Comparison of Asian Emissions Inventories

Eri Saikawa

Emory University, Department of Environmental Sciences

April 15, 2015

- 1 Introduction
- 2 Methods
- 3 Results
- 4 Conclusion

Increasing Emissions in Asia

Source Kurokawa et al., 2013

Countries with Lowest Air Quality Score

Source Yale University, 2014 Environmental Performance Index

Importance of Emissions Inventories

Difference in Global Emissions Inventories

Source Granier et al., 2011

Impacts on Modeling

Source Ma and van Aardene, 2004

Research Questions

How much differences are there among emissions inventories in Asia?

Which sector/species do we see the largest difference and why?

Emissions Inventories

- Emissions Database for Global Atmospheric Research (EDGAR) v4.2 - Global
- Regional Emissions in ASia (REAS) v2 Asia
- Multi-resolution Emission Inventory for China (MEIC) China
- Zhao Yu's China
- Ajay Nagpure's India
- Pandey et al. (2014) and Sadaverte and Venkataraman (2014) - India

Analysis

- Years: 2000 2008 (2011 for India)
- Pollutants: CO, SO₂, NO_x, PM₁₀, CO₂
- Sectors: industry, transport, power, and residential
- Countries: China, India, Pakistan, and Nepal

China Total Emissions

Solid: EDGAR, Dash: REAS

Blue: CO, Red: SO₂, Yellow: NO_x, Green: PM₁₀, Brown: CO₂

China South Central Region

China CO Emissions in South Central Region

Solid: EDGAR, Dash: REAS

Red: industrial, Purple: transport, Green: power, Blue: residential

China East Region

China CO Emissions in East Region

Solid: EDGAR, Dash: REAS, Square: Zhao Yu, Triangle: MEIC Red: industry, Purple: transport, Green: power, Blue: residential

China CO Road Emissions in East Region

Solid: EDGAR, Dash: REAS, Circle: Zhao Yu

Red: On-road, Blue: Off-road

ntroduction Methods **Results** Conclusion

India Total Emissions

Solid: EDGAR, Dash: REAS, Diamond: Pandey et al.

Blue: CO, Red: SO₂, Yellow: NO_x, Green: PM₁₀, Brown: CO₂

India Regions

ntroduction Methods **Results** Conclusion

India Regional PM₁₀ Emissions

Left: EDGAR, Right: REAS

Red: industry, Purple: transport, Green: power, Blue: residential

ntroduction Methods **Results** Conclusion

Pakistan Total Emissions

Solid: EDGAR, Dash: REAS

Blue: CO, Red: SO₂, Yellow: NO_x, Green: PM₁₀, Brown: CO₂

Pakistan Regions

Eri Saikawa

ntroduction Methods **Results** Conclusion

Pakistan Regional SO₂ Emissions

Left: EDGAR, Right: REAS

Red: industry, Purple: transport, Green: power, Blue: residential

Nepal Total Emissions

Solid: EDGAR, Dash: REAS

Blue: CO, Red: SO₂, Yellow: NO_x, Green: PM₁₀, Brown: CO₂

ntroduction Methods **Results** Conclusion

Nepal Sectoral NO_x Emissions

Solid: EDGAR, Dash: REAS, Circle: MALÉ

Red: industry, Purple: transport, Green: power, Blue: residential

Nepal Regions

ntroduction Methods **Results** Conclusion

Nepal Regional NO_x Emissions

Left: EDGAR, Right: REAS

Red: industry, Purple: transport, Green: power, Blue: residential

Spatial Distribution: REAS - EDGAR PM₁₀ and CO

Impacts on Modeling: REAS - EDGAR O₃

Impacts on Modeling: REAS - EDGAR PM₁₀

 Large discrepancies exist among inventories both in magnitude and spatial distributions.

- Large discrepancies exist among inventories both in magnitude and spatial distributions.
- Sectors reponsible for the discrepancy varies based on species and location.

- Large discrepancies exist among inventories both in magnitude and spatial distributions.
- Sectors reponsible for the discrepancy varies based on species and location.
- Model results are influenced significantly by the difference in emissions used as inputs.

Acknowledgments

My Group Members at Emory

- Hankyul Kim, Rita Korobkov, Marcus Trail
- Cindy Young, Qianru Wu, Min Zhong

Collaborators

- Jun-ichi Kurokawa, Toshimasa Ohara
- Greet Maenhout, Ajay Nagpure
- Qiang Zhang, Yu Zhao

Funding

Energy Foundation, NSF, Emory University

- Large discrepancies exist among inventories both in magnitude and spatial distributions.
- Sectors reponsible for the discrepancy varies based on species and location.
- Model results are influenced significantly by the difference in emissions used as inputs.

Questions?

