Using Sensors

Why is that important? How does the sensor measure? What are the positives of the senso What are the negatives of the sensor

What to measure? -What do you want to measure? Where and when do you want to measure -What does the sensor measure? -How long do you want to measure and at what time frame? What things could influence your measurements -What do you think will happen? -What do you want to do with this information? Education, community engagement, regulation or

Sensors

Media Cost **Availability**

Air Sensors

What to look for?

Sensor Availability Cost Portability Data Availability **Battery Life** (Extraction and Accuracy and Bias Calibration

Using Current and Emerging Technology in Citizen Science - Tech Demo -

Rachel McIntosh-Kastrinsky **ASPPH Fellow** mcintosh-kastrinsky.rachel@epa.gov

Barbara Martinez **ORISE Fellow** martinez.barbara@epa.gov

Using Sensors

Why is that important? How does the sensor measure? What are the positives of the senso What are the negatives of the sensor

What to measure? -What do you want to measure? Where and when do you want to measure -What does the sensor measure? -How long do you want to measure and at what time frame? What things could influence your measurements -What do you think will happen? -What do you want to do with this information? Education, community engagement, regulation or

Sensors

Media Cost **Availability**

Air Sensors

What to look for?

Sensor Availability Cost Portability Data Availability **Battery Life** (Extraction and Accuracy and Bias Calibration

Using Current and Emerging Technology in Citizen Science - Tech Demo -

Rachel McIntosh-Kastrinsky **ASPPH Fellow** mcintosh-kastrinsky.rachel@epa.gov

Barbara Martinez **ORISE Fellow** martinez.barbara@epa.gov

Cost Media Availability

Today's Sensors

Today's Sensors

Water Quality Meter

Sensordrone

Air Quality Monitor

Vaavud

Air Quality Egg

Nitrate Kit

Osorb

What to look for?

Cost Service Cost

Sensor Availability

Portability

Durability

Battery Life

Data Availability

(Extraction and

Precision,
Accuracy and Bias

Display)

Calibration

Ease of Use

Response Time

Sensor Cost EPA Equipment \$70,000 Sensordrone \$198 Vaavud Wind Meter \$50 Nitrate Kit \$35

What to look for?

Cost Service Cost

Sensor Availability

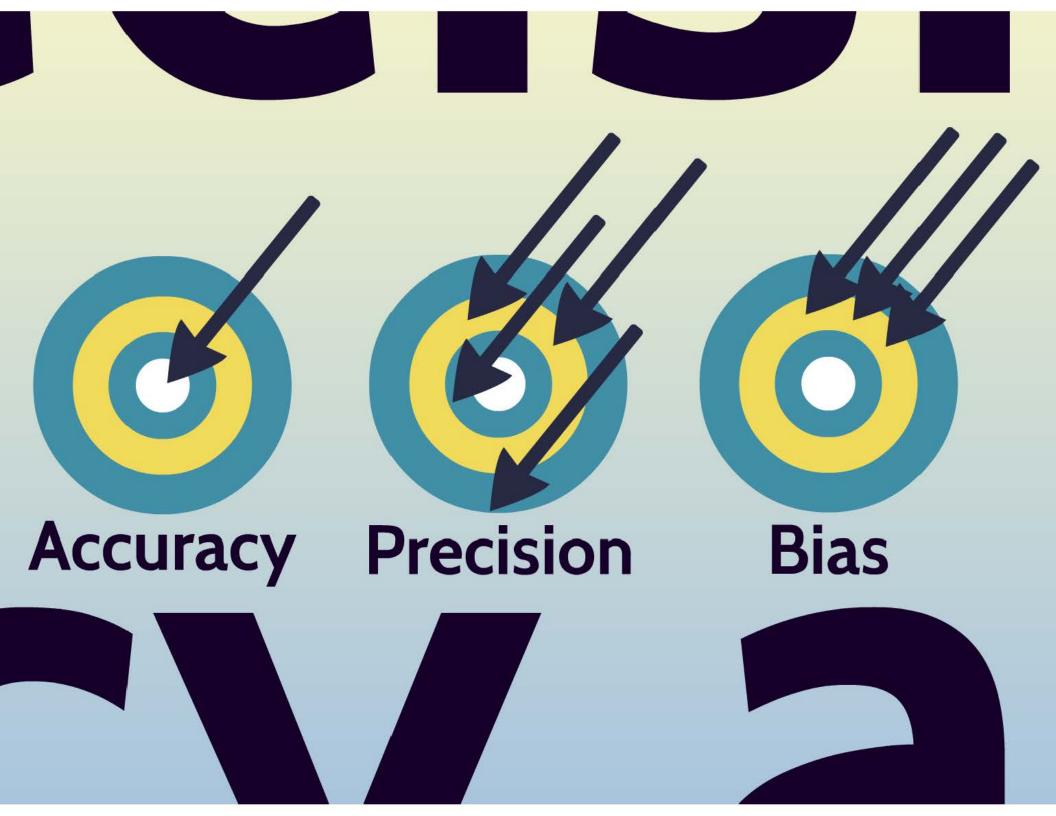
Portability

Durability

Battery Life

Data Availability

(Extraction and


Precision,
Accuracy and Bias

Display)

Calibration

Ease of Use

Response Time

What to look for?

Cost Service Cost

Sensor Availability

Portability

Durability

Battery Life

Data Availability

(Extraction and

Precision,
Accuracy and Bias

Display)

Calibration

Ease of Use

Response Time

Using Sensors

What does the sensor measure?

Why is that important?

How does the sensor measure?

What are the positives of the sensor?

What are the negatives of the sensor?

What to measure?

- -What do you want to measure?
- -Where and when do you want to measure?
- -What does the sensor measure?
- -How long do you want to measure and at what time frame?
- -What things could influence your measurements?
 - -What do you think will happen?
 - -What do you want to do with this information? Education, community engagement, regulation or enforcement?

Air Sensors

Sensordrone

Temperature (ambient and surface) Illuminance Humidity Altitude **Pressure** Carbon Monoxide Health and ecosystem effects

Positives

Portable Many parameters

Durable Data Availability

Ease of Use

Negatives

Battery Life

Need Device

Air Quality Monitor

Positives

Portable Data Availability

Durable Ease of Use

Negatives

Battery Life

Need Device

Air Quality Egg

Nitrogen Dioxide Carbon Monoxide

NO2 and CO can cause poor health

Temperature Humidity

Temperature and humidity affects NO2 and CO.

Positives

Only need Internet
Long Term
No Recharge

Negatives

Accuracy Response Time

Portability Data Availability Need Direct Connection

Vaavud

Positives

Wind Speed
9.0 10.2

Air pollution and weather patterns

Ease of Use Portability

No Battery History Price

Negatives

Need Device Only Wind Speed

Data Availability

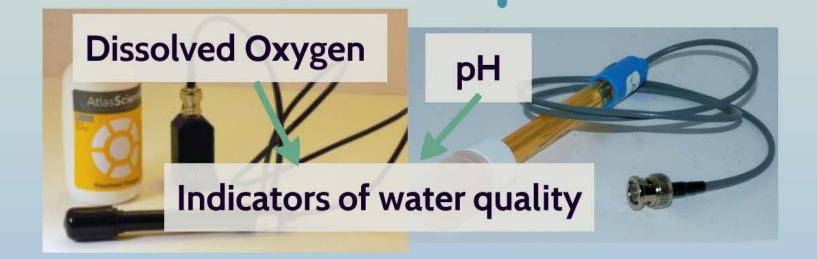
Water Sensors

Water Quality Meter

Positives

Negatives

Portable Parameters


Durable Data Availability

Ease of Use

Battery Life

Need Device

Extra attachments

Nitrate Kit

Positives

Price All included

Negatives

Limited Quantity

Many Steps

Single Measurement

Osorb

Positives

es Negatives

Easy to use Durable Portable

Response Time
Data Availability

Connecting Sensors and Citizen Science

Do you know of other sensors or tools that could also measure this?

What other sensors, tools or technology are you aware of that have been used for citizen science?

Are there sensors, tools or technology you know of that have not been used for citizen science, but you think could be utilized?

What is your "dream" sensor or technology for citizen science?

Using Sensors

Why is that important? How does the sensor measure? What are the positives of the senso What are the negatives of the sensor

What to measure? -What do you want to measure? Where and when do you want to measure -What does the sensor measure? -How long do you want to measure and at what time frame? What things could influence your measurements -What do you think will happen? -What do you want to do with this information? Education, community engagement, regulation or

Sensors

Media Cost **Availability**

Air Sensors

What to look for?

Sensor Availability Cost Portability Data Availability **Battery Life** (Extraction and Accuracy and Bias Calibration

Using Current and Emerging Technology in Citizen Science - Tech Demo -

Rachel McIntosh-Kastrinsky **ASPPH Fellow** mcintosh-kastrinsky.rachel@epa.gov

Barbara Martinez **ORISE Fellow** martinez.barbara@epa.gov

