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CHAPTER 2.  SAMPLING DESIGN

2.1.  INTRODUCTION

This chapter discusses recommended methods
for designing sampling programs to track and
evaluate the implementation of nonpoint
source control measures.  This chapter does
not address whether the management
measures (MMs) or best management
practices (BMPs) are effective since no water
quality sampling is done.  Because of the
variation in forestry practices and related
nonpoint source control measures
implemented throughout the United States, the
approaches taken by various states to track
and evaluate nonpoint source control measure
implementation will differ.  Nevertheless, all
approaches should be based on sound
statistical methods for selecting sampling
strategies, computing sample sizes, and
evaluating data.  EPA recommends that states
consult with a trained statistician to be certain
that the approach, design, and assumptions are
appropriate to the task at hand.

As described in Chapter 1, implementation
monitoring is the focus of this guidance. 
Effectiveness monitoring is the focus of
another guidance prepared by EPA, the
Nonpoint Source Monitoring and Evaluation
Guide (USEPA, 1996).  Dissmeyer (1994)
also provides substantial information regarding
QA/QC, statistical considerations, BMP
effectiveness monitoring, and monitoring
methods.  The recommendations and examples
in this chapter address two primary monitoring
goals:

• Determine the extent to which MMs and
BMPs are implemented in accordance with
design standards and specifications.

• Determine whether there has been a change
in the extent to which MMs and BMPs are
being implemented.

For example, State forestry agencies might be
interested in whether streamside management
areas (SMAs) at harvest sites associated with
all types of forest ownerships (industrial,
private nonindustrial, federal, and state) are in
compliance with design standards.  State
forestry agencies might also be interested in
whether the percentage of owners of
nonindustrial private forest land that are
correctly implementing the BMPs specified in
a voluntary implementation program.

2.1.1.  Study Objectives

To develop a study design, clear, quantitative
monitoring objectives must be developed.  For
example, the objective might be to estimate to
within ±5 percent the percent of harvest sites
that have adequate SMAs.  Or perhaps a state
is getting ready to implement new
administrative procedures to ensure that
purchasers of timber have been advised of
needed work.  In this case, detecting a 10
percent change in the number of operators that
implement the work specified in the timber
sale administration file might be of interest.  In
the first example, summary statistics are
developed to describe the current status,
whereas in the second example, some sort of
statistical analysis (hypothesis testing) is
performed to determine whether a significant
change has really occurred.  This choice has an
impact on how the data are collected.  As an
example, balanced designs (e.g., two sets of
data with the same number of observations in
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each set) are more typical for hypothesis
testing, whereas summary statistics might
require unbalanced sample allocations to
account for variability such as site size, type,
and ownership.

2.1.2.  Probabilistic Sampling

Most study designs that are appropriate for
tracking and evaluating implementation are
based on a probabilistic approach since
tracking every operator is not cost-effective. 
In a probabilistic approach, individuals are
randomly selected from the entire group.  The
selected individuals are evaluated, and the
results provide an unbiased assessment of the
entire group.  Applying the results from
randomly selected individuals to the entire
group is statistical inference.  Statistical
inference enables one to determine, for
example, the probable percentage of timber
sales with adequate SMAs without visiting
every tract of land.  One could also determine
whether the change in timber sales with
appropriate streamside management is within
the range of what could occur by chance or
the change is large enough to indicate a real
modification of operator practices.

The group about which inferences are made is
the population or target population, which
consists of population units.  The sample
population is the set of population units that
are directly available for measurement.  For
example, if the objective is to determine the
degree to which adequate SMAs have been
established, silvicultural operations for which
SMAs are an appropriate BMP (e.g., timber
sales with nearby streams) would be the
sample population.  Statistical inferences can
be made only about the target population
available for sampling.  For example, if

implementation of erosion control is being
assessed and only public lands can be sampled,
inferences cannot be made about the
management of private lands.

The most common types of probabilistic
sampling that can be used for implementation
monitoring are summarized in Table 2-1.  In
general, probabilistic approaches are
preferred.  However, there might be
circumstances under which targeted sampling
should be used.  Targeted sampling refers to
using best professional judgement for selecting
sample locations.  For example, state foresters
deciding to evaluate all timber sales in a given
watershed would be targeted sampling.  The
choice of a sampling plan depends on study
objectives, patterns of variability in the target
population, cost-effectiveness of alternative
plans, types of measurements to be made, and
convenience (Gilbert, 1987).

Simple random sampling is the most basic
type of sampling.  Each unit of the target
population has an equal chance of being
selected.  This type of sampling is appropriate
when there are no major trends, cycles, or
patterns in the target population (Cochran,
1977).  Random sampling can be applied in a
variety of ways including operator or timber
sale selection.  Random samples can also be
taken at different times at a single site.  Figure
2-1 provides an example of simple random
sampling from a listing of harvest sites and
from a map.
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Table 2-1.  Applications of four sampling designs for implementation monitoring.

Sampling Design Comment

Simple Random
Sampling

Each population unit has an equal probability of being selected.

Stratified Random
Sampling

Useful when a sample population can be broken down into groups, or strata,
that are internally more homogeneous than the entire sample population. 
Random samples are taken from each stratum although the probability of
being selected might vary from stratum to stratum depending on cost and
variability.

Cluster Sampling Useful when there are a number of methods for defining population units
and when individual units are clumped together.  In this case, clusters are
randomly selected and every unit in the cluster is measured.

Systematic Sampling This sampling has a random starting point with each subsequent
observation a fixed interval (space or time) from the previous observation.

If the pattern of MM and BMP
implementation is expected to be uniform
across the state, simple random sampling is
appropriate to estimate the extent of
implementation.  If, however, implementation
is homogeneous only within certain categories
(e.g., federal, state, or private lands), stratified
random sampling should be used.

In stratified random sampling, the target
population is divided into groups called strata
for the purpose of obtaining a better estimate
of the mean or total for the entire population. 
Simple random sampling is then used within
each stratum.  Stratification involves the use
of categorical variables to group observations
into more units, thereby reducing the
variability of observations within each unit. 
For example, in a state with federal, state, and
private forests, there might be different
patterns of BMP implementation.  Lands in
the state could be divided into federal, state,
and private as separate strata from which
samples would be taken.  In general, a larger
number of samples should be taken in a

stratum if the stratum is more variable, larger,
or less costly to sample than other strata.  For
example, if BMP implementation is more
variable on private lands, a greater number of
sampling sites might be needed in that stratum
to increase the precision of the overall
estimate.  Cochran (1977) found that stratified
random sampling provides a better estimate of
the mean for a population with a trend,
followed in order by systematic sampling
(discussed later) and simple random sampling. 
He also noted that stratification typically
results in a smaller variance for the estimated
mean or total than that which results from
comparable simple random sampling.
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If the state believes that there will be a
difference between two or more subsets of the
sites, such as between types of ownership or
region, the sites can first be stratified into
these subsets and a random sample taken
within each subset (McNew, 1990).  States
with silviculture implementation monitoring
programs commonly divide the sites by
ownership and county and/or region before
selecting survey sites.  The goal of
stratification is to increase the accuracy of the
estimated mean values over what could have
been obtained using simple random sampling
of the entire population.  The method makes
use of prior information to divide the target
population into subgroups that are internally
homogeneous.  There are a number of ways to
“select” sites, or sets of sites, to be certain that
important information will not be lost, or that
MM or BMP use will not be misrepresented as
a result of treating all potential survey sites as
equal.  Figure 2-2 provides an example of
stratified random sampling from a listing of
harvest sites and from a map.

Where data are available, it might be useful to
compare the relative percentages of harvested
timberland that is classified as having high,
medium, and low erosion potentials.  In cases
where sediment is impacting water quality,
highly erodible land might be responsible for a
larger share of sediment delivery and would
therefore be an important target for tracking
the implementation of erosion controls.  A
stratified random sampling procedure could be
used to estimate the percentage of total
harvested timberland with different erosion
potentials that have erosion controls in place. 
For other water quality problems (e.g.,
spawning habitat in decline), other
stratification parameters (e.g., stream
classification) might be more appropriate.

Cluster sampling is applied in cases where it is
more practical to measure randomly selected
groups of individual units than to measure
randomly selected individual units (Gilbert,
1987).  In cluster sampling, the total
population is divided into a number of
relatively small subdivisions, or clusters, and
then some of the subdivisions are randomly
selected for sampling.  In one-stage cluster
sampling, the selected clusters are sampled
totally.  In two-stage cluster sampling, random
sampling is performed within each cluster
(Gaugush, 1987).  For example, this approach
might be useful if a state wants to estimate the
proportion of harvest sites that are following
state-approved MMs or BMPs.  All harvest
sites in a particular county can be regarded as
a single cluster.  Once all clusters have been
identified, specific clusters can be randomly
chosen for sampling.  Freund (1973) notes
that estimates based on cluster sampling are
generally not as good as those based on simple
random samples, but they are more cost-
effective.  As a result, Gaugush (1987)
believes that the difficulty associated with
analyzing cluster samples is compensated for
by the reduced sampling requirements and
cost.  Figure 2-3 provides an example of
cluster sampling from a listing of harvest sites
and from a map.

Systematic sampling is used extensively in
water quality monitoring programs because it
is relatively easy to do from a management
perspective.  In systematic sampling the first
sample has a random starting point and each
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subsequent sample has a constant distance
from the previous sample.  For example, if a
sample size of 70 is desired from a mailing list
of 700 operators, the first sample would be
randomly selected from among the first 10
people, say the seventh person.  Subsequent
samples would then be based on the 17th, 27th,
..., 697th person.  In comparison, a stratified
random sampling approach might be to sort
the mailing list by county and then to
randomly select operators from each county. 
Figure 2-4 provides an example of systematic sampling
from a listing of harvest sites and from a map.

In general, systematic sampling is superior to
stratified random sampling when only one or
two samples per stratum are taken for
estimating the mean (Cochran, 1977) or when
there is a known pattern of management
measure implementation.  Gilbert (1987)
reports that systematic sampling is equivalent
to simple random sampling in estimating the
mean if the target population has no trends,
strata, or correlations among the population
units.  Cochran (1977) notes that on the
average, simple random sampling and
systematic sampling have equal variances. 
However, Cochran (1977) also states that for
any single population for which the number of
sampling units is small, the variance from
systematic sampling is erratic and might be
smaller or larger than the variance from simple
random sampling. 

Gilbert (1987) cautions that any periodic
variation in the target population should be
known before establishing a systematic
sampling program.  Sampling intervals equal
to or multiples of the target population's cycle
of variation might result in biased estimates of
the population mean.  Systematic sampling can
be designed to capitalize on a periodic

structure if that structure can be characterized
sufficiently (Cochran, 1977).  A simple or
stratified random sample is recommended,
however, in cases where the periodic structure
is not well known or whether the randomly
selected starting point is likely to have an
impact on the results (Cochran, 1977).

Gilbert (1987) notes that assumptions about
the population are required in estimating
population variance from a single systematic
sample of a given size.  There are, however,
systematic sampling approaches that do
support unbiased estimation of population
variance.  They include multiple systematic
sampling, systematic stratified sampling, and
two-stage sampling (Gilbert, 1987).  In
multiple systematic sampling, more than one
systematic sample is taken from the target
population.  Systematic stratified sampling
involves the collection of two or more
systematic samples within each stratum.

2.1.3. Measurement and Sampling
Errors

In addition to making sure that samples are
representative of the sample population, it is
also necessary to consider the types of bias or
error that might be introduced into the study. 
Measurement error is the deviation of a
measurement from the true value (e.g., the
percent compliance with SMA specifications
was estimated as 23 percent and the true value
was 26 percent).  A consistent under- or
overestimation of the true value is referred to
as measurement bias.  Random 
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sampling error arises from the variability from
one population unit to the next (Gilbert,
1987), explaining why the proportion of
operators using a certain BMP differs from
one survey to another.

The goal of sampling is to obtain an accurate
estimate by reducing the sampling and
measurement errors to acceptable levels, while
explaining as much of the variability as
possible to improve the precision of the
estimates (Gaugush, 1987).  Precision is a
measure of how close an agreement there is
between individual measurements of the same
population.  The accuracy of a measurement
refers to how close the measurement is to the
true value.  If a study has low bias and high
precision, the results will have high accuracy. 
Figure 2-5 illustrates the relationship between
bias, precision, and accuracy.

As suggested earlier, numerous sources of
variability should be accounted for in
developing a sampling design.  Sampling
errors are introduced by virtue of the natural
variability within any given population of
interest.  Since sampling errors relate to MM
or BMP implementation, the most effective
method for reducing such errors is to carefully
determine the target population and to stratify
the target population to minimize the
nonuniformity in each stratum.

Measurement errors can be minimized by
ensuring that site inspections are well
designed.  If data are collected by sending staff
out to inspect randomly selected harvest sites,
the approach for inspecting the harvest sites
should be consistent.  For example, how do
field personnel determine the percent of
adequate SMAs, or what is the basis for

determining whether a BMP has been properly
implemented? 

Reducing sampling errors below a certain
point (relative to measurement errors) does
not necessarily benefit the resulting analysis
because total error is a function of the two
types of errors.  For example, if measurement
errors such as response or interviewing errors
are large, there is no point in taking a huge
sample to reduce the sampling error of the
estimate since the total error will be primarily
determined by the measurement error. 
Measurement error is of particular concern
when landowner surveys are used for
implementation monitoring.  Likewise,
reducing measurement errors would not be
worthwhile if only a small sample size were
available for analysis because there would be a
large sampling error (and therefore a large
total error) regardless of the size of the
measurement error.  A proper balance
between sampling and measurement errors
should be maintained because research
accuracy limits effective sample size and vice
versa (Blalock, 1979).

2.1.4. Estimation and Hypothesis
Testing

Rather than presenting every observation
collected, the data analyst usually summarizes
major characteristics with a few descriptive
statistics.  Descriptive statistics include any
characteristic designed to summarize an
important feature of a data set.  A point
estimate is a single number that represents the
descriptive statistic.  Statistics common to
implementation monitoring is useful to
estimate the confidence interval.  The
confidence interval indicates the range in
which the true value lies.  For example, if it is
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(c) (d)

(a)

Figure 2-5.  Graphical presentation of the relationship between bias, precision, and accuracy
(after Gilbert, 1987).  (a): high bias + low precision = low accuracy; (b): low bias + low precision
= low accuracy; (c): high bias + high precision = low accuracy; and (d): low bias + high
precision = high accuracy.

include proportions, means, medians, totals,
and others.  When estimating parameters of a
population, such as the proportion or mean, it
estimated that 65 percent of waterbars on skid
trails were installed in accordance with design
standards and specifications and the 90
percent confidence limit is ±5 percent, there is
a 90 percent chance that between 60 and 70
percent of the waterbars were installed
correctly.

Hypothesis testing should be used to
determine whether the level of MM and BMP
implementation has changed over time.  The
null hypothesis (Ho) is the root of hypothesis
testing.  Traditionally, Ho is a statement of no
change, no effect, or no difference; for
example, “the proportion of properly installed
waterbars after operator training
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Table 2-2.  Errors in hypothesis testing.

Decision

State of Affairs in the Population

Ho is True Ho is False

Accept Ho 1-"
(Confidence level)

$
(Type II error)

Reject Ho "
(Significance level)

(Type I error)

1-$
(Power)

is equal to the proportion of properly installed
waterbars before operator training.” The
alternative hypothesis (Ha) is counter to Ho,
traditionally being a statement of change,
effect, or difference, for example.  If Ho is
rejected, Ha is accepted.  Regardless of the
statistical test selected for analyzing the data,
the analyst must select the significance level
(") of the test.  That is, the analyst must
determine what error level is acceptable based
on the needs of decision makers.  There are
two types of errors in hypothesis testing:

Type I: Ho is rejected when Ho is really
true.

Type II: Ho is accepted when Ho is really
false.

Table 2-2 depicts these errors, with the
magnitude of Type I errors represented by "
and the magnitude of Type II errors
represented by $.  The probability of making a
Type I error is equal to the " of the test and is
selected by the data analyst.  In most cases,
managers or analysts will define 1-" to be in
the range of 0.90 to 0.99 (e.g., a confidence
level of 90 to 99 percent), although there have
been applications where 1-" has been set to as

low as 0.80.  Selecting a 95 percent
confidence level implies that the analyst will
reject the Ho when Ho is true (i.e., a false
positive) 5 percent of the time.  The same
notion applies to the confidence interval for
point estimates described above: " is set to
0.10, and there is a 10 percent chance that the
true percentage of properly installed waterbars
is outside the 60 to 70 percent range.  This
implies that if the decisions to be made based
on the analysis are major (i.e., affect many
people in adverse or costly ways) the
confidence level needs to be greater.  For less
significant decisions (i.e., low cost
ramifications) the confidence level can be
lower.

Type II error depends on the significance
level, sample size, and variability, and which
alternative hypothesis is true.  Power (1-$) is
defined as the probability of correctly rejecting
Ho when Ho is false.  In general, for a fixed
sample size, " and $ vary inversely.  For a
fixed ", $ can be reduced by increasing the
sample size (Remington and Schork, 1970).
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2.2.  SAMPLING CONSIDERATIONS

In a document of this brevity, it is not possible
to address all the issues that face technical
staff who are responsible for developing and
implementing studies to track and evaluate the
implementation of nonpoint source control
measures.  For example, when is the best time
to implement a survey or do on-site visits?  In
reality, it is difficult to pinpoint a single time
of the year.  Some BMPs can be checked any
time of the year, whereas others have a small
window of opportunity.  If the goal of the
study is to determine the effectiveness of an
operator education program, sampling should
be timed to ensure that there was sufficient
time for outreach activities and for the
operators to implement the desired practices. 
Furthermore, field personnel must have
approval to perform a site visit on each tract
of land to be sampled.  Where access is
denied, a randomly selected replacement site is
needed.

2.2.1.  Site Selection

From a study design perspective, all of these
issues must be considered together when
determining the sampling strategy.  Site
selection criteria will differ from state to state
depending on the type of forestry practiced in
the state, physical landscape, and intended
purposes for the information obtained from
the implementation monitoring.  The following
list indicates the typical site selection criteria
culled from existing state implementation
monitoring programs. (The corresponding
state postal code is presented in parentheses.)

• Site size:  minimum of 5 or 10 acres,
depending on the region of the state (MN);

minimum 10 acres (SC); minimum 5 acres
(MT); minimum 20 acres (ID).

• Proximity to a stream (perennial or
intermittent):  within 300 feet of a stream, or
a lake of at least 10 acres surface area (FL);
within 200 feet of a stream (MT); sites did
not have to be associated with streams or
wetlands (SC); within 150 feet of a class II
stream (ID).

• Time of harvest:  within the past 1 year
(SC); 1-3 years prior to the audit (MT);
within 2 years of harvest (FL).

• Site preparation:  only sites that had not
been site prepared (SC); either slash piled
and burned or waiting burning, or slash
broadcast and scheduled to be burned (MT).

• Volume harvested:  at least 7 MBF/ac (MT).

• Compatibility with previous surveys:  sales
had to meet the selection criteria of a
previous study for comparability purposes
(MT).

Other criteria that might be considered include
erosion risk (e.g., more sampling sites could be
placed in high-erosion-risk areas than in low-
risk erosion areas) and beneficial use (bias
sampling toward high use and/or sensitive
areas).
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2.2.2. Data to Support Site Selection

A list of harvest sites from which to choose
those to be surveyed can be created from
information obtained from timber harvesters. 
Depending on the state, the information is
often in the form of harvest plans and timber
sale contracts.  These sources of information
normally include:

• U.S. Forest Service offices.

• The state forestry agency, department, or
division (for state lands and nonindustrial
private).

• Private timber companies (Ehinger and
Potts, 1991).

In addition, the Bureau of Land Management
(BLM) manages a significant acreage of
federal property and may have valuable
information (IDDHW, 1993).  Aerial
photographs of the areas to be surveyed can
be used to identify recent harvest sites as well,
and this method of identifying the sites tends
to remove site selection biases due to the
distance of sites from roads or other forms of
inconvenience that otherwise might make
them less apt to be chosen for a survey.

The data necessary to select sites for BMP
tracking will naturally depend on the site
selection criteria.  For instance, if sites must
meet a minimum of board feet harvested, it
will be necessary to know harvest volumes in
order to select appropriate sites.  The amount
of data needed will increase as the number of
site selection criteria increase, and this should
be taken into account when deciding on the
criteria, especially given the possibility that

some of the data or types of data collected
might be unavailable or unreliable.

2.2.3. Example State and Federal
Programs

Several states and federal agencies have
implemented programs for developing their
implementation monitoring programs.  This
section describes those implemented by
Florida, Montana, Idaho, and the USDA
Forest Service.

2.2.3.1.  Florida

In Florida, the following site selection criteria
are used (Vowell and Gilpin, 1994):

• All ownership classes are included.

• Only the northernmost 37 counties are
included because most forestry activities
occur in these counties.

• Timber harvesting, site preparation, tree
planting, or some combination must have
occurred within the past 2 years and within
300 feet of an intermittent or perennial
stream or a lake 10 acres or larger.

• Each county has a predetermined number of
survey sites based on the level of timber
removal reported by the Forest Service.

• Sites are selected from fixed-wing aircraft
using a random, predetermined flight pattern
in each county.  



Sampling DesignChapter 2

2-15

County foresters randomly select qualifying
sites along the flight pattern until they have
located the number of survey sites assigned
to their county.

This approach is a type of stratified random
sampling.  The entire population (entire state)
is first divided into strata containing the
northernmost 37 counties based on prior
information that indicated most forestry
operations occur in those counties.  These
strata are still too large to conduct random
sampling; therefore, the criteria described
above are used to reduce the strata to a
manageable number given available resources.

2.2.3.2.  Montana and Idaho

Montana is interested in certain types of
information related to BMP implementation,
so they stratify their sample before selecting
sites.  They follow these steps:

• Information on the sites (e.g., ownership,
erosion hazard) is compiled by watershed or
basin.

• A list of all sales and information on them is
compiled for each basin for the time period
of interest (usually within 1-2 years of
harvest date).

• Sites that do not meet the selection criteria
are eliminated.

• Sites that do meet the selection criteria are
ground-truthed.

This is a stratified random approach:  Within
drainage basins, sites are stratified first by
ownership and then by erosion hazard
(Ehinger and Potts, 1991; Schultz, 1992). 

Idaho also uses this approach, stratifying sites
by geographic region and administrative
category.  This ensures that differences in MM
and BMP implementation among different soil,
geologic, and administrative groupings are not
lost as would be the case if simple random
sampling were used (IDDHW, 1993).

2.2.3.3.  U.S. Forest Service

The U.S. Forest Service (USDA, 1992) has
developed a monitoring system for Region 5 of
the Forest Service, Best Management Practice
Evaluation Program (BMPEP), with the
following objectives:

• Assess the degree of implementation of
BMPs.

• Determine which BMPs are effective.

• Determine which BMPs need improvement
or development.

• Fulfill Forest Land and Resource
Management Plan BMP monitoring
commitments.

• Provide a record of performance for
management of nonpoint source pollution in
Region 5 of the Forest Service.

These objectives are met through three
evaluation phases:  Administrative, on-site, and
in-channel.  In general, the first two 
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phases deal with issues related to
implementation monitoring, with
administrative evaluation primarily addressing
programmatic evaluation and on-site
evaluation dealing primarily with individual
practices.  In-channel evaluation consists
primarily of effectiveness monitoring.

In the BMPEP, forests are assigned the
number and types of evaluations to be
completed each year.  To support statistical
inference, the evaluations assigned to each
forest must be performed at randomly
identified sites.  Sites to be evaluated are
identified in two ways:  Randomly and by
selection (“selected” sites).

Randomly identified sites are essential for
making statistical inferences regarding the
implementation and effectiveness of BMPs. 
Random sites are picked from a pool of sites
that meet specified criteria.

Selected sites are identified in various ways:

• Identified as part of a monitoring plan
prescribed in an environmental assessment,
environmental impact study, or land
management plan.

• Identified as part of a Settlement of
Negotiated Agreement.

• Part of a routine site visit.

• Follow-up evaluations upstream or In-
channel Evaluation Sites, to discover
sources of problems.

• Sites that are of particular interest to site
administrators, specialists, and/or

management due to their sensitivity,
uniqueness, and other factors.

• Selected for a particular reason specific to
local needs.

It is important to note that for statistical
inference, the sample pool can only contain the
randomly identified sites, not the “selected”
sites.  Selected sites must be clearly identified
and kept separate from the random sites during
data storage and analysis.  Because on-site
evaluation addresses a range of practices,
corresponding methods are provided for
developing sample pools for randomly selected
sites.  For example, the sample pool for SMAs
should be developed using a Sale Area Map
from the Pool of Timber Sales and counting
the number of units that have designated
SMAs.  This constitutes the SMA sample pool.

The data obtained from the sources discussed
above may not be precisely what are required
by the state conducting the implementation
monitoring survey.  Ehinger and Potts (1991)
report the following difficulties encountered in
using data from the National Forest Service
database:

• Flawed assumptions concerning the age of a
harvest (some were found to be too old to
meet the survey criteria).

• Uncertain age of roads.

• Units within 200 feet of stream on paper
were in fact farther than 200 feet from a
stream.
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The following difficulties were associated with
private nonindustrial forest units:  

• Inadequate database to identify sales
meeting the survey criteria.

• Permission to access landowner property not
granted.

Landowners who did grant permission were
interested primarily in demonstrating their
BMP efforts to the state forest department, so
this class of ownership was statistically biased.

On private industrial forest sites, a backlog of
slash burnings on sale units was found,
preventing their use (because of survey
criteria), and state forests sites were mostly
found to be farther than 200 feet from a
stream, making them ineligible for the survey. 
States must be aware that these kinds of
limitations will be encountered.

2.3.  SAMPLE SIZE CALCULATIONS

This section describes methods for estimating
sample sizes to compute point estimates such
as proportions and means, as well as detecting
changes with a given significance level. 
Usually, several assumptions regarding data
distribution, variability, and cost must be made
to determine the sample size.  Some
assumptions might result in sample size
estimates that are too high or too low. 
Depending on the sampling cost and cost for
not sampling enough data, it must be decided
whether to make conservative or “best-value”
assumptions.  Because the cost of visiting any
individual site or group of sites is relatively
constant, it is probably cheaper to collect a
few extra samples the first time than to realize
later that additional data are needed.  In most

cases, the analyst should probably consider
evaluating a range of assumptions regarding
the impact of sample size and overall program
cost.  To maintain document brevity, some
terms and definitions used in the remainder of
this chapter are summarized in Table 2-3. 
These terms are consistent with those in most
introductory-level statistics texts, and more
information can be found there.  Those with
some statistical training will note that some of
these definitions include an additional term
referred to as the finite population correction
term (1-N), where N is equal to n/N.  In many
applications, the number of population units in
the sample population (N) is large in
comparison to the number of population units
sampled (n), and (1-N) can be ignored. 
However, depending on the number of units
(harvest sites for example) in a particular
population, N can become quite small.  N is
determined by the definition of the sample
population and the corresponding population
units.  If N is greater than 0.1, the finite
population correction factor should not be
ignored (Cochran, 1977).

Applying any of the equations described in this
section is difficult when no historical data set
exists to quantify initial estimates of
proportions, standard deviations, means, or
coefficients of variation.  To estimate these
parameters, Cochran (1977) recommends four
sources:

• Existing information on the same population
or a similar population.
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p ' a /n q ' 1& p

x '
1

n
j
n

i'1

xi s 2 '
1

n&1
j
n

i'1

(xi& x)2

s ' s 2 Cv ' s /x

d ' *x&µ* dr '
*x&µ*

µ

s 2(x) '
s 2

n
1& N s(x) '

s

n
(1&N)0.5

s(Nx)'
Ns

n
1&N0.5 s(p)'

pq

n
1&N0.5

N = total number of population units
in sample population

n = number of samples
n0 = preliminary estimate of sample

size

a = number of successes

p = proportion of successes

q = proportion of failures (1-p)

xi = ith observation of a sample

x
_

= sample mean

s2 = sample variance

s = sample standard deviation

Nx
_

= total amount

µ = population mean

F2 = population variance

F = population standard deviation

Cv = coefficient of variation

s2(x
_
) = variance of sample mean

N = n/N (unless otherwise stated in text)

s(x
_
) = standard error (of sample mean)

1-N = finite population correction factor

d = allowable error

dr = relative error

Z" = value corresponding to cumulative area of 1-" using the
normal distribution (see Table A1).

t",df = value corresponding to cumulative area of 1-" using the
student t distribution with df degrees of freedom (see Table
A2).

Table 2-3.  Definitions used in sample size calculation equations.

• A two-step sample.  Use the first-step
sampling results to estimate the needed
factors, for best design, of the second step. 
Use data from both steps to estimate the
final precision of the characteristic(s)
sampled.

• A “pilot study” on a “convenient” or
“meaningful” subsample.  Use the results to
estimate the needed factors.  Here the results
of the pilot study generally cannot be used in

the calculation of the final precision because
often the pilot sample is not representative of
the entire population to be sampled.

• Informed judgment, or an educated guess.

It is important to note that this document only
addresses estimating sample sizes with
traditional parametric procedures. The
methods described in this document should 
be appropriate in most cases, considering the
type of data expected.  If the data to be
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What sample size is necessary to estimate to
within ±5 percent the proportion of harvest sites
that have adequate SMAs?

What sample size is necessary to estimate the
proportion of harvest sites that have adequate
SMAs so that the relative error is less than 5
percent?

no '
(Z1&"/2)

2 pq

d 2
(2-1)

no '
(Z1&"/2)

2 q

d 2
r p

(2-2)

n '

n0

1%N
for N > 0.1

no otherwise

(2-3)

sampled are skewed, as with much water
quality data, the analyst should plan to
transform the data to something symmetric, if
not normal, before computing sample sizes
(Helsel and Hirsch, 1995).  Kupper and
Hafner (1989) also note that some of these
equations tend to underestimate the necessary
sample because power is not taken into
consideration.  Again, EPA recommends that
if the analyst lacks a background in statistics,
he/she should consult with a trained
statistician to be certain that the approach,
design, and assumptions are appropriate to the
task at hand.

2.3.1.  Simple Random Sampling

In simple random sampling, it is presumed that
the sample population is relatively
homogeneous and a difference in sampling
costs or variability is not expected.  If the cost
or variability of any group within the sample
population were different, it might be more
appropriate to consider a stratified random
sampling approach.  

To estimate the proportion of harvest sites
implementing a certain BMP or MM, such that
the allowable error, d, meets the study
precision requirements (i.e., the true
proportion lies between p-d and p+d with a 1-
" confidence level), a preliminary estimate of

sample size can be computed as (Snedecor and
Cochran, 1980)

If the proportion is expected to be a low
number, using a constant allowable error might
not be appropriate.  Ten percent plus/minus 5
percent has a 50 percent relative error. 
Alternatively, the relative error, dr, can be
specified (i.e., the true proportion lies between
p-dr p and p+dr p with a 1-" confidence level)
and a preliminary estimate of sample size can
be computed as (Snedecor and Cochran, 1980)

In both equations, the analyst must make an
initial estimate of p before starting the study. 
In the first equation, a conservative sample
size can be computed by assuming p equal to
0.5.  In the second equation the sample size
gets larger as p approaches 0 for constant dr,
and thus an informed initial estimate of p is
needed.  Values of " typically range from 0.01
to 0.10.  The final sample size is then
estimated as (Snedecor and Cochran, 1980)

where N is equal to no/N.   Table 2-4
demonstrates the impact on n of selecting p, ",
d, dr, and N.  For example, 278 random 
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Table 2-4.  Comparison of sample size as a function of p, ", d, dr, and N for estimating
proportions using equations 2-1 through 2-3.

Probability
of Success,

p

Signifi-
cance
level, ""

Allowable
error, d

Relative
error, dr

Preliminary
sample
size, no

Sample Size, n

Number of Population Units in Sample
Population, N

500 750 1,000 2,000 Large N

0.1 0.05 0.050 0.500 138 108 117 121 138 138

0.1 0.05 0.075 0.750 61 55 61 61 61 61

0.5 0.05 0.050 0.100 384 217 254 278 322 384

0.5 0.05 0.075 0.150 171 127 139 146 171 171

0.1 0.10 0.050 0.500 97 82 86 97 97 97

0.1 0.10 0.075 0.750 43 43 43 43 43 43

0.5 0.10 0.050 0.100 271 176 199 213 238 271

0.5 0.10 0.075 0.150 120 97 104 107 120 120

What sample size is necessary to estimate the
average number of acres per harvest site using
erosion controls to within ±25 acres?

What sample size is necessary to estimate the 
average number of acres per harvest site using
erosion controls to within ±10 percent?

n '
(t1&"/2,n&1s/d)2

1 % (t1&"/2,n&1s/d)2/N
(2-4)

n ' (t1&"/2,n&1s/d)2 (2-5)

samples are needed to estimate the proportion
of 1,000 harvest sites with adequate SMAs to
within ±5 percent (d=0.05) with a 95 percent
confidence level, assuming roughly one-half of
harvest sites have adequate SMAs.
Suppose the goal is to estimate the average
acreage per harvest site where erosion
controls are used.  The number of random
samples required to achieve a desired margin
of error when estimating the mean (i.e., the
true mean lies between x

_
-d and x

_
+d with a 1-"

confidence level) is (Gilbert, 1987)

If N is large, the above equation can be 

simplified to

Since the Student's t value is a function of n,
Equations 2-4 and 2-5 are applied iteratively. 
That is, guess at what n will be, look up 
t1-"/2,n-1 from Table A2, and compute a revised
n.  If the initial guess of n and the revised n are
different, use the revised n as the new guess,
and repeat the process until the computed
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n ' (Z1&"/2F/d)2 (2-6)

n '
(t1&"/2,n&1Cv /dr)

2

1% (t1&"/2,n&1Cv /dr)
2/N

(2-7)

n ' (t1&"/2,n&1Cv /dr)
2 (2-8)

value of n converges with the guessed value. 
If the population standard deviation is known
(not too likely), rather than estimated, the
above equation can be further simplified to

To keep the relative error of the mean
estimate below a certain level (i.e., the true
mean lies between x

_
-dr x

_
 and x

_
+dr x

_
 with a 1-"

confidence level), the sample size can be
computed with (Gilbert, 1987)

Cv is usually less variable from study to study
than are estimates of the standard deviation,
which are used in Equations 2-4 through 2-6. 
Professional judgment and experience,
typically based on previous studies, are
required to estimate Cv.  Had Cv been known,
Z1-"/2 would have been used in place of t1-"/2,n-1

in Equation 2-7.  If N is large, Equation 2-7
simplifies to:

For Company X, harvest sites range in size
from 20 to 400 acres although most are less
than 80 acres in size.  The goal of the
sampling program is to estimate the average
number of harvested acres using erosion
controls.  However, the investigator is
concerned about skewing the mean estimate
with the few large sites.  As a result, the
sample population for this analysis is the 430
harvested sites with less than 80 total acres. 
The investigator also wants to keep the

relative error under 15 percent (i.e., dr = 0.15)
with a 90 percent confidence level.

Unfortunately, this is the first study that
Company X has done and there is no
information about Cv or s.  The investigator,
however, is familiar with a recent study done
by another company.  Based on that study, the
investigator estimates the Cv as 0.6 and s equal
to 30.  As a first-cut approximation, Equation
2-6 was applied with Z1-"/2 equal to 1.645 and
assuming N is large:

n ' (1.645(0.6/0.15)2 ' 43.3 . 44 samples

Since n/N is greater than 0.1 and Cv is
estimated (i.e., not known), it is best to
reestimate n with Equation 2-7 using 44
samples as the initial guess of n.  In this case,
t1-"/2,n-1 is obtained from Table A2 as 1.6811.

n '
(1.6811×0.6/0.15)2

1% (1.6811×0.6 /0.15)2/430
' 40.9 . 41 samples

Notice that the revised sample is somewhat
smaller than the initial guess of n.  In this case
it is recommended to reapply the Equation 2-7
using 41 samples as the revised guess of n.  In
this case, t1-"/2,n-1 is obtained from Table A2 as
1.6839.

n '
(1.6839×0.6/0.15)2

1% (1.6839×0.6 /0.15)2/430
' 41.0 . 41 samples

Since the revised sample size matches the
estimated sample size on which t1-"/2,n-1 was
based, no further iterations are necessary.  The
proposed study should include 41 harvested
sites randomly selected from the 430 sites with
less than 80 total acres.
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What sample size is necessary to determine
whether there is a 20 percent difference in BMP
implementation before and after an operator
training program?

What sample size is necessary to detect a
30-acre increase in average harvested acreage
per site using erosion controls when comparing
private and public timber sales?

no ' (Z"% Z2$)
2

(p1q1% p2q2)

(p2& p1)
2

(2-9)

no ' 10.51
[(0.4)(0.6) % (0.6)(0.4)]

(0.6& 0.4)2
' 126.1

no ' (Z"% Z2$)
2

(s 2
1 % s 2

2 )

*2
(2-10)

When interest is focused on whether the level
of BMP implementation has changed, it is
necessary to estimate the extent of
implementation at two different time periods. 

Alternatively, the proportion from two
different populations can be compared.  In
either case, two independent random samples
are taken and a hypothesis test is used to
determine whether there has been a significant
change in implementation.  (See Snedecor and
Cochran (1980) for sample size calculations
for matched data.)  Consider an example in
which the proportion of waterbars that
effectively divert water from the skid trail will
be estimated at two time periods.  What
sample size is needed?

To compute sample sizes for comparing two
proportions, p1 and p2, it is necessary to
provide a best estimate for p1 and p2, as well
as specifying the significance level and power
(1-$).  Recall that power is equal to the
probability of rejecting Ho when Ho is false. 
Given this information, the analyst substitutes
these values into (Snedecor and Cochran,
1980)

where Z" and Z2$ correspond to the normal
deviate.  Although this equation assumes that
N is large, it is acceptable for practical use
(Snedecor and Cochran, 1980).  Common
values of (Z" + Z2$)

2 are summarized in Table
2-5.  To account for p1 and p2 being estimated,
Z should be replaced with t.  In lieu of an
iterative calculation, Snedecor and Cochran
(1980) propose the following approach: 
(1) compute no using Equation 2-9; (2) round
no up to the next highest integer, f; and (3)
multiply no by (f+3)/(f+1) to derive the final
estimate of n.

To detect a difference in proportions of 0.20
with a two-sided test, " equal to 0.05, 1-$
equal to 0.90, and an estimate of p1 and p2

equal to 0.4 and 0.6, no is computed as

Rounding 126.1 to the next highest integer, f is
equal to 127, and n is computed as 126.1 x
130/128 or 128.1.  Therefore, 129 samples in
each random sample, or 258 total samples, are
needed to detect a difference in proportions of
0.2.  Beware of other sources of information
that give significantly lower estimates of
sample size.  In some cases the other sources
do not specify 1-$; in all cases, it is important
that an “apples-to-apples” comparison is being
made.

To compare the average from two random
samples to detect a change of * (i.e., x̄2-x̄1), the
following equation is used:
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Power,
1-$$

"" for One-sided Test "" for Two-sided Test

0.01 0.05 0.10 0.01 0.05 0.10

0.80 10.04 6.18 4.51 11.68 7.85 6.18

0.85 11.31 7.19 5.37 13.05 8.98 7.19

0.90 13.02 8.56 6.57 14.88 10.51 8.56

0.95 15.77 10.82 8.56 17.81 12.99 10.82

0.99 21.65 15.77 13.02 24.03 18.37 15.77

Table 2-5.  Common values of (Z" + Z2$)
2 for estimating sample size for use with equations 2-9

and 2-10.

no ' 10.51
(302% 302)

202
' 47.3 (2-11)

What sample size is necessary to estimate the
average SMA width per harvest site when there
is a wide variety of stream types and site
conditions?

Common values of (Z" + Z2$)
2 are summarized

in Table 2-5.  To account for s1 and s2  being
estimated, Z should be replaced with t.  In lieu
of an iterative calculation, Snedecor and
Cochran (1980) propose the following
approach:  (1) compute no using Equation 2-
10; (2) round no up to the next highest integer,
f; and (3) multiply no by (f+3)/(f+1) to derive
the final estimate of n.

Continuing the Company X example above,
where s was estimated as 30 acres, the
investigator will also want to compare the
average number of harvested acres that used
erosion controls to the average number of
harvested acres that used erosion controls in a
few years.  To demonstrate success, the
investigator believes that it will be necessary
to detect a 20-acre increase.  Although the
standard deviation might change after the
operator training program, there is no
particular reason to propose a different s at
this point.  To detect a difference of 20 acres
with a two-sided test, " equal to 0.05, 1-$
equal to 0.90, and an estimate of s1 and s2

equal to 30, no is computed as 

Rounding 47.3 to the next highest integer, f is
equal to 48, and n is computed as (47.3)•
(51/49) or 49.2.  Therefore 50 samples in each
random sample, or 100 total samples, are
needed to detect a difference of 20 acres.

2.3.2.  Stratified Random Sampling

The key reason for selecting a stratified
random sampling strategy over simple random
sampling is to divide a heterogeneous
population into more homogeneous groups.  If
populations are grouped based on size (e.g.,
site size) when there is a large number of small
units and a few larger units, a large gain in
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h'1
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(2-16)

precision can be expected (Snedecor and
Cochran, 1980).  Stratifying also allows the
investigator to efficiently allocate sampling
resources based on cost.  The stratum mean,
x
_

h, is computed using the standard approach
for estimating the mean.  The overall mean, x

_
st,

is computed as

where L is the number of strata and Wh is the
relative size of the hth stratum.  Wh can be
computed as Nh/N where Nh and N are the
number of population units in the hth stratum
and the total number of population units
across all strata, respectively.  Assuming that
simple random sampling is used within each
stratum, the variance of x

_
st is estimated as

(Gilbert, 1987)

(2-13)

where nh is the number of samples in the hth

stratum and sh
2 is computed as (Gilbert, 1987)

There are several procedures for computing
sample sizes.  The method described below
allocates samples based on stratum size,
variability, and unit sampling cost.  If s2(x

_
st)  is

specified as V for a design goal, n can be
obtained from (Gilbert, 1987)

(2-15)

where ch is the per unit sampling cost in the hth

stratum and nh is estimated as (Gilbert, 1987)

In the discussion above, the goal is to estimate
an overall mean.  To apply a stratified random
sampling approach to estimating proportions,
ph, pst, phqh, and s2(pst) should be substituted
for x

_
h, x

_
st, sh

2, and s2(x
_

st) in the above
equations, respectively.

To demonstrate the above approach, consider
the Company X example again.  In addition to
the 430 sites that are less than 80 acres, there
are 100 sites that range in size from 81 to 200
acres, 50 sites that range in size from 201 to
300 acres, and 20 sites that range in size from
301 to 400 acres.  Table 2-6 presents three
basic scenarios for estimating sample size.  In
the first scenario, sh and ch are assumed equal
among all strata.  Using a design goal of V
equal to 100 and applying Equation 2-15 yields
a total sample size of 41.9 or 42.  Since sh and
ch are uniform, these samples are allocated
proportionally to Wh, which is referred to as
proportional allocation.  This allocation can
be verified by comparing the percent sample
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Farm Size
(acres)

Number of
Farms

(Nh)

Relative
Size
(Wh)

Standard
Deviation

(sh)

Unit
Sample

Cost
(ch)

Sample Allocation

Number %

A) Proportional allocation (sh and ch are constant)

20-80 430 0.7167 30 1 31 70.5

81-200 100 0.1667 30 1 7 15.9

201-300 50 0.0833 30 1 4 9.1

301-400 20 0.0333 30 1 2 4.5

Using Equation 2-15, n is equal to 41.9.  Applying Equation 2-16 to each stratum yields a total of
44 samples after rounding up to the next integer.

B) Neyman allocation (ch is constant)

20-80 430 0.7167 30 1 35 56.5

81-200 100 0.1667 45 1 13 21.0

201-300 50 0.0833 60 1 9 14.5

301-400 20 0.0333 75 1 5 8.1

Using Equation 2-15, n is equal to 59.3.  Applying Equation 2-16 to each stratum yields a total of
62 samples after rounding up to the next integer.

C) Allocation where sh and ch are not constant

20-80 430 0.7167 30 1.00 38 61.3

81-200 100 0.1667 45 1.25 12 19.4

201-300 50 0.0833 60 1.50 8 12.9

301-400 20 0.0333 75 2.00 4 6.5

Using Equation 2-15, n is equal to 60.0.  Applying Equation 2-16 to each stratum yields a total of
62 samples after rounding up to the next integer.

Table 2-6.  Allocation of samples.

allocation to Wh.  Due to rounding up, a total
of 44 samples are allocated.

Under the second scenario, referred to as the
Neyman allocation, the variability between
strata changes, but unit sample cost is
constant.  In this example, sh increases by 15
between strata.  Because of the increased
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n'
pq

s(p)2
'

(0.56)(0.44)

0.0352
' 201 (2-17)

variability in the last three strata, a total of
59.3 or 60 samples are needed to meet the
same design goal.  So while more samples are
taken in every stratum, proportionally fewer
samples are needed in the smaller site size
group.  For example, using proportional
allocation, more than 70 percent of the
samples are taken in the 20- to 80-acre site
size stratum, whereas approximately 57
percent of the samples are taken in the same
stratum using the Neyman allocation.

Finally, introducing sample cost variation will
also affect sample allocation.  In the last
scenario it was assumed that it is twice as
expensive to evaluate a harvest site from the
largest size stratum than to evaluate a harvest
site from the smallest size stratum.  In this
example, roughly the same total number of
samples are needed to meet the design goal,
yet more samples are taken in the smaller size
stratum.

2.3.3.  Cluster Sampling

Cluster sampling is commonly used when
there is a choice between the size of the
sampling unit (e.g., skid trail versus harvest
site).  In general, it is cheaper to sample larger
units than smaller units, but the results tend to
be less accurate (Snedecor and Cochran,
1980).  Thus, if there is not a unit sampling
cost advantage to cluster sampling, it is
probably better to use simple random
sampling.  To decide whether to perform
cluster sampling, it will probably be necessary
to perform a special investigation to quantify
sampling errors and costs using the two
approaches.

Perhaps the best approach to explaining the
difference between simple random sampling

and cluster sampling is to consider an example
set of results.  In this example, the investigator
did an evaluation to determine whether harvest
sites had adequate SMAs.  Since the state had
timber harvesting activities across the state, the
investigator elected to inspect 10 harvest sites
along each randomly selected river.  Table 2-7
presents the number of harvest sites along each
river that had the recommended BMPs.  The
overall mean is 5.6; a little more than one-half
of the sites have implemented the
recommended BMPs.  However, note that
since the population unit corresponds to the 10
sites collectively, there are only 30 samples
and the standard error for the proportion of
sites using recommended BMPs is 0.035.  Had
the investigator incorrectly calculated the
standard error using the random sampling
equations, he or she would have computed
0.0287, nearly a 20 percent error.

Since the standard error from the cluster
sampling example is 0.035, it is possible to
estimate the corresponding simple random
sample size to obtain the same precision using

Is collecting 300 samples using a cluster
sampling approach cheaper than collecting
about 200 simple random samples?  If so,
cluster sampling should be used; otherwise,
simple random sampling should be used.

2.3.4.  Systematic Sampling

It might be necessary to obtain an estimate of
the proportion of harvest sites where cable
yarding was implemented using site
inspections.  Assuming a record of harvest
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Table 2-7.  Number of harvest sites (out of 10) implementing recommended BMPs.

3 9 5 7 6 4 6 3 5 5

5 7 7 4 7 5 3 8 4 6

8 4 7 4 5 3 3 9 9 7

Grand Total = 168
    x

_
 = 5.6 

    s = 1.923
p = 5.6/10=0.560
s = 1.923/10=0.1923

Standard error using cluster sampling:  s(p)=0.1923/(30)0.5=0.035
Standard error if simple random sampling assumption had been incorrectly used: 
s(p)=((0.56)(1-0.56)/300)0.5 =0.0287

sites (where cable yarding was specified in the
timber sale contract or administration file) is
available in a sequence unrelated to the
manner in which this BMP would be
implemented (e.g., in alphabetical order by the
operator's name), a systematic sample can be
obtained by selecting a random number r
between 1 and n, where n is the number
required in the sample (Casley and Lury,
1982).  The sampling units are then r, r +
(N/n), r + (2N/n), ..., r + (n-1)(N/n), where N
is total number of available records.

If the population units are in random order
(e.g., no trends, no natural strata,
uncorrelated), systematic sampling is, on
average, equivalent to simple random
sampling.

Once the sampling units (in this case, specific
harvest sites) have been selected, site
inspections can be made to assess the extent of
compliance with cable yarding standards and
specifications.


