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U.S. Energy Emissions

Energy technologies central to U.S. GHG and pollutant emissions

— 86% of domestic GHG emissions!Y, > 90% of anthropogenic NO, , SO, [?!
— Emissions dominated by fossil fuel use in power generation and transportation

e LDV sector responsible for 61% of transportation GHG emissions
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Literature Review: Power Sector

Life cycle GHG emissions dependent on fuel/conversion pathway
— Traditional Coal: 687-1689 gCO,eq/kWhr (Average: 944) [1-8]

GHG Reduction

i Ref
Strategy [Average Coal] Potential AQ Impact eference(s)
Gas-Fired Power 28-76% BUEE T UCT R e [1-4, 9-13]
improvement from coal

Nuclear Power 77-99% +++: high benefits [3, 4,9, 11, 14-20]
Wind 96-99% ++/-: emissions free but can have 3,4, 10, 11, 21-31]
Solar PV 89-98% impacts system-wide with [4, 30, 32-40]
Solar CST 74-99Y emission consequences [41-46]

Renewable Power —
Biopower 62-163% ++/--: pathway dependent [3, 30, 47-64]
Geothermal 94-99% ++: emissions free [4, 27, 65, 66]
Ocean 94-99% +/-: likely positive, uncertain [27, 67, 68]

cCcs Coal (PC) 50-94% +/--: Pathway specific, Potential  [6-8, 73-76]
NG 59-88% increases from efficiency penalty [7,8, 73-75]
Generation 2.5-3.7%**

Efficiency Gains Transmission 1-4.3%** +: will reduce emissions [77-85]
End-use 7.6-30%**

** denotes a reduction in total demand for power

——
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Literature Review: Transportation (LDV)

Life cycle GHG emissions dependent on:

— Vehicle propulsion efficiency, utilized fuel, and production pathway

GHG Reduction

Strate Technolo . Potential AQ Impact Reference(s
gy gy [Avg. gasoline] Qlimp (s)
Conventional 5to 50% [1-9]
Efficiency + : reduce emissions
HEVs 37to 87% [1-3, 7,8, 10, 11]
+++/-:
Hydrogen  FCEVs 14 to 99% / Depe"de"t_on Ehe [1, 3, 7-24]
chosen supply chain
b
PHEVs 15 to 68% +++/- : Dependent on the [ 37,810,111, 25-31]
Electricity h ] v chai
BEVs 28 to 99% chosén supply chain [1,7,8,10, 11, 32, 33]
Corn Ethanol +93 t0 67% .|./_ - Dependent on life [4,7,11, 34-41]
Biofuels cycle and direct vehicle
Cel. Ethanol +50 to >100% emissions [3,4,7,11, 35,37, 39, 42-46]
+: Wi i
Modal Shift Various 0.4-2% will reduce vehicle [47-50]

emissions

-
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Alternative Energy Strategies

Efficiency

Power Generation Transportation (LDV)

Renewables

Hydrogen Fuel Cells (FCEVs)

_ Spatially & tempoiraﬁy

Impacts?

,\ Natural Gas G aa
-
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Assessing AQ Impacts

i_AtmosphericChemistrv + Dilution/Mixing/Transport = Ambient Concentrations

I Tropospheric ozone chemistry é
I O,+hv+H,0 Carbonyl + hv T
N £
e position
v - y
J v

Deposition

[Ozone]
[Particulate Matter]

Solely quantifying emissions Effects on Receptors
neglects atmospheric impacts

Robust assessment includes B ¢ 2 %7 4
simulations of atmospheric Morbidity &
chemistry/transport Mortality

* Requires spatial and
temporal emissions data
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Motivation

Problem Statement
* Climate change concerns influencing shifts to alternative
technologies and fuels in major energy sectors
— Transition will alter direct pollutant and GHG emissions
* Quantity, composition, spatial and temporal patterns

* Emission perturbations directly influence future AQ

— Formation and fate of atmospheric chemical species of concern
for human health

* Ozone (O;) and fine particulate matter (PM, c)

Goal
* |nvestigate future (2055) GHG and AQ impacts of
transitions to alternative energy pathways

— ldentify and characterize opportunities to maximize co-benefits
while avoiding any unforeseen costs

——
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Regions of Interest

Counties Designated "Nonattainment”
for Clean Air Act's National Ambient Air Quality Standards (NAAQS) *

e -

(f ]
"l-
-]
I v ﬂ;
Ll
L] -
‘ » Legend
"] County Designated Nonattainment for 6 NAAQS Pollutants
| County Designated Nonattainment for 5 NAAQS Pollutants
L] || County Designated Nonattainment for 4 NAAQS Pollutants
" L__] County Designated Nonattainment for 3 NAAQS Pollutants
County Designated Nonattainment for 2 NAAQS Pollutants
County Designated Nonattainment for 1 NAAQS Pollutant

Region selection focused on:
* Existing and expected future AQ challenges
e Variation in regional sources to facilitate comparison and identify trends
* Current/expected focus on GHG mitigation and alternative technology deployment
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Methodology

Technology Scenarios

Pollutant Emissions

Air Quality Simulations

Power Generation

‘ >
e

Transportation

Sparse Matrix
Operator Kernel
Emissions
(SMOKE) Model
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7

R 2 i

ppb
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0.0

Community Multi-scale Air
Quality (CMAQ) Model

* Dilution, transport and mixing
* Photochemical transformation

- o
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¥ Emissions of NO_over
a 24 h period in 2005
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Methodology: Base Case

 Characterize and assess baseline (Base Case) AQ in 2055

— Prediction of future emissions difficult due to uncertainties underlying drivers
* Technology advancement, regulatory changes, energy prices, economic growth, weather

— MARKet ALocation (MARKAL) model 2 EPA
* Represents energy system evolution to targeted horizon (2055)
* Calibrated to U.S. Energy Information Administration Reference Case

Primary
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-
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Source: Loughlin et al. 2011
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Methodology: Base Case

Justifiably project emission evolution in response to major drivers

— Sector and sub-sector energy demand growth

— Advancement and selection of technologies and fuels to meet demands
— Emissions from utilized technologies and fuels
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Methodology: Base Case

Technology Scenarios

Transgortatlon

Pollutant Emissions Air Quality Simulations

ollutant
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Air Quality Impacts of FCEVs

Hydrogen Fuel Cell Vehicle Deployment Modeling
— Hydrogen can be generated from a wide range of pathways
* Reformation (SMR, ATR), Gasification, Electrolysis
e Delivery methods

— On-site production, Truck delivery, Pipeline delivery
— Electric load increase depends on production/delivery method:
* Low(SMR) to high(electrolysis)

Emissions and AQ Modeling of Deployment Scenario
— Direct vehicle emissions reduced from conventional fleet
— Novel emissions from production/delivery pathways added
* Vary in spatial and quantitative impact e.g., SMR plant vs. grid for electrolysis
* Delivery method important = HDV vs. pipeline
— Potential for reduction in petroleum fuel infrastructure emissions
* Uncertain due to socio-economic factors = both cases evaluated
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Air Quality Impacts of FCEVs

Two Cases of Hydrogen Fuel Cell Vehicle Deployment in 2050 (SMR 1 and SMR 2)

— Both Cases have been adjusted to account for vehicle emissions (-74%), power sector
emissions (+ 0.005%), and the addition of SMR plant emissions

* For the SMR 2 Case petroleum refinery emissions (-25%)
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Transportation Sector O, Impacts

Light Duty Heavy Duty
Vehicles Vehicles
-2.4 ppb 2.6 ppb

PP

-3.3 ppb

ppb

—
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Air Quality Impacts of Cold Ironing OGVs

Provision of shore-to-ship power important mitigation strategy

e Auxiliary engines at berth comprise significant fraction of total OGV & Port emissions

— Power needs can be provided by vessel linkage to shore = grid, distributed tech.

_ o vy oe — e RS R o r e crgine losd  Power
Requires projection of: ™ Suore i Factor ___(kW-hr)
Auto Carrier | 1961
1. Port activity: vessel calls/types ]
2. Electricity requirements : 50.
3. Emission impacts 3. 38.
e OGVs=-18to45% )] 25. ]
* Power = +0.25% 2 12_;
For major ports in CA: g of |17 %
* Long Beach/L.A. % 2.
* Oakland and Bay Area (4) 25,
* San Diego 2.
* Hueneme 8
> 50.

4.
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AQ Impacts of Renewable Resources and Electrification

AQ and GHG impacts of increasing renewable generation in tandem with
electrification of additional sectors in CA

— Grid modeling platform: HiGRID in combination with Plexos

* Consideration of T & D requirements, dynamics, complementary strategies, etc.
— Potential implementation scenarios for electrification in various sectors
* Residential, Commercial, Industrial, Transportation

Hourly Electrification Load Comparison - Summer 2020

14 ! ! : !
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AQ Impacts of Renewable Resources and Electrification

AQ impacts vary (+ and -) spatially and in magnitude

— Emission reductions from energy sectors yield moderate improvements

* Generally occur with larger spatial distribution
* Seasonally dependent, e.g., ozone in summer and PM, ¢ in winter
— Emission increases from fossil generators yield areas of localized AQ worsening

* Generally occur with higher peak magnitude
* Potentially mitigated by co-deployment of advanced comp. strategies (next step)

A O; Commercial Case ( Summer 2020) A PMQCommercial Case ( Winter 2020)
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Conclusions

* Strategies to mitigate GHG emissions will in tandem impact regional AQ
— Emission perturbations alter atmospheric concentrations of pollutants
* Potential for co-benefits (avoid problem shifting)

 AQ impact assessment requires detailed atmospheric modeling
— Account for chemical and physical processes post emissions release
— Spatial and temporal distributions of primary and secondary pollutants

* Emission inventories key input for methodology
— Provide foundation for projection and spatial and temporal distribution
— Advances will directly improve overall AQ modeling results

 Methodology has been applied to assess AQ impacts of various advanced
energy technologies that can reduce GHG emissions

— Transportation: Fuel Cell Electric Vehicles, Electric Vehicles, Ocean Going Vessels,
Heavy Duty Vehicles

— Power: Renewable resources, Biopower, Distributed Generation
— Industrial

—_
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Tropospheric Ozone Chemistry

Formation of tropospheric ozone governed by complex set of chemical reactions
— NO, + VOCs + Sunlight = O,

OH" +VOC - "HOCO

'"HOCO + 0, 2 HO," + CO, |___Generates radical which rapidly
1 converts emitted NO to NO,
NO + HO," = ‘OH + NO,,
p |

I NO, + HV = NO + O Results in formation
— of an O, molecule

2. 3
\ . . O + 02 + M 9 03 + M
Results in destruction

Z
12 ? + +0, —
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Temporal Impacts on O,

(O reductions occur during important times in important locations

— Increases occur during off-peak times in areas of lower concentrations

80 — 0.5 — 3.5
- 3
70 — [ —
A - 25
60 —— . L2 '.§'_
constant concentration o
250 - af volatile arganic N 15 &
= o 9 compounds |, pt
o NeD o
X~ 40 _E = cEn
s o - - 0.5
& -0 g
30 - & 10 g
8
L )
20 052
I S|
10 g
NO, Concentration . 15
(TAT ] ] [ | ]
0o — m 4 am 8 am Noon 4 pm 8 pm Mm-— -2
= Time of Day
A N M SN O N0 O é :'] T W@ N M T O N ®© O o
© Advanced Power and Energy Program 2015 26/24




CMAQ

Governing Dynamic Equation:

— Numerical solution of the atmospheric diffusion equation

» Advective transport, sources/sinks, chemical production/loss, size /chemically
resolved aerosol formation

oQk . o Q¥ oQx oQn,
ﬂ Vv (UQ:;) =V (KVQ:])_F( é’t jsources/ +( ﬂt }aerosol +( at jchemistry

sinks

I  Widespread use in AQ modeling community
1100 m 123 Gas Species . .
296 Aerosols: 37 species, 8 sizes y Modular chemical mechanisms
| [ —  CBIV, SAPRC99, CBOS

* Met fields include encompass temperature
field, wind field, UV radiation field, and
information of the terrain such as surface
roughness to calculate deposition velocities,
etc...

80 Cells
Each Cell: 5 x5 km?

—

© Advanced Power and Energy Program 2015 27/24



U.S. Energy Emissions

Energy technologies key contributor of U.S. emissions
— 86% of domestic GHG emissions!!, > 90% of anthropogenic NO, , SO, (2!
— Emissions result from combustion of fossil fuels

ZNT3UESCAIBh EstitasioDsBystetbo:!

2,500 -
i Relative Contribution 2,159
&R 7 by.Fuel Trpe 1,745
g 1,500 '
S
o 1,000 -
500 -
ﬂ 2
. cE Z c
Industrial 2 s 2
£ EL
9% E 0
\&aste w ¥
, , Dispos;ﬂ/RecycIing
Source(s): > 1%
[1] U.S. EPA 2013 . Miscellaneous
[2] Oak Ridge Nat. Lab 2013 3%
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Combustion: Emission Impacts

During combustion components of fossil fuels combine with O, from
air to yield water vapor, CO,, and trace pollutants

- E.g., for octane (CgH,5) combustion

2C,H,, + 250, —18H,0 +16CO,

Global Climate Change Air Pollution (Quality)
1., Fossil fvglsambustion contributgs to climate chanee and air

quality concerns = Transitions to cleaner alternatives
* Economic Impacts * Environmental Impacts .
— Additional drivers: energy security/independence, sustainability,

* EOVNSAMERRAFtoncerns, .. * Materials Degradation

2. Shifts to alternative technologies/fuels will impact both
emissions of GHG and pollutants due to common sources

— Opportunity to simultaneously address climate change and air quality

Source: Brown 2011

—
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2020 Electrification GHG Results
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Energy Sector Regional Emissions

Transportation major contributor of GHG and NOiEmissions

— Power sector important for GHG emissions
— Industrial sector pollutant emissions significant in all regions

Regional CO, Emissions by Sector Regional NO, Emissions by Sector
100 — —

50

% of Total Regional Emissions

X NEUS CA X NEUS CA

B Transportation  MResidential W Commercial W Industrial lPower

31/24
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Energy Sector O, Impacts

Transportation sector vields largest improvements in all regions
— Power more localized than industrial but with higher magnitude (TX, NEUS)
— Industrial impacts significant, particularly for CA

A Og From Base

Power Generation Transportation Industrial

ppb
ppb

—
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Energy Sector PM, . Impacts — NEUS

NEUS power generation contributes significantly to ambient levels

— Transportation sector impacts upwind of NYC

— Industrial sector impacts have localized importance

Power Generation

-5.1 pg/m3 PM, .

——

A 24-h Average PMg From Base

Transportation

micrograms/m+3
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Energy Sector O, Impacts

—
-7.5 ppb . -15.3 ppb
Power 8 Transportation
-3.6 ppb * - -1.8 ppb
Industrial . Residential
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Energy Sector PM, . Impacts — CA

Regional variation in magnitude & spatial distribution of improvements
— Transportation dominant contributor to ambient concentrations in CA
— Industrial of high importance in select CA regions, i.e., Central Valley

A 24-hour Average PMQ From Base

Power Generation Transportation

Industrial

micrograms/m+3

-2.5 pg/m? -44.6 pg/m3

—
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Transportation Sector AQ Impacts

Transportation sector emissions significantly impact regional AQ

— Primary and secondary pollutants = Ozone and Particulate Matter (PM)
— Significantly more than other major energy sectors in CA

A 24-hcmg' Rmmﬁaslélwé From Base

Pa power Generation Tt Transportation In |hdustrial

micrograms/m*3
micrograms/m*3

-2.5 pg/m? -44.6 pg/m3

—
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Projected Transportation Emissions to 2055

Significant variance in projected emissions amongst sub-sectors

— Result of current regulatory focus, technology advancement, etc.

— In 2055 GM sectors contribute majority of emissions = Ships, Off-road

Projected Transportation Sector NO, Emissions (TX)

100 2055 Transportation NO,_by Sub-sector

100% Aircraft, 81%
80 -
-°—°-w /
;5 60 —
=3 75% —— HDV
E 20
S 0 m Offroad
0,
2‘% 50% 2045 2@dViaring
o= -20
%, B R&ill, -35%
Sg -40
S 2%% BoRibsEak2
S0 HDV, -72%
-80
. LDV, -83%
189

TR X CA NEUS
_ Source: MARKAL 2010
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Life Cycle GHG Emissions for LDVs

Gasoline ICE (25 mpg ave)*
Gasoline ICE (40 mpg ave)*

Compressed NG Vehicle*

FCEV - H2 from NG, liquid truck delivery

—
|
|

FCEV - H2 from NG, gas truck delivery [l

L
FCEV - 33%RE H2 from NG/Biogas, gas truck delivery [l
|

FCEV - 33%RE H2 from NG/Biogas, liquid truck delivery

W Feedstock
BEV-CAgrid | ||
Fuel production & treatment
BEV-33% RECAgrid | I m Distribution
BEV - 100% Re [N ® Vehicle Manufacturing****
» Vehicle Tailpi
BEV - Usgrid | — e ape
FCEV - H2 from NG Tri-Generation** [l ] Vehicle Fleet
Average Fuel Economy***
FCEV - H2 from Biogas Tri-Generation®* | | | BEV:0.345 kWh/mi
FCEV: 56.8 mi/kg H2
FCEV - H2 from On-site photovoltaic electrolysis | [
FCEV - H2 from central wind/solar - liquid truck delivery | ] Source: Advanced Power and Energy Program
June 2014
FCEV - H2 from central wind/solar - pipeline delivery | [N
0.000 0.100 0.200 0.300 0.400 0.500 0.600

kg GHG per mile (CO2 eq.)

* Gasoline ICE and Compressed NG vehicle WTW information obtained from the Low Carbon Fuel Standard, except vehicle manufacturing.
**Tri-Generation is a novel technology that was conceived by the National Fuel Cell Research Center in 2001 to simultaneously generate electricity,
hydrogen, and heat. It was developed into the first prototype in collaboration with FuelCell Energy, Inc., and Air Products and Chemicals, Inc. The
first demonstration of this technology in the world is currently being demonstrated at the Orange County Sanitation District while operated on
renewable biogas derived from the wastewater treatment process. For more information on Tri-Generation please visit:
http://www.apep.uci.edu/3/research/partnership TRI-GEN.aspx

***Eleet-wide average fuel economy is the representative fuel economy of the average vehicle in the light-duty vehicle fleet. This is a weighted
average of the fuel economy of different size vehicles. Each vehicle class is weighted by their contribution to the total light-duty vehicle fleet
according to the CARB EMFAC model.

***#*yehicle manufacturing emissions obtained from automaker data input.
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Transportation Sector O,

Light Duty
Vehicles

-3.0 ppb

Offroad
-13.3 ppb
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Evolution of LDV Impacts

The relative AQ impacts of LDVs are modest in 2055...BUT

— Improvements occur in highly populated areas = Important health benefits
— Emissions of GHGs still have high importance = Need for mitigation

2005 O, LDV Impacts 2055 O; LDV Impacts

ppb
ppb

-6.8 ppb O, -2.4 ppb O,
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Air Quality Impacts of Electric Vehicles

Impact of Battery Electric (BEV) and Plug-in Hybrid Electric (PHEV) Deployment
— Direct reductions in vehicle and petroleum fuel infrastructure pathways
— Increase in emissions from electricity generation

BEVsand Iﬂ%\?sasaet hightevels impr‘mﬁaﬁwwbﬁnangés

| Power &
Lture emissions

minate power sector impa

of region supporting deployment| -]
minimal detrimental emission and 'AQ impacts
1. ]

tandpoint
% | +15

Aqrtocalized, to large point sotfce

coal generation

fi ’an]a"-‘cts

itigation strategies

refinery turn-down o

—
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Electric Vehicle Impacts

AQ impacts driven by vehicle emission reductions
— Complete deployment of BEVs in the LDV sector

— Additional power (11% increase) met by existing generation mix

Difference in [O,] Relative to Base

—ll B 0.0; - 0.0
- -
Vehicles charged with Avg. Grid Co-deployment with CCS

—
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Air Quality Impacts of Petroleum Refining

Petroleum fuel production/distribution important to AQ & GHG
— Substantial reductions in O; and PM, . for key CA regions
— Further motivation supporting transitions to alternative LDV strategies

__~mmimes, Basan Base

4+ offtners Oil Flatform
4 Refined Products Terminat
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OGV Emissions Mitigation: Cold Ironing (Cl)

Provision of ship-to-shore power (Cl) important mitigation strategy

Auxiliary engines at berth comprise significant fraction of total OGV & Port emissions

— Power needs can be provided by vessel linkage to shore - grid, distributed tech.
e CA: At-berth regulation requires 80% reduction by 2020

EXISTING 450V MAIN
SWITCHGEAR

TRANSFORMER

6.6KV SHORE CONNECTION
SWITCHGEAR —_—

| | .
| -
PORTABLE 86KV CABLE || ™%,
REEL |
' 5.6KV SWITCHGEAR
_ I | .
N  COMPOSITE SHORE TRANSFORMER
-
: brir: Ny B.5KV POWER
. || caBLE
\\\
& ! — CONTROL &
T , | COMMUMNICATION
'l

fgféns SHIP DIESEL - )‘“ EETEGR
GENERATORS 12 4TI
SHORE POWER OUTLET ' cal
BOX IN WHARF 66KV 66K ELECTRI

SERVICE

12 4TKV
Source: Borner-Brown et al., Port Technology International
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OGV Emissions Mitigation: Cold Ironing (Cl)

Cl Cases demonstrate benefits to AQ in urban regions of the State

* Substantial reductions in PM, ¢ in important areas, e.g., SOCAB

* Ozone impacts include increases from reduced scavenging from large NO, reductions

Difference from Baseline for Cl Projected Case

A Max 1-h O, A 24-h PM, .

i ———

ppb
micrograms/m*3

-4.7 to +10.3 ppb ' -18.3 to +0.01 pg/m?3
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Industry Sub-sector O, Impacts

-3.9 ppb

Chemical Manufacturing

-6.8 ppb

Oil & Gas Production

—
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Industry — Oil and Gas Production
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Marine Vessel Impacts

Deployment of advanced vessel strategies achieves high co-benefits

* International Marine Organization potential emission reduction estimates

— Ship design, propulsion, machinery, vessel operation, alternative fuels

A O, From Base —_—
Assessment of Potential Reductions of CO, from Ocean Going Vessels
- — - T T TX 4.
Saving (%) of €
u 400.
I 2-50¢ ¥
oo || 5215 2.
5-15% ]
- i 100, 1=110 1
=, g
- 0. ]
-100. 5-50°
1-10
-200. 1=110 -1.
| spesd. 2.
All measures in total = 70% CO, reduction >
Source: IMO 2009
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Goods Movement Sector

GM sector emission reductions vield important AQ benefits

— Heavily impacted communities adjacent/upwind of major U.S. shipping ports
* Long Beach/L.A, Oakland, Houston, New York City, Philadelphia

M3 HTRA, ClsejrirBasBase A D245 RNaseArbrarBBase
| _
5.04 4.
“ 3.
‘t 3.83
% : 2. ]
.525 o ]
/2 ] £
£1.2¢] g
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'-.:_O 2.5
g .
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L | #
- AL 111, 2005 000000 1T
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Coal Mitigation

Strategies to mitigate GHG emissions from coal power plants in TX

— Nuclear Power

* Free of direct pollutant emissions, life cycle emissions comparable
— Carbon Capture and Storage (CCS)

* Efficiency penalty = Net increase of some pollutants (NO,)

* Impacts of capture = Decrease per kWhr of some pollutants (SO,)

5

Tecl:nc

[72]
Pul\érizéﬁ C '9-35)%
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Su pé:'r-c-gi?ic_i }5-49)%

c
Icc@ 1°
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0-41)%
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* Integrateazéasification Combined Cycle

—
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Coal Mitigation

AQ co-benefits maximized by nuclear power relative to CCS

— Peak O; difference of 8 ppb localized to large capacity generators

— Reductions in 24-h PM, . reach 2 ug/m? for nuclear scenario

* KO} Nuclear-vs"€ES A[PM, ] Naclear vs- CCS
. 8 2.0
6 15
a 10
" o] § oo
) 05

-1.0

-1.5
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Industry — Petroleum Fuel Refining

Crude oil refining emissions reflect complexity of process
— Stationary combustion for heat/power/steam = limited large sources
* CO,, NO,
— Various (vents, leaks, stacks, cooling towers) = diffuse, continuous or episodic
* CO,, CH,, VOCs (potentially highly reactive)

Gos
Source Contribution of G
Sulfur Plant .
o Flaring
1.8% 2.5%
H2 Plant
2.8% CRU Coke Burn-off

0.36%

Delayed Coking
0.21%
FCCU Cz"a";f“’"“’ﬁ Fluid/flexi-coking Units
: 0.60%
Coke Calcining
0.101%
Other
3% Asphalt Blowing
0.94%
Combustion BII?“‘IVS;]‘!-?H
63.3% Storage Tanks )

0.30% .

Equipment Leaks
Wastewater Treatment 0.013%
0.40%

oo e A
Source: U.S. EPA 201Q. s ﬁtﬁ
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Petroleum Refinery Impacts

Petroleum fuel production/distribution has important AQ & GHG impacts
— Substantial reductions in O; and PM, . for important CA regions
— Further motivation supporting transitions to alternative LDV strategies
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22
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Industry — Petroleum Fuel Refining

Petroleum fuel production/distribution important to AQ & GHG

— Annual GHG emissions for a large refinery = 500 MW coal plant!]
— Reductions in O; and PM, . impact population centers in TX
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r
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Industry Sub-sector O, Impacts — CA
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Industry Sub-sector PM, . Impacts — CA
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Industry Sub-sector O, Impacts — TX
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Base Power Generation

Significant regional variation in utilized technologies and fuels

— Gas-fired generation growth substantial 2 Impacts of shale gas

— Coal utilized in TX and NEUS (offset in NEUS by significant nuclear power)

— CA relatively clean grid mix

2055 Base Case Power Generation
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Impacts of Coal Generation

GHG and AQ impacts of coal generation important in 2055

— Despite optimistic outlook of natural gas displacement
e 2055 share of total generation TX: 25%, NEUS R1: 11%, NEUS R2: 36%
A 24~hNO;, No Coal

—
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Methodology: Base Case

Detailed emissions apportionment based on Source Classification Codes (SCC)

— Assigned to specific emissions sources accounted for in NEI

— Allows emissions perturbations at desired level of specificity
» Sectoral 2> Technology = Fuel

10100223

External Combustion

Cyclone Furnace

Electricity Generation

Sub-bituminous Coal
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