment

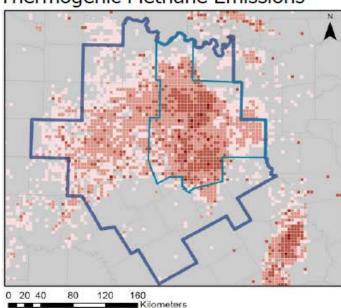
National 2013 emissions (EPA GHG Inventory)
 prorated by population

#### **Total Methane Emissions**

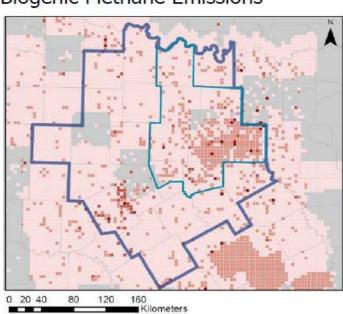


#### Methane Emissions (kg/h)

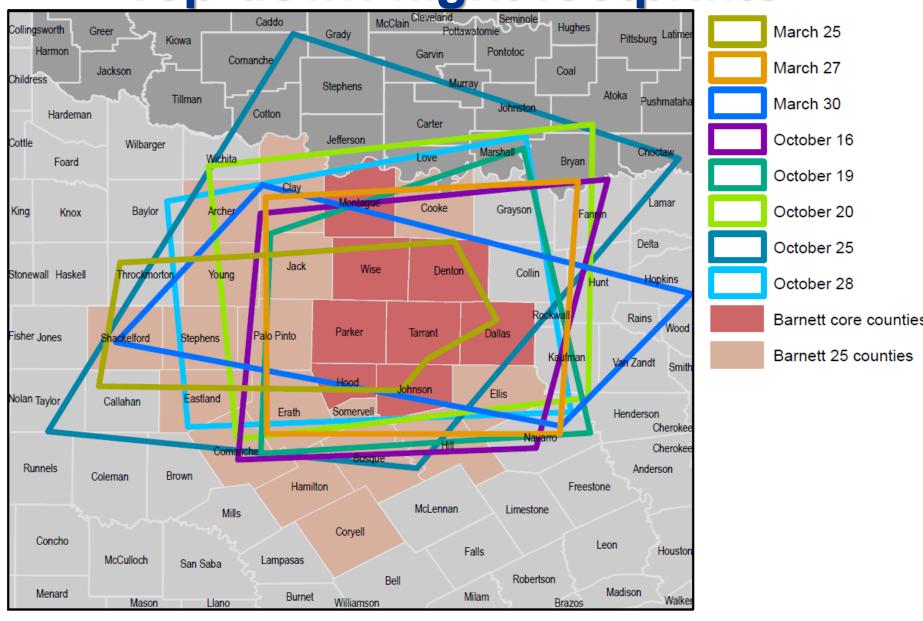
1 - 3.4


3.4 - 26.0

Barnett Shale core counties


RRC Barnett Shale Boundary

> 222 -confidential: do not cite or distribute


Thermogenic Methane Emissions



#### Biogenic Methane Emissions



**Top-down flight footprints** 



120

180 240 -confidential: do not cite or distribute-

### **Barnett Campaign Status**

• 12 papers submitted to Environmental Science & Technology

#### Published:

- Mobile Laboratory Observations of Methane Emissions in the Barnett (Yacovitch et al.)
  - http://pubs.acs.org/doi/abs/10.1021/es506352j
- Measuring Emissions from Oil and Natural Gas Well Pads Using the Mobile Flux Plane Technique (Rella et al.)
  - http://pubs.acs.org/doi/abs/10.1021/acs.est.5b00099

#### Bottom-up

- Constructing a Spatially Resolved Methane Emission Inventory for the Barnett Shale Region (Lyon et al.)
- Towards a Functional Definition of Methane Super-Emitters: Application to Natural Gas Production Sites (Zavala-Araiza et al.)

#### Top-Down

- Aircraft-based estimate of total methane emissions from the Barnett Shale region (Karion et al.)
- Airborne ethane observations in the Barnett shale: Quantification of ethane flux and attribution of methane emissions (Smith et al.)

#### Synthesis

### Acknowledgements

Funding for EDF's methane research series is provided by Fiona and Stan Druckenmiller, Heising-Simons Foundation, Bill and Susan Oberndorf, Betsy and Sam Reeves, Robertson Foundation, Alfred P. Sloan Foundation, TomKat Charitable Trust, and the Walton Family Foundation.



#### EDF STUDIES BY NATURAL GAS SUPPLY CHAIN SEGMENT



#### **Other Studies:**

- 14. Pilot Projects 🖈
- 15. Gap Filling: Superemitters, Abandoned Wells
- 16. Project Synthesis

