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Source(s):  
[1] U.S. EPA 2013 
[2] U.S. EPA 2005 

U.S. Energy Emissions 

Energy technologies central to U.S. GHG and pollutant emissions  
– 86% of domestic GHG emissions[1], > 90% of anthropogenic NOx , SO2 

[2] 

– Emissions dominated by fossil fuel use in power generation and transportation  

• LDV sector responsible for 61% of transportation GHG emissions  

2011 U.S. Combustion CO2 by Sector[1]  

Light Duty 
Vehicles 

61% 

Medium and 
Heavy Duty 

Vehicles 
22% 

Aircraft 
8% 

Ships 
2% 

Rail 
3% 

Other 
4% 
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Life cycle GHG emissions dependent on fuel/conversion pathway 
– Traditional Coal: 687-1689 gCO2eq/kWhr (Average: 944) [1-8]  

Strategy   
GHG Reduction 
[Average  Coal] 

Potential AQ Impact  Reference(s) 

Gas-Fired Power 28-76% 
+/- : introduce emissions, 
improvement from coal  

[1-4, 9-13] 

Nuclear Power  77-99% +++: high benefits  [3, 4, 9, 11, 14-20] 

Renewable Power 

Wind 96-99% ++/-: emissions free but can have 
impacts system-wide with 
emission consequences  

[3, 4, 10, 11, 21-31] 

Solar PV 89-98% [4, 30, 32-40] 

Solar CST 74-99% [41-46] 

Biopower 62-163% ++/--: pathway dependent [3, 30, 47-64]  

Geothermal 94-99% ++: emissions free [4, 27, 65, 66] 

Ocean 94-99% +/-: likely positive, uncertain [27, 67, 68] 

 CCS 
Coal (PC) 50-94% +/--: Pathway specific, Potential 

increases from efficiency penalty 

 [6-8, 73-76] 

NG 59-88%  [7,8, 73-75] 

Efficiency Gains 

Generation 2.5-3.7%** 

+: will reduce emissions  [77-85] Transmission 1-4.3%** 

End-use 7.6-30%** 

Literature Review: Power Sector 

** denotes a reduction in total demand for power 
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Strategy  Technology 
GHG Reduction 
[Avg. gasoline] 

Potential AQ Impact Reference(s)  

Efficiency 
Conventional 5 to 50% 

+ : reduce emissions 
[1-9] 

HEVs 37 to 87% [1-3, 7, 8, 10, 11] 

Hydrogen FCEVs  14 to 99% 
+++/- : Dependent on the 
chosen supply chain 

 [1, 3, 7-24] 

Electricity 
PHEVs 15 to 68% +++/- : Dependent on the 

chosen supply chain 

[1, 3, 7, 8, 10, 11, 25-31] 

BEVs 28 to 99% [1, 7, 8, 10, 11, 32, 33] 

Biofuels  

Corn Ethanol +93 to 67% +/- - : Dependent on life 
cycle and direct vehicle 
emissions  

[4, 7, 11, 34-41] 

Cel. Ethanol +50 to >100% [3, 4, 7, 11, 35, 37, 39, 42-46] 

Modal Shift Various  0.4-2%  
+: will reduce vehicle 
emissions 

[47-50] 

Life cycle GHG emissions dependent on: 
– Vehicle propulsion efficiency, utilized fuel, and production pathway 

Literature Review: Transportation (LDV) 



 Advanced Power and Energy Program 2015 6/24 

Alternative Energy Strategies  

Hydrogen Fuel Cells (FCEVs) 

Electric Vehicles 

Biofuels (Ethanol) 

Natural Gas 

Nuclear 

Renewables 

Carbon Capture (CCS) 

Power Generation Transportation (LDV) 
Efficiency 

Modal Shift 

Biopower 

Reduce Life Cycle GHG Emissions 
• Range in magnitude   

Reduce pollutant emissions 
• Life cycle and/or direct  

Increase pollutant emissions 
• Life cycle and/or direct   

Alter emission patterns 
• Spatially & temporally 

Climate Change 
Impacts? 

Air Quality 
Impacts? 
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Assessing AQ Impacts 

Emissions 

NOx 

PM 

SO2 

CO 

Atmospheric Chemistry 
 

VOC 

Ambient Concentrations 
 
 

Deposition  

Effects on Receptors 

Morbidity & 
Mortality 

Dilution/Mixing/Transport  

[Ozone] 

[Particulate Matter] 

+ 

+ 

= 

Solely quantifying emissions 
neglects atmospheric impacts 
 

Robust assessment includes 
simulations of atmospheric 
chemistry/transport  

• Requires spatial and 
temporal emissions data 

 



 Advanced Power and Energy Program 2015 8/24 

Motivation 

Problem Statement 

• Climate change concerns influencing shifts to alternative 
technologies and fuels in major energy sectors  
– Transition will alter direct pollutant and GHG emissions  

• Quantity, composition, spatial and temporal patterns 

 

• Emission perturbations directly influence future AQ 
– Formation and fate of atmospheric chemical species of concern 

for human health 

• Ozone (O3) and fine particulate matter (PM2.5) 

 

Goal 

• Investigate  future (2055) GHG and AQ impacts of 
transitions to alternative energy pathways  
– Identify and characterize opportunities to maximize co-benefits 

while avoiding any unforeseen costs 
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Regions of Interest  

NEUS  
CT, MA, PA, NY, NJ 

TX 

CA 

Region selection focused on: 
• Existing and expected future AQ challenges 
• Variation in regional sources to facilitate comparison and identify trends 
• Current/expected focus on GHG mitigation and alternative technology deployment 
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Methodology  

Pollutant Emissions  Air Quality Simulations Technology Scenarios 

Baseline Emissions  

EPA NEI/CARB  

Sparse Matrix 
Operator Kernel 

Emissions 
(SMOKE) Model 

Spatial Surrogates 

Activity Profiles Chemical Mechanism Meteorological Fields 

Community Multi-scale Air 
Quality (CMAQ) Model 

• Dilution, transport and mixing 
• Photochemical transformation 

Ozone concentration over 
a 24 h period in 2005 

Emissions of NOx over 
a 24 h period in 2005 
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Methodology: Base Case 

• Characterize and assess baseline (Base Case) AQ in 2055 
– Prediction of future emissions difficult due to uncertainties underlying drivers 

• Technology advancement, regulatory changes, energy prices, economic growth, weather 
 

– MARKet ALocation (MARKAL) model EPA  
• Represents energy system evolution to targeted horizon (2055)  
• Calibrated to U.S. Energy Information Administration Reference Case 

 

 
 
 
 

Source: Loughlin et al. 2011 
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NEUS Base Case Transportation Fuel Consumption  

LPG

Jet Fuel

RFO

Diesel

Gasoline

CNG

Electricity

Biodiesel

Ethanol

Justifiably project emission evolution in response to major drivers 
– Sector and sub-sector energy demand growth 

– Advancement and selection of technologies and fuels to meet demands 

– Emissions from utilized technologies and fuels 
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Methodology: Base Case 

Pollutant Emissions  Air Quality Simulations Technology Scenarios 

Baseline Emissions  

EPA NEI 

Sparse Matrix 
Operator Kernel 

Emissions 
(SMOKE) Model 

Growth and Control File 

FIPS SCC Factor Pollutant 

06059 1-01-001-00 0.50 NOX 

06059 2-01-001-00 0.70 PM2.5 

06059 2-01-002-00 1.00 CO 

… 

MARKAL Model 
EIA  

BAU Case 

Base Case Emissions  

2055 EPA NEI 

Ozone concentration over 
a 24 h period in 2055 

Emissions of NOx over 
a 24 h period in 2055 



 Advanced Power and Energy Program 2015 15/24 

Outline  

• Introduction & Motivation 

• Methodology 

• Results 

• Conclusion  



 Advanced Power and Energy Program 2015 16/24 

Air Quality Impacts of FCEVs 

Hydrogen Fuel Cell Vehicle Deployment Modeling  

– Hydrogen can be generated from a wide range of pathways  

• Reformation (SMR, ATR), Gasification, Electrolysis 

• Delivery methods   

– On-site production, Truck delivery, Pipeline delivery 

– Electric load increase depends on production/delivery method: 

• Low(SMR) to high(electrolysis) 

 

Emissions and AQ Modeling of Deployment Scenario  

– Direct vehicle emissions reduced from conventional fleet 

– Novel emissions from production/delivery pathways added 

• Vary in spatial and quantitative impact e.g., SMR plant vs. grid for electrolysis 

• Delivery method important  HDV vs. pipeline 

– Potential for reduction in petroleum fuel infrastructure emissions  

• Uncertain due to socio-economic factors  both cases evaluated  
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Air Quality Impacts of FCEVs 

Two Cases of Hydrogen Fuel Cell Vehicle Deployment in 2050 (SMR 1 and SMR 2)  

– Both Cases have been adjusted to account for vehicle emissions (-74%), power sector 
emissions (+ 0.005%), and the addition of SMR plant emissions  

• For the SMR 2 Case petroleum refinery emissions (-25%) 

 

Deploying high levels of HFCVs in CA yields improvements in AQ in key regions 

• Impacts of -3.3 to -3.6 ppb ozone and -2.2 to 3.9 μg/m3 24-hour PM2.5 

• SoCAB, Bay Area, Central Valley 

 

– Emission reductions from vehicles and petroleum fuel infrastructure dominate  

• Impacts on PM2.5 important for communities adjacent to Port/Refinery Complexes 

 

– SMR Case 2 has greater impacts from fuel production/storage/distribution  emissions  

• 25% reduction yields improvement of 1 ppb O3 and 24-hour PM2.5 of 3.5 μg/m3  

 
 

SMR 1 Less Base (-3.3 ppb) 
 

 

SMR 2 Less Base (-3.6 ppb) 
 

 

SMR 2 Less SMR 1 

 

 

Refinery Contribution: 1 ppb O3  Refinery Contribution: 3 μg/m3  

SoCAB 
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Offroad 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

-2.6 ppb -2.4 ppb 

-3.3 ppb -4.3 ppb 

Transportation Sector O3 Impacts 

Light Duty 
Vehicles 

Heavy Duty 
Vehicles 

Marine & Rail 
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Air Quality Impacts of Cold Ironing OGVs 

Provision of shore-to-ship power important mitigation strategy 
• Auxiliary engines at berth comprise significant fraction of total OGV & Port emissions  

– Power needs can be provided by vessel linkage to shore  grid, distributed tech.  

 

Requires projection of: 

1. Port activity: vessel calls/types 

2. Electricity requirements  

3. Emission impacts  

• OGVs ≈ - 18 to 45% 

• Power ≈ + 0.25% 

 

For major ports in CA: 

• Long Beach/L.A. 

• Oakland and Bay Area (4) 

• San Diego  

• Hueneme  

 

 
Source: Borner-Brown et al., Port Technology International 

Vessel Type 
Vessel 
Calls 

Average Auxiliary 
Engine Size (kW) 

Average Time at 
Berth (hours) 

Auxiliary 
Engine Load 

Factor 

Total 
Power 

(kW-hr) 

Auto Carrier 100 3169 23.8 0.26 1961 

Bulk 89 na 66.6 0.10 0 

Bulk - Heavy Load 2 na 49.2 0.10 0 

Bulk - Wood Chips 3 na 82.1 0.10 0 

Container - 1000 41 4421 24.1 0.18 786 

Container - 2000 256 4649 26.8 0.18 5741 

Container - 3000 46 3919 53.1 0.18 1723 

Container - 4000 289 7058 36 0.18 13218 

Container - 5000 232 8228 40.6 0.18 13950 

Container - 6000 291 10631 75.1 0.18 41820 

Container - 7000 19 10771 73.5 0.18 2708 

Container - 8000 93 10911 71.8 0.18 13114 

Container - 9000 98 11520 76.2 0.18 15485 

Container - 11000 5 15196.5 79.1 0.18 1082 

Cruise 98 18873 9.5 0.16 2811 

General Cargo 73 3286 53.2 0.10 1276 

Ocean Tugboat 38 na 37   0 

Miscellaneous 1 na 76.9 0.10 0 

Reefer 30 3245 21.3 0.32 664 

Tanker - Aframax 3 2040 53.1 0.26 84 

Tanker - Chemical 71 2400 33.2 0.26 1471 

Tanker - Handysize 32 1650 35.5 0.26 487 

Tanker - Panamax 43 2040 45.5 0.26 1038 

       Total 1953       119418 
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AQ Impacts of Renewable Resources and Electrification 

AQ and GHG impacts of increasing renewable generation in tandem with 
electrification of additional sectors in CA 

– Grid modeling platform: HiGRID in combination with Plexos 

• Consideration of T & D requirements, dynamics, complementary strategies, etc.  

– Potential implementation scenarios for electrification in various sectors 

• Residential, Commercial, Industrial, Transportation  

Po
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AQ Impacts of Renewable Resources and Electrification 

AQ impacts vary (+ and -) spatially and in magnitude 
– Emission reductions from energy sectors yield moderate improvements  

• Generally occur with larger spatial distribution  

• Seasonally dependent, e.g., ozone in summer and PM2.5 in winter 

– Emission increases from fossil generators yield areas of localized AQ worsening  

• Generally occur with higher peak magnitude  

• Potentially mitigated by co-deployment of advanced comp. strategies (next step) 

 ∆ O3 Commercial Case ( Summer 2020) ∆ PM2.5 Commercial Case ( Winter 2020) 
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Conclusions 

• Strategies to mitigate GHG emissions will in tandem impact regional AQ 

– Emission perturbations alter atmospheric concentrations of pollutants  

• Potential for co-benefits (avoid problem shifting) 
 

• AQ impact assessment requires detailed atmospheric modeling  

– Account for chemical and physical processes post emissions release 

– Spatial and temporal distributions of primary and secondary pollutants 
 

• Emission inventories key input for methodology   

– Provide foundation for projection and spatial and temporal distribution  

– Advances will directly improve overall AQ modeling results  
 

• Methodology has been applied to assess AQ impacts of various advanced 
energy technologies that can reduce GHG emissions  

– Transportation: Fuel Cell Electric Vehicles, Electric Vehicles, Ocean Going Vessels, 
Heavy Duty Vehicles 

– Power: Renewable resources, Biopower, Distributed Generation   

– Industrial 
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Tropospheric Ozone Chemistry  

Formation of tropospheric ozone governed by complex set of chemical reactions 

– NOx + VOCs + Sunlight = O3 

VOCs 

OH· + VOC  ·HOCO 

·HOCO + O2  HO2· + CO2 

NO + HO2·  ·OH + NO2  

NO2 + HV  NO + O·  

O· + O2 + M  O3 + M 

NO + O3  NO2 + O2 

Generates radical which rapidly 
converts emitted NO to NO2 

Results in formation 
of an O3 molecule 

Results in destruction 
of an O3 molecule 

Thus, theoretically for every O3 produced one is 
destroyed which should = no accumulation 
BUT there is accumulation because the VOC step 
increases the ratio of NO2 to NO 

In urban areas (e.g., SoCAB) we have more NO 

than VOCs and extra NO reacts with existing O3 
(i.e., scavenging), increasing the destruction step 

Thus, reducing NO emissions in urban areas 
prevents scavenging and initially increases O3 

where the emissions are occurring   

7:00 A.M. BUT, reducing NO eventually leads to a reduction in 
O3 production via the other mechanisms   

AND, these reductions occur where and when O3 
concentrations are highest (e.g., Riverside in the 
afternoon) 

THUS, the overall impact on O3 from reducing NO in 
urban areas is beneficial, despite initial increases 

6:00 P.M. 
N

O
x 
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Temporal Impacts on O3 

O3 reductions occur during important times in important locations 
– Increases occur during off-peak times in areas of lower concentrations 
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CMAQ  
Governing Dynamic Equation: 

– Numerical solution of the atmospheric diffusion equation 

• Advective transport, sources/sinks, chemical production/loss, size /chemically 
resolved aerosol formation 

 

• Widespread use in AQ modeling community 

• Modular chemical mechanisms 

– CBIV, SAPRC99, CB05 

• Met fields include encompass temperature 
field, wind field, UV radiation field, and 
information of the terrain such as surface 
roughness to calculate deposition velocities, 
etc… 

   
/

k k k k
k km m m m
m m

sources
aerosol chemistry

sinks

Q Q Q Q
uQ K Q

t t t t

   

   

     
           

     

150 m 

1100 m 

40 m 
0 m 

310 m 

670 m 

80 Cells 

30 
Cells 

123 Gas Species 
296 Aerosols: 37 species, 8 sizes 
361 Reactions 

Each Cell:  5 x 5 km2 
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Stationary 
Sources 

28% 

Industrial 
9% 

Waste 
Disposal/Recycling 

1% 
Miscellaneous 

3% 

Transportation 
59% 

2013 U.S. NOx Emissions By Sector 

Source(s):  
[1] U.S. EPA 2013 
[2] Oak Ridge Nat. Lab 2013 

U.S. Energy Emissions 

Energy technologies key contributor of U.S. emissions  
– 86% of domestic GHG emissions[1], > 90% of anthropogenic NOx , SO2 

[2] 

– Emissions result from combustion of fossil fuels 

2011 U.S. Combustion CO2 by Sector[1]  
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Global Climate Change 

• Human Health Impacts 

• Economic Impacts 

• Ecosystems Impacts 

• … 

pollutants  222188 1618252 COOHOHC

Combustion: Emission Impacts 

 Air Pollution (Quality) 

• Human Health Impacts 

• Environmental Impacts 

• Materials Degradation 

•  … 

 

Source: Brown 2011 

During combustion components of fossil fuels combine with O2 from 
air to yield water vapor, CO2, and trace pollutants 

− E.g., for octane (C8H18) combustion 

 

 

 

 

1. Fossil fuel combustion contributes to climate change and air 
quality concerns Transitions to cleaner alternatives 

– Additional drivers: energy security/independence, sustainability, 
environmental concerns, … 
 

2. Shifts to alternative technologies/fuels will impact both 
emissions of GHG and pollutants due to common sources 

– Opportunity to simultaneously address climate change and air quality 
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2020 Electrification GHG Results 
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Regional CO2 Emissions by Sector 

Transportation major contributor of GHG and NOx Emissions 

– Power sector important for GHG emissions  

– Industrial sector pollutant emissions significant in all regions  

 

Energy Sector Regional Emissions  

TX NEUS CA

Regional NOx Emissions by Sector 
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-1.4 ppb O3 -25.8 ppb  -6.2 ppb 

Transportation sector yields largest improvements in all regions 
– Power more localized than industrial but with higher magnitude (TX, NEUS) 
– Industrial impacts significant, particularly for CA 

 

Energy Sector O3 Impacts 

Δ O3 From Base 

Industrial Power Generation Transportation 
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Energy Sector PM2.5 Impacts – NEUS 

NEUS power generation contributes significantly to ambient levels   
– Transportation sector impacts upwind of NYC 

– Industrial sector impacts have localized importance 

-2.3 μg/m3 PM2.5 -7.2 μg/m3 PM2.5 

Industrial Power Generation Transportation 

∆ 24-h Average PM2.5 From Base  

-5.1 μg/m3 PM2.5 
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Energy Sector O3 Impacts 

-7.5 ppb  

-1.8 ppb  -3.6 ppb 

-15.3 ppb  

Power Transportation 

Residential Industrial 
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-2.5 μg/m3

 

Energy Sector PM2.5 Impacts – CA 

Regional variation in magnitude & spatial distribution of improvements 

– Transportation dominant contributor to ambient concentrations in CA 

– Industrial of high importance in select CA regions, i.e., Central Valley 

-44.6 μg/m3
 -2.6 μg/m3

 

Industrial Power Generation Transportation 

Δ 24-hour Average PM2.5 From Base  
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-1.4 ppb O3 -25.8 ppb  -6.2 ppb 

Transportation sector emissions significantly impact regional AQ 
– Primary and secondary pollutants  Ozone and Particulate Matter (PM) 
– Significantly more than other major energy sectors in CA 

 
 

Transportation Sector AQ Impacts 

Δ O3 From Base 

Industrial Power Generation Transportation 

 
 

 
 

 
 

 
-2.5 μg/m3

 -44.6 μg/m3
 -2.6 μg/m3

 

Industrial Power Generation Transportation 

Δ 24-hour Average PM2.5 From Base  
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Projected Transportation Emissions to 2055 

Significant variance in projected emissions amongst sub-sectors 
– Result of current regulatory focus, technology advancement, etc.  

– In 2055 GM sectors contribute majority of emissions  Ships, Off-road 

LDV, -83% 

HDV, -72% 

Marine, 27% 

Offroad, -62% 

Rail, -35% 

Aircraft, 81% 
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Life Cycle GHG Emissions for LDVs 



 Advanced Power and Energy Program 2015 39/24 

-20.6 ppb -11.7 ppb 

-2.6 ppb -12.9 ppb -2.4 ppb -4.0 ppb 

-3.3 ppb -4.3 ppb 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Transportation Sector O3 Impacts 

Light Duty 
Vehicles 

Heavy Duty 
Vehicles 

Offroad 
 

Marine & Rail 
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The relative AQ impacts of LDVs are modest in 2055…BUT 
– Improvements occur in highly populated areas Important health benefits 
– Emissions of GHGs still have high importance  Need for mitigation 

 

Evolution of LDV Impacts 

-2.4 ppb O3 -6.8 ppb O3 

2055 O3 LDV Impacts 2005 O3 LDV Impacts 
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Air Quality Impacts of Electric Vehicles 

Impact of Battery Electric (BEV) and Plug-in Hybrid Electric (PHEV) Deployment 

– Direct reductions in vehicle and petroleum fuel infrastructure pathways  

– Increase in emissions from electricity generation  

 

 

 

 

 

 

 

 TX 
 Impact on 

Power Demand  

Impact on Power 

Emissions  

Impact on LDV 

Emissions 

Impact on Refinery 

Emissions 

  NOx SO2 PM     

100 BEV Base +14.6% +15% +15% +15% -100% -38% 

100 BEV R -- -- -- -- -100% -38% 

100 BEV CCS  +14.6% +45 % -96% +15% -100% -38% 

Δ O3 CCS 
Δ O3 Base BEVs and PHEVs at high levels improves AQ in urban areas  

 

– Direct vehicle and petroleum infrastructure emissions dominate power sector impacts 

 

– Impacts directly related to electricity grid mix of region supporting deployment 
• CA power grid could support high levels with minimal detrimental emission and AQ impacts 
must consider feasibility from operational standpoint 

 

– Co-deployment with CCS can worsen AQ localized to large point sources 
• Particularly a concern for large-scale coal generation 

 

– Emissions from refineries key driver of impacts 
• Maximization of benefits from LDV mitigation strategies will require refinery turn-down or 

equivalent  
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AQ impacts driven by vehicle emission reductions 
– Complete deployment of BEVs in the LDV sector 

–  Additional power (11% increase) met by existing generation mix 

 

 

Electric Vehicle Impacts 

Difference in [O3] Relative to Base 

Co-deployment with CCS Vehicles charged with Avg. Grid 
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Air Quality Impacts of Petroleum Refining 

Petroleum fuel production/distribution important to AQ & GHG 
– Substantial reductions in O3 and PM2.5 for key CA regions 
– Further motivation supporting transitions to alternative LDV strategies  

Δ O3 From Base Δ 24-h PM2.5 From Base 

-3.5 ppb O3 -14.6 μg/m3 PM2.5 
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OGV Emissions Mitigation: Cold Ironing (CI)  

Provision of ship-to-shore power (CI) important mitigation strategy 
• Auxiliary engines at berth comprise significant fraction of total OGV & Port emissions  

– Power needs can be provided by vessel linkage to shore  grid, distributed tech.  

• CA: At-berth regulation requires 80% reduction by 2020 

 

 

 

Source: Borner-Brown et al., Port Technology International 



 Advanced Power and Energy Program 2015 45/24 

OGV Emissions Mitigation: Cold Ironing (CI)  

CI Cases demonstrate benefits to AQ in urban regions of the State  
• Substantial reductions in PM2.5 in important areas, e.g., SoCAB 

• Ozone impacts include increases from reduced scavenging from large NOx reductions  

 

 
Δ 24-h PM2.5 Δ Max 1-h O3 

Difference from Baseline for CI Projected Case 

-4.7 to +10.3 ppb -18.3 to +0.01 μg/m3 
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Food Processing Chemical Manufacturing 

-0.63 ppb  

-6.46 ppb  -3.9 ppb  

Industry Sub-sector O3 Impacts 

-6.8 ppb 

Metals Oil & Gas Production 
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-1.68 μg/m3  

Chemical 
Manufact. 

Industry Sub-sector PM2.5 Impacts – TX 

Metals 

Paper/Pulp 

Food 
Processing 

-9.00 μg/m3  

-2.18 μg/m3  

-2.18 μg/m3  
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Industry – Oil and Gas Production 

California wells produce ~7.5% of U.S. Crude Oil 

Δ O3 From Base 

Δ 24-h PM2.5 From Base Δ O3 From Base 

-6.37 ppb 
 

-1.68 μg/m3  
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Marine Vessel Impacts 

Deployment of advanced vessel strategies achieves high co-benefits  
• International Marine Organization potential emission reduction estimates  

– Ship design, propulsion, machinery, vessel operation, alternative fuels 

 

Source: IMO 2009 

Δ O3 From Base 

Δ 24-h NOx  
Assessment of Potential Reductions of CO2 from Ocean Going Vessels  

All measures in total ≈ 70% CO2 reduction 
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Goods Movement Sector 

GM sector emission reductions yield important AQ benefits 
– Heavily impacted communities adjacent/upwind of major U.S. shipping ports 

• Long Beach/L.A, Oakland, Houston, New York City, Philadelphia  

Δ O3 (50% Case) From Base Δ O3 (25% Case) From Base Δ 24-h PM2.5 From Base Δ 24-h PM2.5 From Base 
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Coal Mitigation 

Strategies to mitigate GHG emissions from coal power plants in TX 
– Nuclear Power 

• Free of direct pollutant emissions, life cycle emissions comparable  

– Carbon Capture and Storage (CCS) 

• Efficiency penalty  Net increase of some pollutants (NOx) 

• Impacts of capture  Decrease per kWhr of some pollutants (SO2) 

 
Impacts on GHG and Pollutant Emissions from CCS Deployment 

Technology 
CO2 

[Per kWhr] 

CO2             

[LCA] 
NOx SO2 PM 

Pulverized Coal (P.C.) -(82-84)% -(75-89)% +(13-79)% -96 to +20% -(29-35)% 

Super-critical P.C. -(72-87)% --- +(25-44)% - (61-95%) -(35-49)% 

IGCC* -(81-88)% -(79-83)% -16 to +20% + (10-19%) -(0-41)% 

Natural Gas CC -(59-83)% -(51 to 80)% -50 to +17% + (0-100%) -42 to +25% 

* Integrated Gasification Combined Cycle  
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Coal Mitigation 

AQ co-benefits maximized by nuclear power relative to CCS 
– Peak O3 difference of 8 ppb localized to large capacity generators   

– Reductions in 24-h PM2.5 reach 2 μg/m3 for nuclear scenario 

Δ [O3] Nuclear vs. Base Δ [O3] CCS vs. Base Δ[O3] Nuclear vs. CCS Δ[PM2.5] Nuclear vs. CCS 



 Advanced Power and Energy Program 2015 53/24 

Industry – Petroleum Fuel Refining  

Crude oil refining emissions reflect complexity of process 
– Stationary combustion for heat/power/steam  limited large sources 

• CO2, NOx 

– Various (vents, leaks, stacks, cooling towers)  diffuse, continuous or episodic 
• CO2, CH4, VOCs (potentially highly reactive) 

Source Contribution of GHG emissions From Petroleum Refineries 
 

Source: U.S. EPA 2010 
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Petroleum Refinery Impacts 

Petroleum fuel production/distribution has important AQ & GHG impacts  
– Substantial reductions in O3 and PM2.5 for important CA regions 
– Further motivation supporting transitions to alternative LDV strategies  

Δ O3 From Base Δ 24-h PM2.5 From Base 

-3.5 ppb O3 -14.6 μg/m3 PM2.5 
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Industry – Petroleum Fuel Refining 

 
(a) 

 
(b) 

 

Petroleum fuel production/distribution important to AQ & GHG 
– Annual GHG emissions for a large refinery ≈ 500 MW coal plant[1] 

– Reductions in O3 and PM2.5 impact population centers in TX 

Δ O3 From Base Δ PM2.5 From Base 
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-1.07 ppb  

Paper/Pulp Chemical Manufacturing 

-0.63 ppb  

-3.9 ppb  

Industry Sub-sector O3 Impacts – CA 

-6.5 ppb 

Metals Food Processing 
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-2.66 μg/m3  

Chemical 
Manufact. 

Industry Sub-sector PM2.5 Impacts – CA 

Metals 

Paper/Pulp 

Food 
Processing 

-9.00 μg/m3  

-3.32 μg/m3  

-5.82 μg/m3  
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-1.44 ppb  

Chemical Manufacturing 

-0.43 ppb  

-0.78 ppb  

Industry Sub-sector O3 Impacts – TX 

-0.05 ppb 

Metals 

Paper/pulp 

Food Processing 
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Base Power Generation 

Significant regional variation in utilized technologies and fuels   
– Gas-fired generation growth substantial  Impacts of shale gas  

– Coal utilized in TX and NEUS (offset in NEUS by significant nuclear power) 

– CA relatively clean grid mix 
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GHG and AQ impacts of coal generation important in 2055  
– Despite optimistic outlook of natural gas displacement  

• 2055 share of total generation TX: 25%, NEUS R1: 11%, NEUS R2: 36%   

Impacts of Coal Generation 

Δ O3 From Base Δ PM2.5 From Base Δ 24-h NOx No Coal 
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Methodology: Base Case 

Detailed emissions apportionment based on Source Classification Codes (SCC)  

– Assigned to specific emissions sources accounted for in NEI 

– Allows emissions perturbations at desired level of specificity  

• Sectoral Technology Fuel 

 

 

10100223 

External Combustion 

Electricity Generation 

Sub-bituminous Coal 

Cyclone Furnace  
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