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1. Introduction 
The analysis of competing risks has a long history in human health research, but has received limited 

formal attention in wildlife ecology and ecotoxicology (Heisey and Patterson 2006). Informally, however, 

the concept of competing risks has arisen many times in these disciplines (Abbott 1925, Ricklefs 1969).   

A common and accessible motivating example for defining competing risks is the concept of cause-of-

death. Thus, when considering the possibility that an animal will suffer mortality in either acute or 

chronic response to chemical exposure, one must also consider the possibility that the animal will die 

due to disease, predation, or other causes, the occurrence of which will alter the rate at which animals 

succumb to exposure to a toxicant. Although such cause-specific failure analyses remain an important 

application, competing risks naturally arise in virtually all stochastic processes. The model described in 

this technical manual provides a unified common framework for analysis of data arising from serial 

observations on subjects in the presence of competing risks. The three examples below illustrate some 

of the diverse contexts in which such data arise. 

1.1. Example: Estimating causes of avian nest failure 
Most studies of nest productivity recognize multiple causes of nest failure, but focus on nest survival as 

the ecological process of interest.  However, nests fail due to many causes, including nest predation 

(Martin 1995), nest parasitism (Trine 1998), interspecific competition (Radunzel et al. 1997), adverse 

weather (Martin 1992), nest abandonment (Traylor et al. 2004), nestling starvation (Martin 1992), and 

egg failure (Westemeier et al. 1998).  The estimation of cause-specific nest-failure rates is a problem in 

competing risks (Etterson et al. 2007a, b).  

1.2. Example: Distinguishing causes of mortality in toxicity tests 
A common objective in wildlife toxicity testing is to estimate the mortality associated with a given 

chemical exposure.  Sound experimental design for toxicity tests requires the use of control treatments 

with no chemical exposure, which are designed to allow separation of mortality due to intoxication from 

either natural mortality or stress associated with experimental conditions, but not exposure (USEPA 

1996).  Proper estimation of the portion of mortality due to the toxicant alone is a problem in competing 

risks and has long been of interest in toxicological research (Abbott  1925). 
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1.3. Example: Estimating the numbers of animals killed by contaminants and 

collisions 
An unknown number of non-target animals are killed annually by pesticides in agroecosystems. 

Similarly, an important source of mortality in many bird populations is collisions with anthropogenic 

structures such as wind turbines, automobiles, windows, and power lines. In both cases, researchers 

have tried to estimate the number of animals killed by counting carcasses, but many carcasses are 

scavenged prior to discovery and some unscavenged carcasses remain undiscovered (Kostecke et al. 

2001, Huso 2011).  Carcass distribution trials, in which carcasses are placed in the field at known times 

and locations, are a common method used to correct for imperfect detection and scavenging (DeVault 

et al. 2003) and typically focus either on scavenging rates or on searcher efficiency (Morrison 2002).  In 

the former case, the average persistence time of carcasses post-distribution is generally the parameter 

of interest.  In the latter case, the parameter of interest is the detection probability, estimated as the 

proportion of distributed carcasses found by searchers.  Understanding the effects of the two processes 

(scavenging and detection) in a simultaneous trial is a problem in competing risks. 

An important barrier to the implementation of methods for estimating competing risks in animal 

populations has been the lack of appropriate software.  In human health risk assessment and 

epidemiology, competing risks are traditionally modeled using extensions of classical survival analysis, 

with hazard functions defined as continuous-time exponential functions (Pintillie 2006).  The latter 

methods focus on developing mathematical expressions for statistical distributions of survival times.  In 

contrast, survival analysis in wildlife sampling and demography has developed in discrete time, and has 

focused on developing models for estimating probabilities of surviving a fixed period of time (typically in 

days, though other temporal units are equally valid).  Extension of discrete-time methods for competing 

risks in animal populations has lagged behind the analogous methodological advances in survival 

analysis that are available in the human health sciences.   

The program MCestimate, which implements the algorithms described in this technical manual 

within a user-friendly graphical user interface, is designed to provide some of this analytical capability 

within the discrete temporal framework that is typically employed for the statistical analysis of wildlife 

sampling data.  The original motivation for the early development of MCestimate was the study of 

competing risks in nest survival estimation (Example 1, above).  Because this remains an important 

application, and has a rich history in statistical and software development, I have continued to frame the 

theoretical development of MCestimate in terms of nest survival estimation.  Existing methods for 

estimating nest survival parameters will also play an important role in helping to validate MCestimate.  

To this end, I present some background in existing nest survival estimation models to which MCestimate 

is equivalent under special circumstances.  In these circumstances, MCestimate is expected to give the 

same answers when applied to common data.  Readers only interested in the competing risks algorithms 

may wish to skip to Section 3, after browsing the notation that I (hopefully!) apply consistently 

throughout this document. 
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1.4 Notation 
S = the probability that an arbitrary nest in the target population is successful. 

t = the age (in days since the first egg is laid) that a nest fledges. 

N, n = sample size variables.  May be used for nests (N), observations (n) or exposure days (n), 

and exact meaning depends on context. 

si  = the probability that an arbitrary nest in the target population survives day i, where i is an 

ordinal date (by convention, i = 1 on January 1 of a non leap year).  The subscript is 

omitted when daily survival probability is constant (s = si for all i). 

wj  = the number of times nest j is visited. The subscript j will often be omitted when it is obvious 

which nest is under consideration (for example when j and wj co-occur as subscripts). 

vj = reserved indexing variable for the wj visits to nest j (as above, j will often be assumed) 

ysjv = indicator variable for survival  (ysjv = 1 if nest j was alive on visit v.  ysjv = 0 otherwise). 

djv = the number of days separating visits v and v + 1 to nest j. 

Id (djv) = scalar indicator function returning 1 if
 jvd d , 0 otherwise. 

Xi = vector of covariates to daily survival or failure on day i. 

β = vector of linear coefficients to survival or failure probabilities. 

K = number of elements of Xi. 

k = indexing variable to elements of Xi and β (i.e., xik is the kth element of Xi and βk is the kth 

element of β). 

o(vj) = function returning the ordinal date (i) of visit v to nest j. 

a(u) = function returning the ordinal date (i) on which a nest is aged u (in days since the first egg 

was laid).  

F = the number of causes of nest failure that are under study. 

f = indexing variable to specific causes of failure (1 ≤ f ≤ F). 

mif  = the daily probability of failure on day i due to cause f.   

yfjv = indicator variable for state f (yfjv = 1 indicates nest j was in state f on visit v.  yfjv = 0 

otherwise). 
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If (Xi) = indicator function that returns a vector of zeros and ones indicating which elements of 

Xi are covariates to fate f in a particular model. 

 

2. Mathematical background (binomial nest survival) 
This section provides much of the background material and history that led to the development of 

MCestimate.  As such it draws heavily on the development of formal methods for estimating nest 

survival rates, which is the primary context that motivated MCestimate. However, it is not intended to 

be a complete history of nest survival, a much larger topic with a deeper history than can be covered 

here. I also provide brief treatments of some standard mathematical techniques, such as maximum 

likelihood and the delta method.  In most of the following equations I have altered the notation used by 

the original authors to facilitate the subsequent introduction of the Markov transition matrices in 

Section 2.9.  

2.1 The Mayfield estimator 
The history of modern avian nest survival estimation begins with the work of Harold Mayfield (1961, 

1975).  Mayfield’s original insight was the observation that, for most empirical samples of avian nests, 

drawn from a defined population, the simple proportion of successful nests would likely overestimate 

the probability that any given nest in the population would be successful.  The reason for this positive 

bias is that many nests are not immediately discovered upon construction, but are nevertheless included 

in the sample as they are discovered, sometimes rather late in development.  Therefore successful nests 

are more likely to be included in a sample than failed nests. These ideas are expressed mathematically 

below.   

For simplicity, assume that, if nest j is successful, then its state on the final visit (wj) is 

“successful” (ysjw = 1), whereas if a nest fails, its state on the final visit is “failed” (ysjw = 0).  Then the 

number of successful nests (Ns) in the population is 
1

N

s sjw

j

N y and the simple proportion (P) of 

successful nests is sN
P

N
.  Mayfield’s (1961) insight was that E S E P , where E is the 

expectation operator.  Mayfield’s (1961) proposed solution to the positive bias in E(P) was to account 

for the duration of time each nest was under observation.  To do so, he recast the problem in terms of 

daily survival.  First, let nj, represent the total number of days that nest j was exposed to failure 

following discovery (often referred to as exposure days).  Then: 

1

1

j

j

w

j jv

v

n d , and: 
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 (2.1) 

1

1 s

n

j

j

N N
s

n

,  

Equation (2.1) is commonly referred to as the Mayfield estimator.  Its logic can be dissected as 

follows.  Noting that N − Ns is the number of nests that failed and that a nest can fail only once, N − Ns 

also gives the total number of days on which a nest failed to survive.  Similarly, the sum in the 

denominator of the ratio in Eq. (2.1) is the total number of days that nests were exposed to failure over 

all nests in the sample.  Therefore, the ratio on the right hand side of Eq. (2.1) gives the proportion of 

the total number of exposure days that nests failed to survive, which is an estimator for the daily 

probability of failure.  Its complement is an estimator for the daily probability of survival, s.  At least 

three important assumptions underlie Eq. (2.1): 

1. The precise dates of nest failure are known exactly (often equated to the assumption that djv = 1 

for all j, vj). 

2. The rate of nest survival/failure is constant within and among nests. 

3. The fates of nests (successful/failed) are correctly assigned. 

While Eq. (2.1) is quite simple, and its assumptions are easily falsified, its impact on avian 

productivity research can hardly be overstated.  It now has a long history of direct application and 

generalization (Johnson 2007), of which I review only a few highlights pertinent to the development of 

MCestimate.  The first generalization to Mayfield’s estimator (Johnson 1979) concerned assumption (1) 

above, that the precise dates of nest failure are known exactly.  The second assumption, that nest 

survival is constant within and among nests has been addressed by many, with the most comprehensive 

treatment offered by Dinsmore et al. (2002).  The third assumption, that fates are correctly assigned, 

has received limited attention (Manolis et al. 2000, Stanley 2004, Etterson and Stanley 2008). 

2.2 Generalization of Mayfield assumption (1) 
The first formal statistical treatment of the Mayfield estimator was provided by Johnson (1979) who 

generalized Eq. (1) to cases in which precise failure dates are unknown.  In most cases, nests are not 

monitored every day, so that when a nest fails, its precise date of failure is known only to have occurred 

within the interval spanned by two visits (which I’ll refer to hereafter as an observation).  Johnson (1979) 

provided the following likelihood (though the notation is mine): 

(2.2) 
1

| , 1
sd d sdn n nd d d

d sd

d sd

n
l s n n s s

n
, where: 

nd = the total number of observations lasting d days:
1

1 1

N w

d d jv

j v

n I d , 
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 nsd = the number of observations of length d that are successful: 
1

1 1

N w

sd sjv d jv

j v

n y I d . 

Johnson (1979) further showed that the Mayfield estimator (2.1) is the maximum likelihood estimate 

(see below) for s when djv = 1 for all observations on all nests in the sample. 

2.3 Maximum likelihood estimation 
Analysis of likelihood equations such as (2.2) proceed according to a standard technique (Edwards 

1992).  First, the log of the likelihood (l) over the full data set is taken, resulting in the log-likelihood (L).  

Then the value of s at which L reaches its maximum is calculated.  In rare cases this can be done 

analytically, by taking the derivative of L with respect to s and solving for the value of s at which dL/ds = 

0. The resulting estimate of s is the maximum likelihood estimate (MLE), and is typically denoted ŝ .  In 

general, MLEs cannot be found analytically and must be found using a computer to perform a numerical 

search.  The second derivative of the log-likelihood function evaluated at ŝ  contains information about 

the estimated sampling variance of ŝ .  In particular, the negative inverse of the second derivative of L 

with respect to s, evaluated at ŝ is an estimate of the sampling variance of ŝ conditional on the available 

data. 

In presenting the following likelihood functions, it is assumed that the MLEs are found using the 

above procedure generalized to the case in which the MLE is not a single value (i.e., ŝ ), but rather a 

vector of values ( β̂ ).  The MLE is then the vector of values that jointly maximize L.  The estimated 

covariance matrix of β̂ , referred to below as ˆcov β , is the negative inverse of the matrix of second 

derivatives evaluated at β̂ .  The variances of the elements of β̂  are along the diagonal of ˆcov β .  For 

more information on maximum likelihood estimation, see Edwards (1992), Williams et al. (2002) or 

Burnham and Anderson (2002). 

2.4 Generalization of Mayfield assumption (2) 
A major goal of research in avian nest ecology has been to investigate hypotheses concerning variation 

in ŝ .  While this has been done in numerous ways beginning with Green (1977) and Johnson (1979), 

MCestimate uses methods similar to those that were articulated by Dinsmore et al. (2002), which draw 

from the theory of generalized linear models (Dobson 2002) and from model selection theory using 

Akaike’s Information Criterion (AIC, Burnham and Anderson 2002).   

The probability that a nest, active on day i, survives to day i + 1, can be specified as a linear 

function in the log-odds (or logit) of daily survival: 

(2.3) 
1 1 2 2 3 3ln ...

1

i
K K

i

s
x x x x

s
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In Eq. (3), x1, x2, …,xK represent values of variables (covariates) thought to influence nest survival (si) on 

day i.  For example, these could be ordinal date (i), nest height above ground, age of the nest since the 

first egg was laid, etc.  By convention, x1 = 1 and β1 represents an intercept parameter. Equations like 

(2.3) are more succinctly expressed in matrix notation.  Thus let: 

 β = column-vector of K linear coefficients (βk) 

 Xi = row-vector of variables thought to influence si, where the first element of Xi is always 1. 

Then Eq. (2.3) can be rewritten: 

(2.4) ln
1

i
i

i

s

s
Xβ  

The basic estimation problem is no longer to obtain maximum likelihood estimates for si, but rather for 

β.  This is done by using the inverse logit function (Eq. 2.5 below) and substituting the resulting 

expression for si into the likelihood (2.6, below). 

(2.5) 
exp

1 exp

i

i

i

s
Xβ

Xβ
 

The basic likelihood function employed by Dinsmore et al. (2002) is a generalization of Johnson’s (1979) 

likelihood, Eq. (2.2) to allow nest survival to vary among days within a nest (again the notation is my 

own, but the equation is that of Dinsmore et al. 2002).  

(2.6) 

1
1 1 1 1

1 1 1 1

| , , 1

sjw sjwy y
o w o w o wn

j sjv jv i i i

j i o i o w i o w

l w y d s s sβ

 

2.5 AIC and model selection 
Different hypotheses about influences on si can be formulated by specifying different variables in the 

linear component of Eq. (2.3) and finding the MLEs as described above.  The fitted models, representing 

alternative hypotheses, can then be compared using Akaike’s Information Criterion (AIC, Burnham and 

Anderson 2002), where the smallest value of AIC corresponds to the best model (hypothesis) among all 

models tested. 

(2.7) ˆAIC 2 2L Kβ  

In Eq. (2.7), the log-likelihood (L) is evaluated at the maximum likelihood solution ( β̂ ).  Both Dinsmore 

et al. (2002) and MCestimate actually use a sample-size corrected version of AIC (AICc, Burnham and 

Anderson 2002): 
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(2.8) c
ˆAIC 2 2

1

n
L K

n K
β  

In Eq. (2.8) n is the sample size for nest-survival estimation.  Dinsmore et al. (2002) used the total 

number of observation days over all nests for n: 

1

1 1

N w

jv

j v

n d  

MCestimate uses a slightly modified calculation provided by Rotella et al. (2004) in which n is calculated 

as the sum of the total number of successful observation days over all nests and the total number of 

failed nests. 

1

, 1 , 1

1 1

1
N w

jv sj v sj v

j v

n d y y  

2.6 Fledging rates 
Mayfield’s original motivation, to better estimate the overall probability (S) that a nest will fledge at 

least one young, remains an important goal in nest-survival estimation. When s is invariant, then: 

(2.9) ˆ ˆtS s  

When s is assumed to vary, then: 

(2.10) 
1

1

ˆ ˆ
a t

i

i a

S s

 

2.7 Variance 

2.7.1 Variance of homogeneous daily survival rates 

For a single estimated MLE (e.g., ŝ ), its variance ˆvar s is estimated as the negative inverse of the 

second derivative of the log-likelihood function, evaluated at ŝ (Edwards 1992).   For the Mayfield 

estimator, this quantity is available as a simple formula: 

(2.11) 
1

1 1

ˆ ˆ1
ˆvar

n w

jv

j v

s s
s

d

,  

When the MLE must be estimated numerically, the variance is generally not available in simple form, 

though it can be estimated numerically.   
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2.7.2 Variance of heterogeneous daily survival rates 

When the estimated quantity is a vector of parameters (e.g., β̂ ), the covariance matrix, ˆcov β , is 

estimated as the negative inverse of the Hessian matrix (the matrix of second derivatives of the log-

likelihood, evaluated at β̂ ).  To get the variance of the 
îs from ˆcov β  we can use the delta method 

(Seber 1982).  In the general case, let θ̂ represent an MLE (scalar or vector) and f( θ̂ ) represent some 

function of θ̂ .  Then the variance of the function f( θ̂ ) is calculated from the estimated variance of θ̂ as: 

(2.12) 

T
ˆ ˆ

ˆ ˆvar cov
ˆ ˆ

df df
f

d d

θ θ
θ θ

θ θ  

For the case of variable daily survival rates, 
îs , ˆ ˆθ β , and ˆ ˆf fθ β  is given by Eq. (2.5).  

Therefore (for derivation of Eq. 2.13 below, see Section 4.1): 

(2.13) 

ˆ
ˆ

ˆ ˆ1
ˆ

i
i i i

df ds
s s

dd

β
X

ββ
, and: 

(2.14) Tˆˆ ˆ ˆ ˆ ˆvar 1 cov 1i i i i i i is s s s sX β X

 

2.7.3 Variance of fledging rates under homogeneous daily survival 

The delta method can also be extended to overall fledging rates.  It first requires calculation of the 

derivative of the overall fledging rate (S) with respect to the estimated survival rates.  In the simple 

homogenous case (Eq. 2.9 above), the equation is: 

(2.15) 1 1
ˆ ˆ

ˆ ˆ ˆ ˆ ˆvar var var
ˆ ˆ

t tdS dS
S s ts s ts

ds ds
 

2.7.4 Variance of fledging rates under heterogeneous daily survival 

When the overall fledging rate is a function of variable survival rates (
îs ), which are in turn functions of 

β, a relatively simple formula can still be found, but with a little more effort.  First, from Eq. (2.10), note 

that: 

1

1

ˆ ˆln ln
a t

i

i a

S s . 

Therefore: 
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1

1 1

ˆln ˆln 1

ˆ ˆ ˆ

a t a t

i

i a i ai i i

d S d s

ds ds s
.  

Therefore: 

1

1

ˆlnˆ 1ˆ ˆ
ˆ ˆ ˆ

a t

i ai i i

d SdS
S S

ds ds s
. 

Remembering Eq. (2.13) above, and applying the chain rule: 

1

1

ˆ ˆ ˆ ˆ ˆ1
ˆ

a t

i
i i

i ai

dsdS dS
S s

d ds d
X

β β
 

Therefore, under variable 
îs :  

(2.16) 
1 1

T

1 1

ˆ ˆ ˆ ˆˆ ˆvar 1 cov 1
a t a t

i i i i

i a i a

S S s S sX β X

 

2.8 Confidence limits 
Standard practice in linear modeling for generating confidence limits around estimated parameters is to 

choose a tolerable Type I error rate (α) and find the associated z-score from a standard normal 

distribution corresponding to 100 (1− α)% coverage (two-tailed).  A common choice is z = 1.96, 

corresponding to an approximate 95% coverage (α = 0.05).  Confidence limits can then be generated as

ˆ ˆvars z s .  However, both logic and experience suggest that this procedure will often produce 

confidence limits outside the range [0, 1].  Thus, a better practice is to adopt the generalized linear 

modeling approach to nest survival estimation (Eqs. 2.3 – 2.5, above) and use ˆcov β to generate 

100(1− α)%  confidence limits around the logit (Eq. 2.3).  The resulting confidence limits can then be 

transformed to the probability scale using the inverse logit (Eq. 2.5), and the resulting limits will always 

lie in the interval [0, 1].  Because the mapping from the logit to the probability space is one-to-one, the 

resulting coverage rate for the probabilities is equal to that of the confidence interval on the logit (Rao 

1973).  This procedure still requires the use of the delta method to calculate confidence limits on the 

logit.  In this case ˆ ˆθ β  and 
ˆˆ ˆˆlogit ln

ˆ1

i
i i

i

s
f s

s
β X β , and 

ˆ

ˆ i

df

d

β
X

β
.  Therefore: 

(2.17) Tˆˆvar logit covi i is X β X . 

Thus confidence limits [l, u] around the logit can be generated as follows: 
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(2.18) ˆ ˆˆ ˆ[ , ] logit cov ,logit covi i i i i il u s z s zT T
X β X X β X . 

Finally, back-transformed confidence limits around 
îs , [L, U] are: 

(2.19) [ , ] ,
1 1

l u

l u

e e
L U

e e
. 

2.9 Binomial nest survival as a Markov chain 
Etterson and Bennett (2005) showed that the basic likelihood function of Johnson (1979) could be 

formulated as a product of cell probabilities in Markov transition matrices.  The notation used below 

differs from Etterson and Bennett (2005), but the mathematical expressions are equivalent.  Let: 

(2.20) 
1

0 1

s s
M and 

,1jv sjv sjvy yY
 

Using the above notation a probability model for an arbitrary observation on a nest can be formulated 
as follows: 

(2.21) T

, 1 , 1Pr | , , jvd

j v jv jv jv j vy s y d Y M Y
 

The corresponding likelihood for all observations on all nests is: 

(2.22) 

1

T

, 1

1 1

| ,
j

jv

wn
d

jv jv jv j v

j v

l s y d Y M Y  

Eq. (2.22) is equivalent to Eq. (2.2), except that the binomial coefficients are omitted (they don’t affect 

the solution).  Similarly, when djv = 1 for all j, v, the MLE corresponding to Eq. (2.22) is the original 

Mayfield estimator (Eq. 2.1). 

To investigate variation in daily survival, we must have different matrices (Mi) for each day, 

where si is as defined in Eqs. (2.3 – 2.5).  Thus: 

 

1

0 1

i i

i

s s
M   

The full likelihood over all observations on all nests is: 

(2.23) 

1 1 1

T

, 1

1 1

| ,
jw o vn

jv jv jv i j v

j v i o v

l y dβ Y M Y  
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Eq.(2.23) is equivalent to Eq. (2.6). 

Standard errors and confidence limits for these binomial (success/fail) models can be calculated exactly 

as described in Sections 2.7 and 2.8. 

3. Competing risks (multinomial nest survival) 
With the Matrix notation of Markov chain transition matrices developed above, the generalization of 

survival methods to handle competing risks is straightforward.  For simplicity, the equations below are 

all presented with two causes of failure, but all equations immediately generalize to an arbitrary number 

of failure categories.  The transition matrix for this probability model was originally published by 

Etterson et al. (2007).
 

3.1. Homogeneous failure rates 

(3.1) 

1 2

0 1 0

0 0 1

s m m

M

 

In Equation (3.1) and all subsequent similar matrices, note the constraints that: 

 
1

1
F

f

f

s m
 

 
0 , 1fs m

 

The state vectors (Y) are of the form: 

 1 2jv sjv jv jvy y yY
 

With M and Yjv modified as above, the likelihood for the case in which nest failure rates (mf) are 

constant is virtually identical to Eq. (2.22). 

(3.2) 

1

T

1 2 , 1

1 1

, | ,
j

jv

wn
d

jv jv jv j v

j v

l m m y d Y M Y

 

3.2. Heterogenous failure rates 
For variable mif, we must generalize the linear models notation introduced by Dinsmore et al. 

(2002) (Eqs. 2.3 – 2.5).  Recognizing that the ability to model competing risks will immediately beg the 

question of what factors influence competing risks, it makes more sense to model the failure rates (mif) 

as functions of covariates than the survival rate.  This will require extension of the logit (Eq. 2.3) to 

multiple fates. Let: 
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(3.3) if f i iX I X X , where the operator represents the element-wise (dot) product. 

By convention (as above) the first non-zero element of Xif will always be 1, corresponding to an 

intercept parameter for that failure rate. Then, for a given failure rate, its multinomial logit (relative to 

daily survival) is defined as: 

(3.4) ln
if

if

i

m

s
X β  

The inverse function of (3.4) is: 

(3.5) 

1

exp

1 exp

if

if F

ig

g

m
X β

X β

 

And 

(3.6) 

1

1

1 exp
i F

ig

g

s

X β

 

Again, the likelihood function is virtually identical to Eqs. (2.23): 

(3.7) 

1 1 1

T

, 1

1 1

| ,
jw o vn

jv jv jv i j v

j v i o v

l y dβ Y M Y

 

In Eq. (3.7) Mi is as defined in Eq. (3.1), except that s, m1 and m2 are replaced by si, mi1 and mi2, as 

defined in Eqs. (3.4 and 3.5): 

(3.8) 

1 2

0 1 0

0 0 1

i i i

i

s m m

M  

3.3 Fledging rates and overall probabilities of failure 
As with the binomial model it is of interest to know the overall probabilities that a nest will fledge or fail 

due to the various identified causes.  These are trivial to calculate under the Markov notation.  In the 

case of homogeneous failure rates (using the matrix M from Eq. 3.1), we can define a new matrix St: 

(3.9) t

tS M  
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The cell entries of St corresponding to particular probabilities in M give the overall probabilities that a 

nest is in a given state after t days .  Thus, for example, the entry in the first row and first column of St 

gives the overall survival probability after t days.  Similarly, the entry in the first row and second column 

of St gives the overall probability that a nest has suffered the first fate (corresponding to f = 1) after t 

days, and so on. 

 For the case of heterogenous failure rates (mif, Mi), we use the product operator and define the 

sequence of age-specific matrices. 

(3.10) 
1

1 2 3 1

1

...

a t

t i a a a a t

i a

S M M M M M  

 

3.5 Variance 
Variances in the competing risks models are calculated in similar fashion to the binomial models, using 

the delta method (Eq. 2.12) and the estimated covariance matrix of MLEs.  However, the inverse 

multinomial logit (expit, Eq. 3.4 3.5) complicates the calculation of the derivatives for the failure rates 

(for derivation see Section 4.2).  For this section, I assume the generalized linear model framework is 

used and provide the formulae only for those cases.  Formulae for the homogeneous rates are obtained 

as special cases in which Xif =1 for all f. 

3.5.1. Daily probabilities 

(3.11) 
ˆ

ˆ ˆ
ˆ

f

i f f i g i ig

g

m
m mX I X I X

β
 

For completeness it is worth noting the partial derivative with respect to the daily survival rate (si): 

(3.12) 
ˆ

ˆ ˆi
i i g i g

g

s
s mX I X

β
   

Application of the delta method (Eq. 2.12) is now possible, with ˆ ˆθ β  and ˆ ˆf fθ β  is Eq. (3.4), 

with derivatives as shown in Eqs (3.11 – 3.12). 

3.5.2. Overall rates 

Using Eq. (3.10): 

(3.13) 1 1a
S M , and, for arbitrary t > 1: 

(3.14) 1 1t t a t
S S M  
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First, given a matrix of the form (3.8), define i

k

d

d

M
as the matrix of element-wise derivatives of Mi with 

respect to the kth element of β (βk).  These can be obtained from Eqs. (3.11 3.12).  Second, define: t

k

d

d

S

inductively as follows: 

(3.15) 
11 a

k k

dd

d d

MS
 and, for arbitrary (t > 1), we apply the product rule for matrices: 

 (3.16) 
1 1

1 1

a tt t
t a t

k k k

dd d

d d d

MS S
S M  

The matrix t

k

d

d

S
 gives the required derivatives, which can be used with the delta method, to calculate 

the desired variances. 

3.6. Confidence limits 
Confidence limits on the multinomial probabilities are more difficult to estimate than for binomial 

probabilities.  However, the multinomial case is a direct generalization of the binomial case.  The 

method used by MCestimate was described in detail by Sambamoorthi et al. (1994). In contrast to the 

binomial model, in the multinomial case the expected coverage rate is not exact.  Instead, it is a minimal 

bound on the expected coverage rate.  In other words, the true expected error rate is less than or equal 

to the nominal error rate and the true expected coverage rate is greater than or equal to the nominal 

coverage rate.  Thus the confidence intervals provided by MCestimate are, on average, conservative. 

 As with the binomial case, generation of confidence limits begins with the logit. However, in the 

multinomial case there are F logits that must be considered as well as the survival probability.  The 

logits for the estimated failure probabilities are given by Eq. (3.4).  For each of the logits, upper and 

lower confidence limits can be calculated as described in Section 2.8 above.  Let Li and Ui represent 

column-vectors of F lower and upper confidence limits around the logits calculated individually for each 

logit.  Thus, for a specific fate, f: 

(3.17) Tˆ ˆcovif if if ifzL X β X β X , and: 

(3.18) Tˆ ˆcovif if if ifzU X β X β X . 

In Equations (3.17 3.18) z is the two-tailed z-score from a standard normal distribution and Lif and Uif 

are the fth elements of Li and Ui, respectively. Now, let Ci represent an f  x 2 matrix with Li as column 1 

and Ui as column 2.  Further, let Fi represent a 2f
 x f

  matrix consisting of all possible f-tuples generated 



 

18 

 

by drawing one element from each row of Ci.  The 2f rows of Fi form the basis for deriving simultaneous 

confidence intervals around the estimated probabilities.  However, one additional step is needed. Let Pi 

represent a matrix of dimension 2 
f x (f 

+ 1)  generated by applying the inverse multinomial logit (Eq. 3.5 

and 3.6) to each row of Fi.  For example, let Fi(r,f) represent the entry in the rth row and fth column of Fi.  

Then the rth row of Pi is generated as follows: 

(3.19) 

1

1
,1

1 exp ,
i F

i

f

r

r f

P

F

, and: 

(3.20) 

1

exp ,
, 1

1 exp ,

i

i F

i

f

r f
r f

r f

F
P

F

. 

Sambamoorthi et al. (1994) showed that the column-wise minima and maxima of Pi are conservative 

(with respect to the nominally specified α) simultaneous confidence intervals on the estimated 

probabilities (si and mif). 

4. Appendix: useful derivatives 

4.1. The derivatives of the binomial logit 

Let 
exp

1 exp

i

i

i

s
Xβ

Xβ

 
Then, by the quotient rule: 

2

1 exp exp exp 1 exp

1 exp

i i i i

i

i

s
X β X β X β X β

β β

β X β

 Therefore: 

2

1 exp exp exp exp

1 exp

i i i i i ii

i

s Xβ X β X X β X β X

β X β
 

And: 

(4.1) 
exp 1

1
1 exp 1 exp

ii
i i i i

i i

s
s s

Xβ
X X

β Xβ Xβ
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4.1. The derivatives of the multinomial logit 

Let 

1

exp
.

1 exp

if

if F

ig

g

m
X β

X β

 

Then, by the quotient rule:

 

1 1

2

1

1 exp exp exp 1 exp

1 exp

F F

ig if if ig

g gif

F

ig

g

m
X β X β X β X β

β β

β
X β  

1 1

2

1

1 exp exp exp exp

1 exp

F F

ig if if if ig ig

g gif

F

ig

g

m
X β X β X X β X X β

β
X β

 

 

1 1

1 1 1

1 exp exp
exp

1 exp 1 exp 1 exp

F F

if ig ig ig

if g gif

F F F

ig ig ig

g g g

m
X X β X β X

X β

β
X β X β X β

 

1

1 1

exp
exp

1 exp 1 exp

F

ig ig
ifif g

ifF F

ig ig

g g

m
X β X

X β
X

β
X β X β

 

1

F
if

if if ig ig

g

m
m mX X

β
 

Noting that, by Eq. 3.3, if f i iX I X X  

1

F
if

if f i i ig g i i

g

m
m mI X X I X X

β
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And finally: 

(4.2) 
1

F
if

i if f i g i ig

g

m
m mX I X I X

β

 To obtain the derivatives with respect to daily survival (si) under the multinomial logit, let 

1

1
.

1 exp
i F

ig g

g

s

X β

 

Then, by the quotient rule: 

1 1

2 2

1 1

1 exp exp

1 exp 1 exp

F F

ig ig ig
g gi

F F

ig ig

g g

s
X β X β X

β

β
X β X β

 

And: 

1

2
1

1 1
1

exp
exp1

1 exp 1 exp1 exp

F

i ig g i F
ig g igi

i F F
F g

ig ig
ig

g g
g

s
X X β I X

X β I X
X

β
X β X βX β

 

Substituting back in the daily survival and failure probabilities: 

(4.3) 
1

F
i

i i ig g i

g

s
s mX I X

β
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