
  

4. DATA ANALYSIS
 

Data analysis begins in the monitoring program 
design phase. Those responsible for monitoring 
should identify the goals and objectives for 
monitoring and the methods to be used for 
analyzing the collected data.  Monitoring 
objectives should be specific statements of 
measurable results to be achieved within a stated 
time period (Ponce, 1980b).  Chapter 2 provides 
an overview of commonly encountered monitoring 
objectives. Once goals and objectives have been 
clearly established, data analysis approaches can 
be explored. 

Typical data analysis procedures usually begin 
with screening and graphical methods, followed 
by evaluating statistical assumptions, computing 
summary statistics, and comparing groups of data. 
The analyst should take care in addressing the 
issues identified in the information expectations 
report (Section 2.2). By selecting and applying 
suitable methods, the data analyst responsible for 
evaluating the data can prevent the “data 
rich)information poor syndrome” (Ward 1996; 
Ward et al., 1986). 

This chapter provides detailed information on the 
statistical analysis of environmental monitoring 
data. The first section of the chapter is intended 
for both the manager and data analyst.  Its goal is 
to acquaint the reader with key concepts and issues 
related to data analysis.  This section also provides 
recommendations for selecting statistical 
procedures for routine analyses and can be used to 
guide the reader in selecting additional portions of 
the chapter for more in-depth reading. 

4.1 INTRODUCTION 

4.1.1 Estimation and Hypothesis Testing 

Instead of presenting every observation collected, 
the data analyst usually summarizes major 
characteristics with a few descriptive statistics. 
Descriptive statistics include any characteristic 
designed to summarize an important feature of a 
data set or sample (Freund, 1973).  The reader 
should note that a sample in this context refers to a 

group of observations selected from the target 
population. In the case of water quality 
monitoring, descriptive statistics of samples are 
used almost invariably to formulate conclusions or 
statistical inferences regarding populations 
(MacDonald et al., 1991; Mendenhall, 1971; 
Remington and Schork, 1970; Sokal and Rohlf, 
1981). A point estimate is a single number 
representing the descriptive statistic that is 
computed from the sample or group of 
observations (Freund, 1973). For example, the 
mean total suspended solids concentration during 
baseflow is 35 mg/L.  Point estimates such as the 
mean (as in this example), median, mode, or 
geometric mean from a sample describe the central 
tendency or location of the sample.  The standard 
deviation and interquartile range could likewise be 
used as point estimates of spread or variability. 

The use of point estimates is warranted in some 
cases, but in nonpoint source analyses point 
estimates of central tendency should be coupled 
with an interval estimate because of the large 
spatial and temporal variability of nonpoint source 
pollution (Freund, 1973). For example, the sample 
mean and standard deviation could be used to 
report that the mean total suspended solids 
concentration during baseflow is 35 ± 10 mg/L 
using a 95 percent confidence interval. Stated in 
other words, there is a 95 percent chance that the 
actual mean baseflow concentration is between 25 
and 45 mg/L.  There is a 5 percent chance that the 
mean baseflow concentration is outside this range. 
The confidence interval is a function of the 
variability of the data, the number of observations, 
and the probability (e.g., 95 percent) selected by 
the data analyst.  This sort of estimation can be 
useful in developing baseline information, 
developing or verifying models, or determining the 
load of a single nonpoint source runoff event. 

Evaluating the effectiveness of controls and 
changing environmental conditions is one of the 
key monitoring program objectives described in 
Chapter 2. In addition to summarizing key 
statistics that describe the central tendency and 
spread of water quality variables and biological 
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metrics, statistical analysis usually involves 
hypothesis testing.  Two common types of 
hypothesis testing done in environmental 
monitoring are step changes and monotonic trends. 
Step changes are typically evaluated when 
comparing at least two different sample 
populations such as an impacted site and a 
reference site or when comparing one sample 
population to an action level. Step changes can 
also be evaluated when comparing samples 
collected during different time periods. 
Monotonic trends (e.g., consistently increasing or 
decreasing concentrations) are typically evaluated 
when the analyst is investigating long-term 
gradual changes over time. 

The null hypothesis (Ho) is the root of hypothesis 
testing. Traditionally, null hypotheses are 
statements of no change, no effect, or no 
difference. For example, the flow-averaged mean 
total suspended solids concentration after BMP 
implementation is equal to the flow-averaged 
mean total suspended solids concentration before 
BMP implementation.  The alternative hypothesis 
(Ha) is counter to the null hypothesis, traditionally 
being statements of change, effect, or difference. 
Upon rejecting Ho, Ha would be accepted. 
Regardless of the statistical test selected for 
analyzing the data, the analyst must select the 
significance level of the test. That is, the analyst 
must determine what error level is acceptable. 
There are two types of errors in hypothesis testing: 

Type I:  The null hypothesis 
(Ho) is rejected when Ho is 
really true. 

error is equal to the significance level (α) of the 
test and is selected by the data analyst.  In most 
cases, managers or analysts define 1-α to be in the 
range of 0.90 to 0.99 (e.g., a confidence level of 90 
to 99 percent), although there have been 
environmental applications where 1-α has been set 
to 0.80. Selecting a 95 percent confidence level 
implies that the analyst will incorrectly reject the 
Ho (i.e., a false positive) 5 percent of the time. 

Type II error depends on the significance level, 
sample size, and variability, and which alternative 
hypothesis is true.  The power of a test (1-β) is 
defined as the probability of correctly rejecting Ho 

when Ho is false. In general, for a fixed sample 
size, α and β vary inversely.  For a fixed value of 
α, β can be reduced by increasing the sample size 
(Remington and Schork, 1970).  Figure 4-1 
illustrates this relationship. Suppose this interest is 
in testing whether there is a significant difference 
between the means from two independent random 
samples.  As the difference in the two sample 
means increases (as indicated on the x-axis), the 
probability of rejecting Ho, the power, increases. If 
the real difference between the two sample means 
is zero, the probability of rejecting Ho is equal to 
the significance level, α. Figure 4-1A shows the 
general relationship between α and β if α is 
changed. Figure 4-1B shows the relationship 
between α and β if the sample size is increased. 

Table 4-1. Errors in hypothesis testing. 

Type II:  The null hypothesis 
(Ho) is accepted when Ho is 
really false. 

Table 4-1 depicts these errors, 
with the magnitude of Type I 
errors represented by α and 
the magnitude of Type II 
errors represented by β. The 
probability of making a Type I 

Decision 

State of affairs in the population 

Ho is True Ho is False 

Accept Ho 1-α 
(Confidence level) 

β 
(Type II error) 

Reject Ho α 
(Significance level) 

(Type I error) 

1-β 
(Power) 
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Figure 4-1. Comparison of α and β. 
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4.1.2	 Characteristics of Environmental 
Data 

The selected statistical method must match the 
type of environmental data collected and the 
decisions to be made.  Although summarizing the 
mean annual dissolved oxygen concentration 
along an impaired stream might provide an 
indication of habitat quality, evaluating the 
minimum dissolved oxygen during summer 
months over the same time period might have a 
greater impact on subsequent management 
decisions since that is when critical conditions 
often occur. Environmental managers and data 
analysts must collectively determine which 
statistical methods will result in the most useful 
information for decision makers. 

The selection of appropriate statistical methods 
must be based on the attributes of the data 
(Harcum, 1990).  Two main types of attributes 
important to environmental monitoring are data 
record limitations and statistical characteristics. 
Common data record limitations include missing 
values, changing sampling frequencies over time, 
different numbers of samples during different 
sampling periods, measurement uncertainty, 
censored data (e.g., “less-thans”), small sample 
sizes, and outliers. Data limitations are, for the 
most part, human-induced attributes that often 
result in less reliable observations and less 
information for a given data set.  The presence of 
data limitations also increases the complexity in 
applying standard statistical methods (and using 
commercially available software). 

Common statistical characteristics include location 
(central tendency), variability (scale or spread), 
distribution shape, seasonality, and serial 
correlation. Table 4-2 presents a variety of 
methods for characterizing data that are helpful in 
providing a general understanding of water quality 
data and selecting appropriate statistical methods. 
Cross-references for each method are provided in 
the last column in Table 4-2. 

4.1.3	 Recommendations for Selecting 
Statistical Methods 

The statistical methods discussed in this manual 
include parametric and nonparametric procedures. 
Parametric procedures assume that the data being 
analyzed have a specific distribution (usually 
normal), and they are appropriate when the 
underlying distribution is known (or is assumed 
with confidence). For data with an unknown 
distribution, nonparametric methods should be 
used since these methods do not require that the 
data have a defined distribution. 

Nonparametric methods can directly handle special 
data commonly found in the nonpoint source area, 
such as censored data or outliers. Censored data 
are those observations without an exact numerical 
value, such as a value of less than 10 μg/L (<10 
μg/L) or not-detected (ND). Censored data often 
appear in laboratory reports when the 
concentration being analyzed is lower than the 
detection limit or higher than the allowable range 
for a particular type of laboratory equipment or 
procedure (Dakins et al., 1996; Gilliom and Helsel, 
1986). Censored data can cause problems in 
parametric methods because these methods often 
require that all data have numerical values.  In this 
case, nonparametric methods can be used because 
they often deal with the ranking of the data, not the 
data themselves.  For example, for data “below the 
detection limit,” any value that is less than the 
smallest value of all the data being analyzed can be 
assigned. This assignment does not affect the 
ranking of the data even though the exact value of 
the “below the detection limit” is unknown. 
Nonparametric procedures are also less affected by 
outliers (Spooner, 1994a). 

On the other hand, nonparametric procedures are 
not as powerful as their parametric counterparts 
when the assumptions of the parametric procedure 
are met.  Thus, when the underlying distributions 
of the data being analyzed are known or can be 
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Table 4-2. Methods for characterizing data. 

Data Characteristic Method 
Method 

Type Section 

Central tendency Sample mean 
Sample median 
Sample geometric mean 
Boxplot 

P 
N 
P 
G 

4.2.1 
4.2.1 
4.2.1 
4.3 

Spread Sample standard deviation 
Interquartile range 
Sample geometric standard deviation 
Range, maximum-minimum 
Interquartile range 
Boxplot 

P 
N 
P 

P,N 
N 
G 

4.2.2 
4.2.2 
4.2.2 
4.2.2 
4.2.2 
4.3 

Distribution shape Histogram 
Percentiles 
Sample skewness 
Sample kurtosis 
Shapiro-Wilk test 

G 
N 
P 
P 
N 

4.3 
4.2.2 
4.4.1 
4.4.1 
4.4.1 

Seasonal variation Time series plots 
Seasonal boxplot 
ANOVA 
Kruskal-Wallis test 

G 
G 
P 
N 

4.3 
4.3 
4.6 
4.6.1 

Serial correlation Sample autocorrelation 
Spearman's rho 

P 
N 

4.9.2 
4.9.2 

Key to Method Type:  P = Parametric, N = Nonparametric, G = Graphical 

Adapted from Ward et al., 1990. 

transformed to the form in which standard theory 
can be applied, parametric methods might be 
preferred. As a matter of fact, to improve the 
analytical power, nonparametric methods are often 
modified to include more assumptions and 
requirements.  This makes the nonparametric 
methods more powerful, and the difference 
between nonparametric and parametric methods 
becomes smaller (Hipel, 1988).  For example, the 
hypotheses associated with the Mann-Whitney test 
(for comparing two independent random samples) 
vary depending on which assumptions are valid. 

The remainder of this section provides 
recommendations for selecting statistical methods 

that can be applied on a routine basis for 
evaluating the average, changing, and extreme 
conditions of environmental variables (Table 4-3, 
adapted from Ward et al., 1990).  In some 
instances, more appropriate methods might be 
available depending on the specific information 
needs. For routine analyses, both parametric and 
nonparametric methods are recommended. 
Nonparametric procedures are recommended 
together with parametric procedures since 
nonparametric procedures tend to be resilient to 
characteristics commonly found in nonpoint source 
monitoring data (Berryman et al., 1988; Gilliom 
and Helsel, 1986; Harcum et al., 1992; Harris et 
al., 1987; Helsel and Hirsch, 1995; Hirsch et al., 
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1982; van Belle and Hughes, 1984; Lettenmaier, 
1988). However, the data analyst must be aware 
that violating assumptions associated with 
parametric or nonparametric tests can lead to 
incorrect conclusions about the collected data. 

Average conditions 

What is the quality of water?  What were the 
phosphorus loadings from the last storm?  To 
answer these types of questions the data analyst is 
typically faced with describing the average 
conditions. Measures of central tendency and 
spread are the most common measures of average 
conditions. As suggested earlier, using the mean, 
geometric mean, or median is recommended for 
summarizing the central tendency and the standard 
deviation, geometric standard deviation, and 
interquartile range are recommended measures of 
spread or dispersion. Each parameter (mean, 
median, etc.) is a useful point estimate; however, 
no information on the parameter's accuracy is 
given. Therefore, it is also recommended that 
point estimates of central tendency be reported 
with confidence limits. 

The selection of the mean (and standard deviation) 
versus the median (and interquartile range) should 
be based on the objective and type of data.  The 
mean and standard deviation are sensitive to a few 
large observations. This is particularly true for the 
small sample sizes and skewed data that are 
common in nonpoint source monitoring.  If the 
goal is to estimate pollutant loadings, an average 
concentration would be appropriate (Helsel and 
Hirsch, 1995). In general, parametric and 
nonparametric parameters are acceptable when the 
data are symmetrically distributed. 
Notwithstanding the pollutant loading example 
above, data that are not symmetrically distributed 
(skewed) should typically be summarized with the 
median and interquartile range.  The geometric 
mean and standard deviation are most appropriate 
when the data typically range over a couple orders 
of magnitude.  The presentation of geometric 
means is also called for in some regulations such 

as those for coliform bacteria.  In many cases, 
simple graphical displays such as time series or 
box-and-whiskers plots will convey more 
information than tables of numerical results. 

Changing conditions 

One of the most frequently asked questions related 
to the evaluation of monitoring data is whether 
conditions have improved or degraded.  The data 
collected for evaluating changes will typically 
come as (1) two or more sets of random samples or 
(2) a time series at a single station.  In the first 
case, the analyst will test for a shift or step change. 
This would be typical for data collected from a 
nested paired and paired watershed design. Or 
when performing a biological assessment, for 
example, the goal might be to determine whether 
there is a significant difference (i.e., a step change) 
in the biological metric between the reference and 
test (targeted) sites. 

The Mann-Whitney test is recommended for 
comparing two random samples when the 
distribution of the data is unknown or sufficiently 
nonnormal.  The Student's t test can be used when 
the data are normally distributed.  It has been 
demonstrated that the Student's t test can be 
successfully applied when the data are not 
normally distributed and might be more powerful 
under selected circumstances (Montgomery and 
Loftis, 1987), but that approach is not 
recommended here.  The Kruskal-Wallis test (an 
extension of the Mann-Whitney test) is 
recommended for when there are three or more 
random samples.  For example, numerous 
biological surveys are initiated by collecting data 
during the spring, summer, and fall.  The 
hypothesis might be to determine whether there is 
a significant difference in key biological indices 
between the different seasons (index periods). An 
analysis of variance could be used if the data were 
normally distributed.  Applying the Mann-Whitney 
or Student's t test to each pair of random samples is 
not appropriate. 
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A special case of random sampling is when the 
random samples from one population (e.g., the 
upstream location) are paired with random 
samples from the second population (e.g., the 
downstream location).  This situation is referred to 
as paired or matched sampling.  The Wilcoxon 
signed rank test is recommended for paired 
samples.  The paired t test can be used if the data 
are normally distributed. 

In the second case we commonly test for 
monotonic or gradual changes at a single station. 
In this case, observations are typically taken on a 
regular basis (e.g., weekly, monthly, quarterly). 
The seasonal Kendall test is recommended for 
hypothesis testing.  Linear regression might also 
be used but is generally discouraged.  If the data 
do not have seasonal cycles, the Mann-Kendall 
test could be used. 

Determining only the existence of a change is 
sometimes not sufficient for decision makers.  It is 
also necessary to estimate the magnitude of the 
change. The seasonal Hodges-Lehman estimator 
is recommended for estimating the magnitude 
when comparing two random samples.  The 
seasonal Kendall slope estimator is recommended 
when estimating the magnitude of monotonic 
trends. The difference in means and the Hodges-
Lehman estimator are recommended for changes 
between two independent random samples, and the 
Sen slope estimator is recommended for 
estimating the magnitude of changes when 
seasonality is not present. 

Extreme values 

The most effective means for summarizing 
extreme values is to compute the proportion (or 
frequency) of observations exceeding some 
threshold value. This can be accomplished by 
plotting a time series with the threshold value or 
dividing the number of excursions by the total 
number of observations.  A common analysis 
would be to compare the proportion of excursions 
from one year or station to the proportion of 
excursions from another year or station.  A test for 

equality of proportions can be performed, or the 
confidence limits on proportions can be compared. 

The evaluation of extreme values related to 
nonpoint source monitoring and other rain-induced 
impacts (e.g., combined sewer overflows (CSOs)) 
may require greater care.  For example, when 
evaluating the number of overflows in a year or 
comparing storms, it is important to make sure that 
the data are comparable (similar rainfall, 
antecedent conditions, etc.). This may result in 
selecting portions of data sets for analysis. 

4.1.4 Data Stratification 

Lumping measurements over a period of time has 
limited use in water quality evaluations unless the 
period of time is defined in more specific terms 
and is directly related to the source of the 
identified problem.  This is particularly true when 
comparing the effectiveness of management 
measures.  If the implemented management 
measure is designed to reduce pollutant loadings 
during storm events, lumping baseflow and storm 
event data together for analysis makes little sense 
and might mask the effectiveness of the 
management measure. 

In urban areas the time periods should be set to 
correspond to the pollutant of concern and urban 
activities. Depending on the monitoring 
objectives, it might be necessary to consider 
periods of activity and nonactivity.  If phosphorus 
is the pollutant of concern, periods that correspond 
to lawn maintenance activities and spring flush 
should be considered. If sediment is the problem, 
periods that correspond to the construction season 
should be considered. For irrigated agriculture, 
two periods should be established to correspond to 
irrigation and nonirrigation time. 

In nonirrigated agricultural settings the periods 
selected should conform to the normal agricultural 
management pattern of the watershed.  These 
periods should be based on amount of surface 
covered, precipitation patterns, and the timing of 
land and/or water management activities.  By 
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defining time periods, the analyst can evaluate a 
hypothesis regarding whether significant 
differences in nitrogen and phosphorus losses 
occur during different agricultural seasons. 
Alberts et al. (1978) used this concept to examine 
seasonal losses of nitrogen and phosphorus in 
Missouri during three periods: 

•	 Fertilizer, seedbed, and establishment period 
(March-June). 

•	 Reproduction and maturation period (July-
October). 

•	 Residue period (November-February). 

Once temporal stratification has been completed, 
and if sufficient data are available, the water 
quality variable being examined could be 
categorized by initiation/transport mechanisms.  In 
a sediment-related problem, for example, three 
categories were devised (Davenport, 1984b) to 
relate the principal detachment process of 
sediment particles: 

(1)	 Baseflow (no rainfall or overland runoff to the 
stream).  This category consists of non­
precipitation-induced flow and is considered 
as the normal day-to-day flow (Viessman et 
al., 1977). Sediment concentrations are 
dependent on available material in the channel 
network and the carrying capacity of the flow. 

(2)	 Rainfall and snowmelt runoff.  This category 
consists of runoff events where the sediment 
concentrations are dependent on flowing water 
detachment or reentrainment of previously 
detached soil particles, together with sufficient 
overland flow to transport them to the stream 
network. 

(3)	 Event.  This category consists of rainfall-
runoff events where the sediment 
concentrations are dependent on the 
detachment of soil particles due to the impact 
of raindrops and flowing water detachment or 
reentrainment of previously detached soil 

particles, together with overland flow to 
transport them to the stream network. 

Data categorized by detachment category can then 
be examined in terms of resource management 
systems implemented to control the various types 
of detachment.  It should be noted that data 
stratification results in smaller data sets.  These 
new data sets must be checked for normality before 
performing any statistical analyses on them.  It is 
also important to note that due to the smaller data 
set size the differences between data sets must be 
more pronounced to be significant. 

4.1.5	 Recommended Reading List and 
Available Software 

Recommended reading list 

Over the last 20 years, considerable effort by 
researchers and practitioners has gone into the 
development of improved statistical methods for 
analyzing environmental data.  Nonetheless, there 
is probably no single reference that fully covers all 
of the issues that the data analyst must consider 
when selecting methods for analyzing 
environmental data.  The following list provides a 
summary of selected references that provide more 
details about a wider variety of issues.  These 
references are strongly recommended for those 
who need a more in-depth discussion than that 
provided in this chapter. 

Chambers, J.M., W.S. Cleveland, B. Kleiner, and 
P.A. Tukey. 1983. Graphical Methods for Data 
Analysis. Duxbury Press, Boston, 395 pp. 

Conover, W.J. 1980. Practical Nonparametric 
Statistics, 2nd ed. Wiley, New York, 493 pp. 

Gilbert, R.O. 1987. Statistical Methods for 
Environmental Pollution Monitoring. Van 
Nostrand Reinhold Company, New York, 320 pp. 
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Helsel, D.R. and R.M. Hirsch. 1995. Statistical 
Methods in Water Resources. Elsevier, 
Amsterdam, 529 pp. 

Snedecor, G.W. and W.G. Cochran. 1980. 
Statistical Methods, 7th ed. The Iowa State 
University Press, Ames, Iowa, 507 pp. 

Ward, R.C., J.C. Loftis, and G.B. McBride. 1990. 
Design of Water Quality Monitoring Systems. Van 
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Available software 

Many statistical methods have been computerized 
in easy-to-use software that is available for use on 
personal computers.  Inclusion or exclusion in this 
section does not imply an endorsement or lack 
thereof by the U.S. Environmental Protection 
Agency.  Commercial off-the-shelf software that 
covers a wide range of statistical and graphical 
support includes SAS, Statistica, Statgraphics, 
Systat, Data Desk (Macintosh only), BMDP, and 
JMP. Numerous spreadsheets, database 
management packages, and graphics programs can 
also be used to perform many of the needed 
analyses.  In addition, the following programs, 
written specifically for environmental analyses, 
are available: 

SCOUT: A Data Analysis Program, EPA, NTIS 
Order Number PB93-505303. 

WQHYDRO (WATER 
QUALITY/HYDROLOGY 
GRAPHICS/ANALYSIS SYSTEM), Eric R. 
Aroner, Environmental Engineer, P.O. Box 18149, 
Portland, OR 97218. 

WQSTAT, Jim C. Loftis, Department of Chemical 
and Bioresource Engineering, Colorado State 
University, Fort Collins, CO 80524. 

4.2 SUMMARY (DESCRIPTIVE) STATISTICS 

4.2.1 Point Estimation 

Central tendency 

The central tendency of a data set is the most 
important and widely used statistic (Gaugush, 
1986; Ponce, 1980a). The mean, median, and 
mode are three common measures of central _
tendency.  The arithmetic mean (x) is the sum of
 
the individual observations (xi) divided by the
 
number of observations (n): 


(4-1)
 

The median (P.50) is the middle value when all 
observations are ordered by magnitude (x1 # x2 ... 
# xn). When there is an even number of 
observations, the median is the arithmetic mean of 
the two middle observations: 

(4-2) 

The mode is the most frequently occurring value in 
the set of observations. Comparison of these 
measures of central tendency reveals that the mean 
is sensitive to extreme values, whereas the median 
is not (Helsel and Hirsch, 1995; Remington and 
Schork, 1970). When the data are symmetrically 
distributed, the mean and median are comparable. 
In the case of nonpoint source pollution where 
storm events generate very large pollutant 
loadings, it is clear that the event mean and median 
may be very different.  It is important that the data 
analyst consider the ramifications of relying on just 
one of these statistics when reporting results. 
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Other measures of central tendency include the 
midrange, geometric mean (GMx), harmonic mean 
(HMx), and weighted mean (Remington and 
Schork, 1970). The midrange is the arithmetic 
mean of the smallest and largest values and is 
influenced by extreme values.  The geometric 
mean can be computed by 

(4-3) 

where ln(x) and exp(x) represent the natural log 
and exponential of the quantity x.  It is the mean 
of the logarithms, transformed back to its original 
units. If the log-transformed data (i.e., yi = ln xi) 
are symmetric, GMx is a an unbiased estimate of 
the median (Helsel and Hirsch, 1995; Gaugush, 
1986). It is common to report the GMx for 
coliform data.  It has also become common 
practice to estimate the HMx flow for performing 
chronic risk assessments.  It is computed as the 
reciprocal of the mean of the reciprocals using the 
following formula: 

(4-4) 

The weighted mean is a mean for which all 
observations do not have equal importance.  For 
example, a common application of weighted 
means is the use of flow-weighted means for water 
quality variables measured during a storm event or 
when comparing water quality between two stream 
systems with different volumes of water flowing 
through them.  The weight can be based on the 
portion of the population that the observation 
represents, either spatially or temporally (Gilbert, 
1987). This may occur when the monitoring 

program has used a stratified sampling strategy 
and the strata have different sample sizes.  In 
general, a weighted mean is computed where each 
observation is accorded its own weight (wi): 

(4-5)
 

Summarizing storm event data 

Three approaches for summarizing storm event 
data, which are applications of the weighted mean 
described above, are the flow-weighted mean 
concentration (FWMC), the time-weighted mean 
concentration (TWMC), and the event mean 
concentration (EMC). The FWMC and TWMC 
are calculated as (USEPA, 1990) 

(4-6)
 

(4-7)
 

where 

Ci = concentration of the ith sample; 
Ti = time period for which the ith sample is used 

to characterize the concentration; and 
Qi = instantaneous discharge at the time of the 

ith sample. 
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The numerator of Equation 4-6 is equal to the total 
loading. The EMC can be estimated with the 
following equation and is similar to the TWMC 
except for end effects: 

(4-8) 

Figure 4-2 presents a summary of the rainfall, 
runoff, and total nitrogen data collected from a 
storm event in Florida.  Runoff (1,780 ft3) from 
this 0.2-inch storm lasted for approximately 2.4 
hours. The total runoff volume and precipitation 
depth can be computed by integrating the 
representative curves in Figure 4-2 or directly 
from the data.  The nitrogen concentrations are 
typical of a “first flush” in which the concentra-

tions are higher during the early part of the runoff. 
Tables 4-4 and 4-5 present the raw nitrogen values 
from Figure 4-2 together with the example 
calculations for computing the FWMC and EMC, 
respectively. 

The first column in Table 4-4 is the time since the 
beginning of the storm.  The fourth column is the 
time interval, Ti, represented by each sample.  For 
example, the first entry, T1, of 540 seconds is 
computed as (0.24 hours - 0.09 hours) times 3600 
seconds/hour. The value of 0.24 is halfway 
between 0.20 and 0.28 hours. Selecting the 
halfway point between 0.20 and 0.28 hours centers 
the water quality observation in the time period 
being evaluated. The second entry, T2, of 306 
seconds is computed as (0.325 hours - 0.24 hours) 
times 3,600 seconds/hour.  The value of 0.325 is 
halfway between 0.28 and 0.37 hours.  The value 
of 0.24 is halfway between 0.20 and  0.28 hours. 
The fifth column is equal to flow (column 2) 
multiplied by the time interval (column 4).  For 

Figure 4-2. Precipitation, runoff, total nitrogen, and total phosphorus from a single storm event in Florida. 
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Table 4-4. Total nitrogen (TN) runoff concentrations for a single storm event in Florida. 

Qi Ci Ti TiQi CiTiQi 

Time Flow TN Int. 
(hr) (cfs) (mg/L) (sec) (ft3) (mg-ft3/L) 

0.09 0.00 - -
0.20 0.14 2.44  540
0.28 0.30 2.21  306
0.37 0.30 2.18  306
0.45 0.30 0.97  288
0.53 0.38 0.93  306 
0.62 0.50 1.19  270 
0.68 0.53 1.85  270 
0.77 0.68 1.64  306 
0.85 0.58 1.30  360 
0.97 0.44 0.94  504 
1.13 0.24 0.97  594 
1.30 0.13 1.08 4302 
2.41 0.00 

Sum 

FWMC = 2,768.23 / 2,080.44 = 1.33 mg/L 

-
75.60 
91.80 
91.80 
86.40

116.28 
135.00 
143.10 
208.08 
208.80 
221.76 
142.56 
559.26 

2,080.44 

-
184.46 
202.88 
200.12 
83.81 

108.14 
160.65 
264.74 
341.25 
271.44 
208.45 
138.28 
604.00 

2,768.23 

example, the entry of 75.60 ft3 is equal to 0.14 cfs 
times 540 seconds.  The sum of the fifth column is 
equal to the denominator of Equation 4-6.  The 
sixth column is equal to the volume (column 5) 
multiplied by the nitrogen concentration (column 
3). For example, the entry of 184.46 mg-ft3/L is 
equal to 75.60 ft3 times 2.44 mg/L.  The sum of 
this column is equal to the total nitrogen loading 
for the storm (and the numerator in Equation 4-6). 
Using conversions, the total nitrogen loading for 
this storm is 78.4 grams.  As shown in Table 4-4, 
the FWMC is equal to 1.33 mg/L.  Because 
different analysts use different conventions for 
analyzing storms, it is important that the analyst 
exercise care when comparing the storm 
summaries computed by different analysts. 

Table 4-5 demonstrates the use of Equation 4-8 
with the same storm event presented in Figure 4-2 
and Table 4-4. The first three columns of Table 4­
5 are the same as Table 4-4.  The next four 
columns correspond to intermediate calculations 
needed for Equation 4-8. For example, the values 
of 0.11, 0.000, 0.342, and 0.14 in the first data row 
are computed from 0.20-0.09, 0.00 x 0.000, 0.14 x 

2.44, and 0.00 + 0.14, respec-tively.  The last two 
columns correspond to intermediate calculations 
for the numerator and denominator of Equation 4­
8, respectively.  Finally, the EMC can be 
calculated as 0.6722/0.4981 or 1.35 mg/L, as 
shown in Table 4%5. 
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Table 4-5. Total nitrogen (TN) runoff concentrations for a single storm event in Florida and example 
calculations for the EMC. 

Time Flow TN Ti+1 CiCQi Ci+1C Qi+ 
(hr) (cfs) (mg/L) -Ti Qi+1 Qi+1 Num. Den. 

0.09 0.00 0.00 0.11 0.000 0.342 0.14 
0.20 0.14 2.44 0.08 0.342 0.663 0.44 
0.28 0.30 2.21 0.09 0.663 0.654 0.60 
0.37 0.30 2.18 0.08 0.654 0.291 0.60 
0.45 0.30 0.97 0.08 0.291 0.353 0.68 
0.53 0.38 0.93 0.09 0.353 0.595 0.88 
0.62 0.50 1.19 0.06 0.595 0.981 1.03 
0.68 0.53 1.85 0.09 0.981 1.115 1.21 
0.77 0.68 1.64 0.08 1.115 0.754 1.26 
0.85 0.58 1.30 0.12 0.754 0.414 1.02 
0.97 0.44 0.94 0.16 0.414 0.233 0.68 
1.13 0.24 0.97 0.17 0.233 0.140 0.37 
1.30 0.13 1.08 1.11 0.140 0.000 0.13 
2.41 0.00 

0.0188 
0.0402 
0.0593 
0.0378 
0.0258 
0.0427 
0.0473 
0.0943 
0.0748 
0.0701 
0.0517 
0.0317 
0.0779 

0.0077 
0.0176 
0.0270 
0.0240 
0.0272 
0.0396 
0.0309 
0.0545 
0.0504 
0.0612 
0.0544 
0.0315 
0.0722 

Sum 

The event mean concentration (EMC) = 0.6722 / 0.4981 = 1.35 mg/L 

0.6722 0.4981 

Loading rates 

Converting data into a loading rate is a very 
common practice in nonpoint source evaluations. 
Computing loading rates results in factoring out 
activities that are related to the data collection or 
generation process. The most common 
conversions are related to time period (kg/yr), unit 
area (kg/ha), or a combination of unit area and 
time period (kg/ha/month).  The other major type 
of conversion is related to parameter generation or 
transport factors such as rainfall and runoff; 
examples are kilograms per centimeter of 
precipitation or kilograms per cubic liter of 
streamflow. 

Examples of raw data and normalized data are 
provided in Tables 4-6 and 4-7, respectively.  The 
watershed is 20 ha and has three consecutive years 

of pre- and post-implementation sediment loading, 
precipitation, and runoff data. Review of Table 4­
7 indicates that there has been a 20 percent 
reduction in sediment generated per centimeter of 
rainfall and a 22 percent reduction in annual 
loading. This indicates that sediment loading, 
adjusted for runoff and total precipitation, has 
decreased. A more detailed frequency analysis 
would be required to test for statistical 
significance. It might also be useful to consider 
other issues such as rainfall intensity. 

Summarizing data with censored observations 

Observations reported as less-than or nondetect are 
often troublesome for many statistical procedures. 
Quite simply, it is difficult to compute the mean 
(or any number of other statistics) when one or 
more of the values is reported as less than the 
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Table 4-6. Raw data by time period. 

1971-1973
 
Total sediment loading 48 kg
 
Total precipitation 
Total runoff 

120 cm
 
L315 

1974: Implementation of terraces and conservation 
tillage 

1975-1977 
Total sediment loading 45 kg 
Total precipitation 
Total runoff 

180 cm 
L318 

Table 4-7. Loadings rate data. 

1971-1973 
Average annual loading 12 kg/year 
Average annual loading 
Average annual loading 

0.10 kg/cm/year 
1.07 kg/L3/year 

1974: Implementation of terraces and conservation 
tillage 

1975-1977 
Average annual loading 15 kg/year 
Average annual loading 
Average annual loading 

0.08 kg/cm/year 
0.83 kg/L3/year 

detection limit.  Some authors have recommended 
not censoring the data (Dakins et al., 1996; Porter 
et al., 1988), but this concept has not been adopted 
too often in practice. One approach is to substitute 
one-half the detection limit for the censored 
observations. This practice is discouraged by 
Helsel and Hirsch (1995), Although it is widely 
used due to quick implementation in spreadsheet 
software. 

Gilbert (1987) describes the 
trimmed mean and the 
Winsorized mean for use when 
there are censored data in the 
data set. The trimmed mean is a 
useful estimator of the mean 
when the data are symmetrically 
distributed and it is necessary to 
guard against erroneous data or 
when censored observations are 
present (Gilbert, 1987). The 
trimmed mean is equal to the 
arithmetic mean after equal 
proportions of the smallest and 
largest observations have been 
dropped from the analysis. 
Research has suggested that for 
symmetric distributions, no more 
than 50 percent of all data should 
be dropped (Hoaglin et al., 
1983). If the data are not 
symmetric, no more than 30 
percent of all data should be 
dropped (Mosteller and Rourke, 
1973). In all cases, the 
percentage of observations 
trimmed should be reported. 

The Winsorized mean can be 
computed by estimating the 
mean after substituting an equal 
proportion of the smallest 
observations with the next 
largest observation and the 
largest observations with the 
next smallest observation.  Two 
final approaches for estimating 

summary statistics with censored data include 
maximum likelihood estimation (Cohen, 1959) and 
probability plotting procedures (Travis and Land, 
1990). Helsel and Hirsch (1995) describe these 
methods and their shortcomings, particularly with 
small sample sizes.  Helsel and Cohn (1988) 
provide approaches estimating summary statistics 
when there are multiple censoring levels in the 
same data set. 
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Dispersion 

Measures of dispersion or measures of variation 
describe the extent to which the data are spread 
out from the central tendency (Freund, 1973).  The 
measures of dispersion described in this manual 
are the range, variance, standard deviation, and 
interquartile range. The variance (and standard 
deviation) are acceptable measures of dispersion 
when the data are normally distributed or can be 
transformed into normally distributed data.  Even 
more so than the mean, the variance can be 
influenced by a few outliers.  The interquartile 
range is a stable estimate of dispersion. 

The range of a set of observations is simply the 
difference between the largest and smallest values 
and should be considered only as a rough estimate 
of dispersion due to its dependence on extreme 
values (Gaugush, 1986; Ponce, 1980a; Remington 
and Schork, 1970). 

The variance (s²) is given by the following: 

(4-9) 

The standard deviation (s) is the square root of the 
variance. For observations that come from a 
normal distribution, about 68 percent of the 
observations are within ± one standard deviation 
of the mean (Figure 4-3A).  Figure 4-3B 
demonstrates the effect of changing the mean and 
variance for a normal distribution. 

In cases where it is necessary to compare standard 
deviations for samples with different means, a 
measure of relative variation is needed.  The 
variation in a population can also be measured 
using the coefficient of variation (CV) and is 
defined as: 

(4-10) 

Since CV is unitless, it does not matter what units 
(e.g., mg/L, μg/L) are used, making qualitative 
comparisons of different studies easier.  In Figure 
4-3B, the CVs for the two normal distributions are 
nearly the same (0.25 and 0.236).  The CV can also 
be used to compare the dispersions of two or more 
data sets that are measured in different units.  It is 
recommended that analysts use the above equation 
for computing CV although some analysts 
commonly multiply the above result by 100. 

The interquartile range is a robust alternative (i.e., 
it changes little in the presence of outliers) to the 
standard deviation (Gaugush, 1986; Helsel and 
Hirsch, 1995). It is the difference between the 
observation at the upper quartile, Q3 (P.75), and the 
observation at the lower quartile, Q1 (P.25). The 
upper quartile is the observation value for which 
75 percent of the observation values are lower, and 
the lower quartile is the value for which 25 percent 
of the observation values are lower. 

To compute a quartile, the data must be ordered 
from smallest to largest observation.  Then 
compute p(n+1) where p corresponds to the 
quartile (as a fraction), either 0.25 or 0.75, and n is 
the number of observations.  Consider the 
following example of 10 observations that have 
been ordered from low to high: 

<0.10, 0.11, 0.16, 0.51, 0.59, 0.68, 0.79, 0.85, 
0.98, 3.00 

For n equal to 10, the lower and upper quartile are 
equal to the 2.75th (0.25 x 11) and 8.25th (0.75 x 
11) ordered observation. Using the data from 
above, Q1 is equal to 0.11 + 0.75 x (0.16-0.11) or 
0.1475 and Q3 is equal to 0.85 + 0.25 x (0.98-0.85) 
or 0.8825. Similar to the CV, the coefficient of 
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Figure 4-3. Comparison of several theoretical distributions. 
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quartile variation (V) can be used to compare 
different data sets: 

(4-11) 

Skewness and Kurtosis 

Skewness (γ) is a measure of distribution 
symmetry and is given by the following formula: 

(4-12) 

Figure 4-3C is a comparison of a lognormal 
distribution (positively skewed) and two 
symmetric distributions.  The kurtosis (k) of a 
distribution describes its peakedness relative to the 
length and size of its tails (Remington and Schork, 
1970). It has been argued, however, that kurtosis 
measures tail heaviness, not the peakedness of a 
distribution (SAS Institute, Inc., 1985a). The 
normal distribution is considered to have 
intermediate kurtosis (mesokurtic).  Flat 
distributions with short tails have low kurtosis 
(platykurtic), whereas distributions with sharp 
peaks and long tails have high kurtosis 
(leptokurtic). These types of distributions are also 
shown in Figure 4-3C. Kurtosis can be estimated 
with the following equation: 

(4-13) 

4.2.2 Interval Estimation 

In practice, the real mean and standard deviation 
of the target population are never known. We take 
random samples from the target population, 
compute the mean from the random samples, and 

infer the target population mean.  Since we cannot 
sample all of the waterbody, some error will 
always be associated with the estimate.  To report 
the reliability of estimated statistics, it is 
recommended that the confidence interval also be 
computed.  This section describes procedures for 
estimating the confidence interval for the mean, 
standard deviation, median, and quartiles. 

Mean 

For large sample sizes or samples that are normally 
distributed, a symmetric confidence interval for the 
mean is appropriate.  This is because the 
distribution of the sample mean will approach a 
normal distribution even if the data from which the 
mean is estimated are not normally distributed. 
The Student’s t statistic (tα/2,n-1) is used to compute 
a symmetric confidence interval for the population 
mean, μ: 

(4-14) 

Values for the t statistic can be found in Table D2. 
This equation is appropriate if the samples are 
normally distributed or the sample size is greater 
than 30 (Freund, 1973), although Helsel and 
Hirsch (1995) suggest that highly skewed data 
might require more than 100 observations. 

Problem: 

Fifty-four samples were collected to determine the 
fraction of water collected (i.e., the split) by a 
water and sediment sampler for plot and field 
studies (Dressing et al., 1987). The data were 
tested and found to be normally distributed with a 
mean split of 0.0265 and a standard deviation of 
0.0040. Determine the 95 and 99 percent 
confidence intervals for the population mean, μ. 
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Solution: 

For the 95 and 99 percent confidence intervals, α/2 
is equal to 0.025 and 0.005, respectively.  There 
are 53 degrees of freedom.  The t value is then 
estimated by interpolation between the values for 
50 and 60 degrees of freedom (Table D2) using 
the columns α = 0.025 and α = 0.005, respectively. 
We obtained t values of 2.0061 and 2.6726. 

The 95 percent confidence interval about the mean 
can then be estimated as 

There is a 95 percent chance that the population 
mean, μ, will fall between 0.0254 and 0.0276. 

The 99 percent confidence interval about the mean 
can then be estimated as 

There is a 99 percent chance that the population 
mean, μ, will fall between 0.0250 and 0.0280. 
Note that to have a higher confidence (99 versus 
95 percent), a bigger interval is required. 

Standard deviation 

The confidence interval for the standard deviation 
of a normal distribution for small sample size can 
be estimated as (Freund, 1973) 

(4-15)
 

where χ2 is the chi-square distribution. Values of 
χ2 can be found in Table D3. Note that since the χ2 

is not symmetric, the above inequality requires a 
different chi-square value for each end of the 
confidence interval, i.e., values for α/2 and (1-α/2). 
For large samples the following formula may be 
used (Freund, 1973): 

(4-16) 

Note that the confidence interval for the variance 
can be obtained by squaring the confidence 
interval for the standard deviation (Remington and 
Schork, 1970). 

Median and Quartiles 

Although several approaches exist to estimate 
confidence intervals for any percentile, many rely 
on assuming a normal or lognormal distribution. 
The approach presented here (Conover, 1980) for 
more than 20 observations does not rely on these 
assumptions.  Conover (1980) also provides a 
procedure for smaller sample sizes.  To calculate 
the confidence interval corresponding to the 
median, lower quartile, or upper quartile, the 
following procedure is used. 
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1.	 Order the data from smallest to largest 
observation such that 

where xp corresponds to the median, lower 
quartile, or upper quartile. 

2. Compute the values of r * and s * as 

where Zα/2 is selected from Table D1. 

3.	 Round r * and s * up to the next highest integers 
r and s. The 1-α lower and upper confidence 
limits for xp are xr and xs, respectively. 

Problem: 

Compute the 90 percent confidence interval for the 
median using the 25 observations presented below. 

0.08, 0.09, 0.10, 0.23, 0.29, 0.32, 0.38, 0.48, 0.49, 
0.61, 0.62, 0.62, 0.68, 0.70, 0.72, 0.75, 0.76, 0.77, 
0.80, 0.83, 0.84, 0.87, 0.96, 0.98, 1.00 

Solution: 

Note that the data have already been ordered and 
the median is equal to 0.68. 

r * and s * can then be computed as follows: 

r and s are therefore 9 and 17, respectively.  From 
the above listing, x9 and x17 can be estimated as 
0.49 and 0.76 mg/L, respectively. 

4.3 GRAPHICAL DATA DISPLAY 

Graphical data display is an important aspect of 
data analysis.  Gaugush (1986) recommends 
beginning an analysis with a graphical display of 
data. This is an excellent approach, though in this 
document graphical displays are discussed after 
Section 4.2, Summary Statistics, so that basic 
terminology is provided first. 

Based on an inspection of the data, the analyst 
should be able to make a qualitative assessment of 
seasonality, variance homogeneity, distributions, 
data gaps, unusual sampling patterns, the presence 
of censored data, and a general characterization of 
the available data. All of these features might have 
an influence on the type of statistical analyses to be 
performed.  By using graphical methods to 
examine the data, the data analyst can more 
appropriately select statistical methods.  The reader 
is cautioned, however, that visual inspection of the 
results cannot be used to group data into the 
categories before and after BMP implementation. 
This decision must be made based on the analyst’s 
knowledge of the system. 

Figures 4-4 to 4-7 illustrate various graphical 
displays of dissolved oxygen (DO) data for a 
monitoring station in the Delaware River at Reedy 
Island, Delaware. Each figure reveals different 
features of the data. The DO time series plot 
(Figure 4-4) demonstrates a seasonal nature to the 
data. In this case, the time series includes data 
from a 10-year time span.  Similar plots can also 
be made over shorter time periods such as 
intensive data collection efforts during a storm 
event. In the case of a storm event, the investigator 
may plot precipitation and runoff volume together 
with pollutant concentrations (see Figure 4-2). It is 
also apparent from Figure 4-4 that data are 
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Figure 4-4. Dissolved oxygen concentrations from 1980 through 1989 for the Delaware River at Reedy 
Island, Delaware, using a time series plot. 

collected more frequently in the summer months. 
Inspection of the raw data show that DO was 
typically sampled twice a month during the 
summer, once a month during the spring and 
autumn months, and less often during the winter 
months.  It is also clear that since the summer of 
1984, the DO has not dropped below 5.0 mg/L. 

Figures 4-5 and 4-6 are a DO histogram and stem­
and-leaf plot, respectively.  In Figure 4-5, the 
height of the bar indicates the number of 
observations falling within a certain DO range. 
For example there are 15 observations between 7.5 
and 8.0 mg/L.  The stem-and-leaf plot (Figure 4-6) 
displays the raw data instead of a bar.  The values 
on the left side of the vertical axis indicates the 
DO concentration in a whole number (e.g., 11| 
represents 11 mg/L).  The values on the right side 
of the vertical axis indicate the DO concentration 
to the tenths of a mg/L.  Thus 11|14566 indicates 
that there is one value of 11.1 mg/L, one value of 
11.4 mg/L, one value of 11.5 mg/L, and two 

values of 11.6 mg/L.  These figures demonstrate 
that most of the observations fall between 6.0 and 
10.0 mg/L.  Typically, the analyst would select the 
histogram for less technical audiences and the 
stem-and-leaf plot for technical audiences. 

Figure 4-7 is a boxplot. For each month along the 
horizontal axis, the box indicates the middle 50 
percent of the data (which corresponds to the 
interquartile range). The lower and upper ends of 
the box represent the 25th and 75th percentiles (P.25 

and P.75), respectively.  The horizontal line inside 
the box represents the median.  The whiskers 
extending from the box represent the range of the 
remaining observations.  In this case, the whiskers 
extend to the minimum and maximum observations 
for a given month.  Some software packages use 
different rules for creating the whiskers (Chambers 
et al., 1983), and the analyst should be aware of 
such differences when mixing and matching 
analyses from different software packages. 
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Figure 4-5. Dissolved oxygen concentrations from 1980 through 1989 for the Delaware River at Reedy 
Island, Delaware, using a histogram. 

Figure 4-6. Stem-and-leaf plot of dissolved oxygen concentrations from 1980 through 1989 for the 
Delaware River at Reedy Island, Delaware. 
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Figure 4-7. Boxplots of dissolved oxygen concentrations by month from 1980 through 1989 for the 
Delaware River at Reedy Island, Delaware. 

Some software packages plot observations that 
exceed P.75 (or are less than P.25) by more than 1.5 
times the interquartile range as individual points, 
which is perhaps a more desirable approach than 
others. Depending on howfar the observations 
exceed this range, different symbols may be 
displayed. 

The expected seasonal nature of DO is strongly 
depicted in Figure 4-7, confirming the suspicions 
developed from visual inspection of Figure 4-4. 
This figure also allows the analyst to evaluate how 
much variability there is in the data.  It may be 
interesting to note, for example, that in November 
the lower and upper 25 percent of the data 
(represented by the whiskers) are drastically 
different lengths while the whiskers (and the box) 
for August appear symmetric.  In this case, DO 
was plotted as a function of month.  Similar plots 
as a function of year could also have been made 
with these data. Alternatively, the analyst may 

compare data by station.  Figure 4-8 is a boxplot 
of sulfate concentrations. Stations 16 and 17 are 
roughly 20 miles downstream from Stations 14 
and 15. Based on visual inspection, it appears that 
the sulfate concentration increases at the 
downstream stations; however, a statistical test is 
required. In this case, the stream receives 
significant irrigation return flows between the 
upstream and downstream stations, which might be 
the cause of the increased sulfate concentrations. 

In other cases, it might be helpful to plot water 
quality data as a function of other explanatory 
variables such as flow. Figure 4-9 is a log-log plot 
of total suspended solids measured at a storm 
sewer in Denver, Colorado, as a function of 
instantaneous flow. Depending on the nature of 
the source loading, the correlation between 
pollutant concentrations and flow could be positive 
(as in Figure 4-9) or negative, or no correlation 
might exist.  Typically, a negative correlation 
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Figure 4-8. Boxplot of sulfate concentrations from 1993 and 1994 for the Rio Grande near El Paso, 
Texas. 

Figure 4-9. Bivariate scatter plot of total suspended solids and flow at 36th Street storm sewer in Denver, 
Colorado. 
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(decreasing concentrations with increasing flows) 
is indicative of constant pollutant sources (e.g., 
traditional point sources) while a positive 
correlation (increasing concentrations with 
increasing flows) is indicative of nonpoint source 
loadings. It is critically important that the analyst 
know what is going on in the field before jumping 
to any conclusion about the meaning of 
concentration and flow correlations. 

Figure 4-10 is a scatter plot of orthophosphate for 
several stations along the Delaware River. In 
addition to the seasonal cycles during each year, 
some unusually high values that exceed 0.2 mg/L 
as phosphorus on September 23, 1991, can be 
observed. In this case, one potential cause might 
be unit conversions. The data were stored as 
milligrams per liter of phosphorus; however, 
another common set of units for orthophosphate is 
milligrams per liter of phosphate.  If one were to 
multiply the data collected on September 23, 1991, 
by one-third (approximate conversion from 
phosphate to phosphorus), the data would fall in 

line with the rest of the observations. Ideally, the 
analyst would go back to the original data to 
determine what type of error occurred and perform 
corrective action before proceeding with the 
statistical analysis.  These types of errors also 
occur while converting data from parts per million 
to parts per billion, converting from wet-weight to 
dry-weight basis, normalizing for organic carbon, 
and so forth. It might also be helpful to plot this 
orthophosphate data as a function of suspended 
solids for corroborative evidence. Data 
visualization is a good method for picking out 
gross errors; however, it cannot be relied on for 
more subtle errors.  The likelihood of correcting 
data errors decreases significantly with time. 

4.4 EVALUATION OF TEST ASSUMPTIONS 

One of the basic criteria for selecting between 
parametric tests is whether the data being analyzed 
have a specific distribution (usually normal).  For 
data with unknown distributions, nonparametric 
methods should be used since these methods do not 

Figure 4-10. Time series plot of dissolved orthophosphate from 1989 through 1994 for portions of the 
Delaware River. 
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require that the data have a defined distribution. 
In addition, numerous tests require that the 
observations be independent (that is, randomly 
collected) and that the variances of the populations 
being compared be equal or of known ratio 
(Ponce, 1980a). 

This section describes tests that can be used to 
determine whether a data set satisfies some of the 
assumptions and requirements of statistical tests. 
Analysts are referred to statistics texts such as 
Snedecor and Cochran (1980) for further 
information regarding test assumptions. 

4.4.1 Tests of Normality 

There are a variety of methods for evaluating 
normality that range from graphical methods to 
statistical tests. If the sample data set does not 
pass the normality tests, there are several options 
including data transformation.  Data 
transformation can (Gaugush, 1986): 

•	 Straighten (linearize) a nonlinear relationship 
between two variables. 

•	 Reduce skew (achieve symmetry) in a data set 
for a single value. 

•	 Stabilize variance (create constant variance) 
for a particular variance across two or more 
data sets. 

Log transformations are the most common in 
water quality and hydrologic variables (Gaugush, 
1986; Ponce, 1980a; Spooner et al., 1986; USEPA, 
1983a) because these data typically have a positive 
skew. The reader is encouraged to study the 
examples of log transformations presented by 
Ponce (1980a) and USEPA (1983a). Additional 
information regarding other transformations such 
as Box-Cox transformations is provided by 
Snedecor and Cochran (1980). The transformed 
data should also be tested for normality before 

proceeding with further statistical analyses 
(Spooner et al., 1986). 

Graphical Methods 

Examining boxplots can be useful in developing a 
qualitative opinion regarding normality.  Another 
graphical approach is to prepare probability plots. 
The cumulative frequency can be plotted on 
normal probability graph paper.  If the graphics 
software does not provide for probability plots, the 
following method can be used.  First, sort the data 
from low to high.  For each observation, compute a 
plotting position using 

(4-17) 

Helsel and Hirsch (1995) identify several other 
formulas that could be used for plotting position, 
but note that this approach is the most appropriate 
for comparing data to normal distributions in 
probability plots.  The plotting positions are then 
converted to normal quantiles (Zp) using Table D1. 

Consider, for example, the sulfate data from 
Station 16 (see Figure 4-8). Table 4-8 presents the 
42 observations ordered from low to high.  For i 
equal to 1, p1 is equal to (1-0.375)/42.25 or 0.0148. 
Using Table D1, it is necessary to look up p equal 
to 1.0-0.0148 or 0.9852. The corresponding Zp for 
p equal to 0.9852 is 2.176. 

Therefore, the corrresponding Zp for p equal to 
0.0148 is -2.176. The same procedure is followed 
for the remaining observations.  Sulfate 
concentrations are then plotted as a function of the 
normal quantile as shown in Figure 4-11A.  The 
straight line in Figure 4-11A corresponds to the 
theoretical shape of the normal distribution with a 
mean and standard deviation equal to those 
computed from the raw sulfate data.  If the data 
were normally distributed, the data would tend to 
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Table 4-8. Calculation of plotting position for the sulfate data from Station 16 in Figure 4-8. 

Ordered 
Obs. Num 
Quantile 

Sulfate 
(mg/L) 

Plotting 
Position 

Normal 
Quantile 

Ordered 
Obs. Num 

Sulfate 
(mg/L) 

Plotting 
Position 

Normal 

(i) pi Zp (i) pi Zp 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

150 
150 
160 
170 
170 
180 
190 
200 
200 
200 
200 
200 
200 
210 
210 
210 
210 
210 
210 
220 
220 

0.0148 
0.0385 
0.0621 
0.0858 
0.1095 
0.1331 
0.1568 
0.1805 
0.2041 
0.2278 
0.2515 
0.2751 
0.2988 
0.3225 
0.3462 
0.3698 
0.3935 
0.4172 
0.4408 
0.4645 
0.4882 

-2.176 
-1.769 
-1.537 
-1.367 
-1.229 
-1.112 
-1.008 
-0.914 
-0.827 
-0.746 
-0.670 
-0.597 
-0.528 
-0.461 
-0.396 
-0.332 
-0.270 
-0.209 
-0.149 
-0.089 
-0.030 

22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 

220 
220 
240 
240 
240 
250 
260 
270 
290 
300 
300 
310 
310 
320 
330 
360 
380 
400 
420 
430 
460 

0.5118 
0.5355 
0.5592 
0.5828 
0.6065 
0.6302 
0.6538 
0.6775 
0.7012 
0.7249 
0.7485 
0.7722 
0.7959 
0.8195 
0.8432 
0.8669 
0.8905 
0.9142 
0.9379 
0.9615 
0.9852 

0.030 
0.089 
0.149 
0.209 
0.270 
0.332 
0.396 
0.461 
0.528 
0.597 
0.670 
0.746 
0.827 
0.914 
1.008 
1.112 
1.229 
1.367 
1.537 
1.769 
2.176 

fall along the straight line. Clearly, the data do not 
fit a normal distribution, but are more typical of a 
positively skewed data set.  As an alternative, the 
data can be log-transformed and the same analysis 
performed.  In this case, the log-transformed data 
are less skewed (Figure 4-11B). The conclusion 
from this analysis that the data are not normal. 
Visually, it is difficult to determine whether the 
data are lognormally distributed. 

Skewness 

The approach used in testing for normality using 
skewness (Equation 4-12) is that a nonnormal 
distribution may be skewed, whereas a normal 
distribution is not skewed. If there are more than 
150 observations and the data are normally 

distributed, the confidence limits on skewness 
from a normal distribution are given by (Salas et 
al., 1980) 

(4-18) 

where Z is from Table D1.  If the estimated 
skewness exceeds this range, the data are not 
normally distributed.  Typically, the sample size is 
much smaller than 150 and the estimated skewness 
should be compared to the values in Table 4-9.  If 
the absolute value of the estimated skewness 
exceeds the value in the table, the data are not 
normally distributed. 
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Figure 4-11. Probability plot of sulfate data from Station 16 in Figure 4-8. 

4-28 



 

 

 Chapter 4 Data Analysis 

Table 4-9. Table of skewness test for normality for sample sizes less than 150. 

α α 

n 0.02 0.10 n 0.02 0.10 

25 1.061 0.711 70 0.673 0.459 

30 0.986 0.662 80 0.631 0.432 

35 0.923 0.621 90 0.596 0.409 

40 0.870 0.587 100 0.567 0.389 

45 0.825 0.558 125 0.508 0.350 

50 0.787 0.534 150 0.464 0.321 

60 0.723 0.492 175 0.430 0.298 

After Snedecor and Cochran, 1967. 

Using the sulfate data from the previous example, 
selected statistics were computed and are 
summarized in Table 4-10.  Selected statistics 
were also calculated for the log-transformed data. 
Using Equation 4-12, γ is equal to 
(42/(41x40))x(2.1E+07/79.643) or 1.05. Using an 
estimated critical value from Table 4-9 of 0.575 
for α equal to 0.10, the null hypothesis is rejected. 
The sulfate data do not come from a normal 
distribution. The log-transformed data (last 

column of Table 4-10) have a skewness equal to 
0.54. The value is less than 0.575, and the null 
hypothesis is accepted.  The reader should compare 
these results to those obtained using the graphical 
method presented in Figure 4-11. 

Both Remington and Schork (1970) and the SAS 
Institute (1985a) caution that the test for skewness 
is only a partial indicator of normality.  With small 
samples (less than 25), the test is particularly 

Table 4-10. Selected summary statistics for the sulfate data from Station 16 in Figure 4-8. 

Sulfate log(sulfate) 

Number of observations (n) 
Sum 
Mean (x

_
) 

Variance (s2) 
St. Dev. (s) 
Skewness (γ) 
Kurtosis (k) 
Σ*xi-x 

_ 
* 

Σ(xi-x 
_

)2 

Σ(xi-x 
_

)3 

Σ(xi-x 
_

)4 

42 
10,620.00 

252.86 
6,342.86 

79.64 
1.05 
0.32 

2,694.29 
2.6E+05 
2.1E+07 
5.1E+09 

42 
230.55 

5.49 
0.09 
0.29 
0.54 

-0.46 
10.05 

3.50 
0.53 
0.72 
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unreliable. That is, because of the small sample 
size, very large departures from normality are 
required before statistical tests will reject the null 
hypothesis of normality.  Cochran (1977) 
proposed a general rule for determining how large 
n must be (i.e., n in the equation below) to allow 
safe use of the normal approximation in 
computing confidence limits for the mean.  This 
rule is used most effectively for distributions with 
positive skewness, which are most common for 
environmental data. 

(4-19) 

where γ1 

(4-20) 

Applying these equations to the data summarized 
in Table 4-10 yields a γ1 of 0.99, and therefore 
more than 25 (=25 x 0.992) samples are needed. 
The example data set contains 42 samples. 
Therefore, there are sufficient data to allow safe 

use of the normal approximation in computing 
confidence limits for the mean. 

Kurtosis 

The test for kurtosis is similar to the test for 
skewness since it measures only one attribute of 
normality and requires large samples for 
meaningful results.  Remington and Schork (1970) 
recommend the following equation to evaluate 
kurtosis: 

(4-21) 

For any normally distributed population, k1 would 
be 0.7979. Table 4-11 presents lower and upper 
limits for k1. 

If the calculated value of k1 falls outside the values 
in Table 4-11 for the selected level of confidence, 
there is evidence of non-normal kurtosis.  Using 
the same example data, k1 can be computed as 0.80 
and 0.82 for the raw and log-transformed data, 
respectively.  From this analysis, it is concluded 
that the raw and the log-transformed data have a 

Table 4-11. Values of kurtosis test for normality for small sample sizes. 

n 

α = 0.02 α = 0.10 

Lower Upper Lower Upper 

11 0.6675 0.9359 0.7153 0.9073 

21 0.6950 0.9001 0.7304 0.8768 

31 0.7110 0.8827 0.7404 0.8625 

41 0.7216 0.8722 0.7470 0.8540 

51 0.7291 0.8648 0.7518 0.8481 

61 0.7347 0.8592 0.7554 0.8434 

71 0.7393 0.8549 0.7583 0.8403 
After Remington and Schork, 1970. 
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kurtosis that is consistent with a normal 
distribution since k1 is between the range of 0.7470 
to 0.8540 for α equal to 0.10. 

Shapiro-Wilk W test 

The Shapiro-Wilk W test can be used to test the 
distribution of a data set for sample sizes of less 
than 2,000 (SAS Institute, Inc., 1990). This test 
uses the W statistic, which is “the ratio of the best 
estimator of the variance to the usual corrected 
sum of squares estimator of the variance” (SAS 
Institute, Inc., 1990). The null hypothesis for this 
test is that the data set is a random sample from a 
normal distribution.  Values of W are greater than 
zero and less than or equal to one. The null 
hypothesis is rejected with small values.  For 
sample sizes greater than 2,000, the Kolmogorov 
D statistic may be used (SAS Institute, Inc., 1990). 

Anderson and McLean (1974) recommend the 
Shapiro-Wilk W test for normality and note that it 
is superior to the Kolmogorov-Smirnov and chi-
squared tests in detecting non-normality over 
sample sizes ranging from 10 to 50.  The 
following procedure for using the test is adapted 
from Anderson and McLean (1974) and Gilbert 
(1987): 

1. Order the n observations as x1 # x2 # ... # xn. 

2. Compute d = (n-1)s2. 

3.	 Compute k. If n is even, k = n/2. If n is odd, k 
= (n-1)/2. 

4. Compute 

(4-22) 

where the values of ai appear in Table D4. The 
value xn-i+1 is equal to xn when i is equal to 1 and 
xn-k+1 when i is equal to k. 

5.	 Reject Ho (of normality) at the α significance 
level if W is less than the quantile given in 
Table D5. 

Table 4-12 presents the sulfate data from Station 
16 in Figure 4-8 in a format ready for analysis. 
The results for step 2 can be computed from the 
statistics in Table 4-10. Since there are 42 
observations, k is equal to 21. The first column in 
Table 4-12 indicates the value of i for each row in 
the table. The second column corresponds to the 
values of ai from Table D4.  (Note that the values 
in Table D4 are for an-i+1 and are exactly the same 
as ai.) The third and fourth column, xi and xn-i+1, 
represent the raw sulfate data. The third column 
represents the first half of the observations, and the 
fourth column represents the last half of the data in 
reverse order (e.g., 460 is the largest sample 
observation). The fifth and sixth columns 
correspond to the log-transformed data from 
columns 3 and 4.  For example, log(150) is equal 
to 5.01. The last two columns provide 
intermediate calculations associated with Equation 
4-22 (i.e., ai(xn-i+1 - xi)) for the raw and log-
transformed data, respectively. 

Summing the last two columns results in 
completing the summation specified in Equation 4­
22. The W statistic may now be computed using 
Equation 4-22 to yield 0.88 and 0.89 for the raw 
and log-transformed data, respectively.  From 
Table D5, the quantile for 42 observations (95 
percent confidence level) is 0.942. As a result, it 
can be concluded that the raw data and the log-
transformed data are normally distributed. 

4.4.2 Tests of Equal Variance 

When performing hypothesis tests of two samples 
using parametric procedures, it is typically 
necessary to make sure that the two data sets have 

4-31 



Data Analysis Chapter 4 

Table 4-12. Example analysis of the Shapiro-Wilk W test using the sulfate data from Station 16 in 
Figure 4-8. 

i ai xi xn-i+1 

log 
xi 

log 
xn-i+1 

Intermediate 
Calculations 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

0.3917 
0.2701 
0.2345 
0.2085 
0.1874 
0.1694 
0.1535 
0.1392 
0.1259 
0.1136 
0.1020 
0.0909 
0.0804 
0.0701 
0.0602 
0.0506 
0.0411 
0.0318 
0.0227 
0.0136 
0.0045 

150 
150 
160 
170 
170 
180 
190 
200 
200 
200 
200 
200 
200 
210 
210 
210 
210 
210 
210 
220 
220 

460 
430 
420 
400 
380 
360 
330 
320 
310 
310 
300 
300 
290 
270 
260 
250 
240 
240 
240 
220 
220 

5.01 
5.01 
5.08 
5.14 
5.14 
5.19 
5.25 
5.30 
5.30 
5.30 
5.30 
5.30 
5.30 
5.35 
5.35 
5.35 
5.35 
5.35 
5.35 
5.39 
5.39 

6.13 
6.06 
6.04 
5.99 
5.94 
5.89 
5.80 
5.77 
5.74 
5.74 
5.70 
5.70 
5.67 
5.60 
5.56 
5.52 
5.48 
5.48 
5.48 
5.39 
5.39 

121.43 0.44 
75.63 0.28 
60.97 0.23 
47.96 0.18 
39.35 0.15 
30.49 0.12 
21.49 0.08 
16.70 0.07 
13.85 0.06 
12.50 0.05 
10.20 0.04 
9.09 0.04 
7.24 0.03 
4.21 0.02 
3.01 0.01 
2.02 0.01 
1.23 0.01 
0.95 0.00 
0.68 0.00 
0.00 0.00 
0.00 0.00 

SUM 479.00 1.81 

the same variance.  Testing for equal variances 
between two populations can be done by 
evaluating the ratio of the two sample variances 
(F1) with the following equation: 

(4-23)
 

where 

The null hypothesis in this test is that the variance 
ratio is equal to 1, and the alternative hypothesis is 
that the ratio is not equal to 1. The ratio is 

compared to a critical value from the F distribution 
(Table D6) that is based on the sample sizes (na 

and nb) and the selected level of significance (α). 
Since the numerator is selected to be the variance 
with the larger value, it is necessary to look at only 
one critical value even though a two-sided test is 
being used. 

For the sulfate data from Stations 16 and 17 in 
Figure 4-8, F1 can be computed as 6,342.9/5,536.3 
or 1.15 with 41 (42-1) and 10 (11-1) degrees of 
freedom.  Using Table D6, the critical F value (for 
a two-sided 95 percent confidence level test where 
α/2 is equal to 0.025) is approximately 3.25. 
Therefore, the null hypothesis is accepted and it is 
concluded that the variances of the sulfate data 
from Stations 16 and 17 are the same. 
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4.4.3 Tests of Randomness 

Another type of hypothesis testing involves time 
series at a single station. The DO data plotted in 
Figure 4-4 are one example.  An approach to 
evaluate randomness is to compute the total 
number of runs (u) above and below the median 
(Freund, 1973). A run is a string of values all 
above or all below the median.  A string of one 
value is acceptable. In this test, the median is 
determined, all values are placed in chronological 
order, and each value is assigned an “a” if it is 
above the median and a “b” if it is below the 
median.  For example, the following is a set of data 
in chronological order: 

5, 5, 6, 9, 13, 12, 2, 3, 2, 8, 14, 13, 11, 20, 4, 6, 9, 
1, 7, 11, 12. 

The median for this set of values (n=21) is 8. The 
series of values in terms of “a” and “b” is 

b, b, b, a, a, a, b, b, b, omit, a, a, a, a, b, b, a, b, b, a, 
a 

The number of runs (u) in the example data set is 
8. Note that in this test all values equal to the 
median are omitted.  Also, the number of values 
above (n1) and below (n2) must each be 10 or more 
to allow use of the following statistics. For n1 and 
n2 less than 10, special tables are required (Freund, 
1973). The test statistic (derived from the normal 
distribution) is: 

(4-24) 

where 

(4-25) 

and 

(4-26) 

Applying these equations to the above example 
data, 

With α equal to 0.05 in a two-tailed test, the Z 
values (for α/2) are 1.96 and -1.96 (Table D1). 
Since -1.38 falls within this range, the null 
hypothesis that the sample is random is accepted. 

4.5 EVALUATION OF ONE OR TWO INDEPENDENT 

RANDOM SAMPLES 

The data collected for evaluating changes will 
typically come as (1) two or more sets of random 
samples or (2) a time series at a single station.  In 
the first case, the analyst will test for a shift or step 
change (e.g., a significant difference between 
conditions before and after treatment).  This might 
be typical for data collected from two stations 
along a stream segment.  Or, when performing a 
biological assessment, for example, the goal might 
be to determine whether there is a significant 
difference (i.e., a step change) between biological 
metrics for data collected at randomly selected 
reference and test (targeted) sites. It is also 
possible to compare a single random sample to a 
particular value. This might be the case when 
comparing data to a standard or reference 
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condition. This section describes common 
approaches for comparing one or two independent 
random samples.  Comparing more than two 
independent random samples or time series is 
discussed later. 

Depending on the objective, it is appropriate to 
select a one- or two-sided test. For example, if the 
analyst knows that TSS would only decrease as a 
result of BMP implementation or is interested only 
if the TSS decreases, a one-sided test can be 
formulated.  Alternatively, if the analyst does not 
know whether TSS will go up or down, a two-
sided test is necessary.  If the analyst simply wants 
to compare two random samples to decide if they 
are significantly different, a two-sided test can be 
used. Appropriate uses of a one-sided test include 
testing for decreased sediment or nutrient loads 
after implementing a flood control dam or best 
management practice, or comparing a suspected 
contaminated site to an upstream or control site. 
Typical null hypotheses (Ho) and alternative 
hypotheses (Ha) for one- and two-sided tests are 
provided below: 

One-sided test 
Ho: TSS (postimplementation) $ TSS (pre­

implementation) 
Ha: TSS (postimplementation) < TSS (pre­

implementation) 

Two-sided test 
Ho: TSS (postimplementation) = TSS (pre­

implementation) 
Ha: TSS (postimplementation) … TSS (pre­

implementation) 
Additional 

Testa Assumptions

Student’s t (paired t) Normal distribution 

Wilcoxon Signed Ranks Symmetric distribution 

Sign None 

Selecting a one-sided test instead of a two­

4.5.1 Tests for One Sample or Paired Data 

Suppose the analyst is interested in evaluating 
compliance with a water quality standard or 
reference condition, e.g., a target determined from 
a load allocation or a percent substrate 
embeddedness less than the amount that hinders 
fisheries. In these situations the analyst might 
collect a random sample and compare it to a 
reference value. The Student’s t and the Wilcoxon 
Signed Ranks tests are the two most appropriate 
tests when evaluating one independent random 
sample.  The sign test can also be used, but it is 
generally limited to random samples that cannot be 
transformed into a symmetric distribution.  

In addition, the analyst might be interested in 
determining whether a water quality variable 
increased between two sites located along a stream. 
In this situation the analyst might collect two 
random samples with matched or paired 
observations. Paired observations are a series of 
data collected as pairs at a given time or location. 
For example, if BOD5 is sampled at two stream 
locations at a regular time interval, the result is a 
pair of BOD5 observations for each time period. 
The same statistical tests used for one independent 
sample can be used to compare paired 
observations. The tests are adjusted by computing 
and analyzing the difference between the paired 
observations. The associated t test is referred to as 
the paired t test. 

Tests for One Sample or Paired Data 

sided test results in an increased power for 
the same significance level (Winer, 1971). 
That is, if the conditions are appropriate, a 
corresponding one-sided test is more 
desirable than a two-sided test given the 
same level of significance (α) and sample 
size. The manager and analyst should take 
great care in selecting one- or two-sided 
tests. 

a The standard forms of these tests require 
independent random samples. 
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Student’s t test 

The participants in the Highland Silver Lake 
RCWP project (Jamieson, 1986) formulated a null 
hypothesis that a BMP would not reduce the post-
implementation mean TSS concentrations to less 
than 25 mg/L.  (Presumably, the participants hoped 
that the mean TSS concentration would be less 
than 25 mg/L so that H0 could be rejected.) A 
formalized statement of the null and alternative 
hypotheses using a one-sided test would be: 

Ho: μ $ 25 mg/L 
Ha: μ < 25 mg/L 

In this case it is assumed that the mean TSS 
concentration is a good measure of central 
tendency and is the best measure for evaluation.  It 
is also assumed that any change in TSS mean 
concentration is due to the BMP alone. Ha is stated 
such that a one-sided test can be applied because 
there is concern specifically about whether the 
postimplementation mean TSS concentration is 
lower than 25 mg/L since this might have been the 
target in a load allocation. 

The Student’s t test statistic (t) with n-1 degrees of 
freedom (df) can be used if the data are 
independent and normally distributed: 

(4-27) 

where μ would be equal to the hypothesized value, 
25 mg/L in this case.  Assuming a one-sided test is 
used, the critical value for t would be obtained 
from Table D2 with n-1 degrees of freedom and a 
significance level of α. If a two-sided test were 
used (Ho: μ = 25 mg/L; Ha: μ … 25 mg/L), a value 
corresponding to a significance level of α/2 would 
be obtained from Table D2. 

The TSS data from the Highland Silver Lake 
RCWP project (Table 4-13) are from May 21, 

Modification for Paired t Test 
_ 

The sample mean, x, and standard deviation, 
s, in Equation 4-27 refer to the mean and 
standard deviation of the differenced data 
(i.e., di = xi - yi). 

The differenced data must be normally 
distributed. 

The number of degrees of freedom is equal 
to the number of paired observations minus 
one. 

1981, through October 31, 1984. The period after 
April 1, 1983, is the postimplementation period. 
Before testing Ho with a statistical test, the data 
must be inspected and the assumptions of 
randomness and normality must be tested.  These 
tests are performed on the preimplementation and 
postimplementation data sets although only the 
postimplementation data in the current example are 
used. Using the SAS Univariate procedure (SAS 
Institute, Inc., 1985a), summary statistics and 
graphical presentations can be generated for the 
two data sets (Figures 4-12 and 4-13). 

The values for skewness (0.82) and kurtosis 
(- 0.42) indicate positive skew and low kurtosis in 
the pre-BMP sample distribution.  The Shapiro-
Wilk W statistic (0.893) and associated probability 
(0.063) show that the null hypothesis (that the 
sample is normally distributed) can be rejected 
with 93.7 percent confidence. In other words, 
there is only a 6.3 percent chance that a lower W 
value could be obtained if the sample were indeed 
taken from a normal distribution.  Hence, the 
assumption of a normal distribution is rejected and 
the alternative hypothesis that the distribution is 
non-normal is accepted. 

4-35 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 

 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 

 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 

 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 

 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 

 
 
 

 
 
 

 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 

 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 

 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 

 
 
 

 

 
 

 
 

 
 
 
 

 
 

P
R
E
-
B
M
P
 
I
M
P
L
E
M
E
N
T
A
T
I
O
N
 
D
A
T
A
 
S
E
T



U
n
i
v
a
r
i
a
t
e
 
P
r
o
c
e
d
u
r
e



V
a
r
i
a
b
l
e
=
P
R
E
T
S
S



 
M
o
m
e
n
t
s
 

Q
u
a
n
t
i
l
e
s
(
D
e
f
=
4
)
 

E
x
t
r
e
m
e
s



 
N
 

1
6
 

S
u
m
 
W
g
t
s
 

1
6
 

1
0
0
%
 
M
a
x
 

6
0
 

9
9
%
 

6
0
 

L
o
w
e
s
t
 

O
b
s
 

H
i
g
h
e
s
t
 
O
b
s



M
e
a
n
 

2
9
.
3
7
5
 

S
u
m
 

4
7
0
 

7
5
%
 
Q
3
 

4
0
.
7
5
 

9
5
%
 

6
0
 

1
1
(
 

1
)
 

3
7
(
 

6
)



 
S
t
d
 
D
e
v
 

1
6
.
1
4
8
7
9
 

V
a
r
i
a
n
c
e
 

2
6
0
.
7
8
3
3
 

5
0
%
 
M
e
d
 

2
3
 

9
0
%
 

6
0
 

1
2
(
 

4
)
 

4
2
(
 

1
6
)



 
S
k
e
w
n
e
s
s
 

0
.
8
1
7
1
0
4
 

K
u
r
t
o
s
i
s
 

-
0
.
4
1
7
0
2
 

2
5
%
 
Q
1
 

1
7
 

1
0
%
 

1
1
.
7
 

1
3
(
 

3
)
 

4
8
(
 

1
3
)



 
U
S
S
 

1
7
7
1
8
 

C
S
S
 

3
9
1
1
.
7
5
 

0
%
 
M
i
n
 

1
1
 

5
%
 

1
1
 

1
6
(
 

1
2
)
 

6
0
(
 

8
)



 
C
V
 

5
4
.
9
7
4
6
 

S
t
d
 
M
e
a
n
 

4
.
0
3
7
1
9
7
 

1
%
 

1
1
 

2
0
(
 

1
1
)
 

6
0
(
 

9
)



 
T
:
M
e
a
n
=
0
 

7
.
2
7
6
0
8
8
 

P
r
>
|
T
|
 

0
.
0
0
0
1
 

R
a
n
g
e
 

4
9



 
N
u
m
 
~
=
 
0
 

1
6
 

N
u
m
 
>
 
0
 

1
6
 

Q
3
-
Q
1
 

2
3
.
7
5



 
M
(
S
i
g
n
)
 

8
 

P
r
>
=
|
M
|
 

0
.
0
0
0
1
 

M
o
d
e
 

2
0



 
S
g
n
 
R
a
n
k
 

6
8
 

P
r
>
=
|
S
|
 

0
.
0
0
0
1



 
W
:
N
o
r
m
a
l
 

0
.
8
9
3
0
3
3
 

P
r
<
W
 

0
.
0
6
3
0



 
S
t
e
m
 
L
e
a
f
 

#
 

B
o
x
p
l
o
t
 

N
o
r
m
a
l
 
P
r
o
b
a
b
i
l
i
t
y
 
P
l
o
t



6
 
0
0
 

2
 

|
 

6
5
+
 

*
 

*
+
+
+
+
+
+
+



5
 

|
 

|
 

+
+
+
+
+
+



 
4
 
2
8
 

2
 

+
-
-
-
-
-
+
 

|
 

+
*
+
*
+
+



 
3
 
0
5
7
 

3
 

|
 

|
 

|
 

+
*
+
*
+
*



 
2
 
0
0
0
1
5
 

5
 

*
-
-
+
-
-
*
 

|
 

*
+
*
+
*
*
+
*



1
 
1
2
3
6
 

4
 

+
-
-
-
-
-
+
 

1
5
+
 

*
 

*
 
+
*
+
*
+
+



-
-
-
-
+
-
-
-
-
+
-
-
-
-
+
-
-
-
-
+
 

+
-
-
-
-
+
-
-
-
-
+
-
-
-
-
+
-
-
-
-
+
-
-
-
-
+
-
-
-
-
+
-
-
-
-
+
-
-
-
-
+
-
-
-
-
+
-
-
-
-
+



M
u
l
t
i
p
l
y
 
S
t
e
m
.
L
e
a
f
 
b
y
 
1
0
*
*
+
1
 

-
2
 

-
1
 

0
 

+
1
 

+
2



 
F
r
e
q
u
e
n
c
y
 
T
a
b
l
e



P
e
r
c
e
n
t
s
 

P
e
r
c
e
n
t
s
 

P
e
r
c
e
n
t
s
 

P
e
r
c
e
n
t
s



V
a
l
u
e
 
C
o
u
n
t
 

C
e
l
l
 

C
u
m
 

V
a
l
u
e
 
C
o
u
n
t
 

C
e
l
l
 

C
u
m
 

V
a
l
u
e
 
C
o
u
n
t
 

C
e
l
l
 

C
u
m
 

V
a
l
u
e
 
C
o
u
n
t
 

C
e
l
l
 

C
u
m



 
1
1
 

1
 

6
.
3
 

6
.
3
 

2
0
 

3
 

1
8
.
8
 

4
3
.
8
 

3
5
 

1
 

6
.
3
 

6
8
.
8
 

6
0
 

2
 

1
2
.
5
 
1
0
0
.
0



1
2
 

1
 

6
.
3
 

1
2
.
5
 

2
1
 

1
 

6
.
3
 

5
0
.
0
 

3
7
 

1
 

6
.
3
 

7
5
.
0



 
1
3
 

1
 

6
.
3
 

1
8
.
8
 

2
5
 

1
 

6
.
3
 

5
6
.
3
 

4
2
 

1
 

6
.
3
 

8
1
.
3



 
1
6
 

1
 

6
.
3
 

2
5
.
0
 

3
0
 

1
 

6
.
3
 

6
2
.
5
 

4
8
 

1
 

6
.
3
 

8
7
.
5


 

Data Analysis  Chapter 4 

F
ig

ur
e 

4-
12

. P
re

im
pl

em
en

ta
tio

n 
da

ta
 s

et
. 

4-36 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 

 
 

 
 
 

 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 

 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 

 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 

 
 

 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 

 
 
 

 
 
 

 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 

 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 

 
 
 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
P
O
S
T
-
B
M
P
 
I
M
P
L
E
M
E
N
T
A
T
I
O
N
 
D
A
T
A
 
S
E
T



U
n
i
v
a
r
i
a
t
e
 
P
r
o
c
e
d
u
r
e



V
a
r
i
a
b
l
e
=
P
O
S
T
T
S
S

  
M
o
m
e
n
t
s
 

Q
u
a
n
t
i
l
e
s
(
D
e
f
=
4
)
 

E
x
t
r
e
m
e
s



 
N
 

1
5
 

S
u
m
 
W
g
t
s
 

1
5
 

1
0
0
%
 
M
a
x
 

4
2
 

9
9
%
 

4
2
 

L
o
w
e
s
t
 

O
b
s
 

H
i
g
h
e
s
t
 

O
b
s



 
M
e
a
n
 

1
9
.
8
6
6
6
7
 

S
u
m
 

2
9
8
 

7
5
%
 
Q
3
 

3
2
 

9
5
%
 

4
2
 

6
(
 

2
)
 

3
0
(
 

3
)



 
S
t
d
 
D
e
v
 

1
2
.
1
7
0
6
1
 

V
a
r
i
a
n
c
e
 

1
4
8
.
1
2
3
8
 

5
0
%
 
M
e
d
 

1
4
 

9
0
%
 

4
0
.
8
 

7
(
 

4
)
 

3
2
(
 

5
)



 
S
k
e
w
n
e
s
s
 

0
.
6
9
7
8
1
1
 

K
u
r
t
o
s
i
s
 

-
0
.
9
9
3
7
9
 

2
5
%
 
Q
1
 

1
0
 

1
0
%
 

6
.
6
 

1
0
(
 

1
3
)
 

3
2
(
 

7
)



 
U
S
S
 

7
9
9
4
 

C
S
S
 

2
0
7
3
.
7
3
3
 

0
%
 
M
i
n
 

6
 

5
%
 

6
 

1
0
(
 

8
)
 

4
0
(
 

1
1
)



 
C
V
 

6
1
.
2
6
1
4
7
 

S
t
d
 
M
e
a
n
 

3
.
1
4
2
4
3
9
 

1
%
 

6
 

1
1
(
 

1
5
)
 

4
2
(
 

9
)



 
T
:
M
e
a
n
=
0
 

6
.
3
2
2
0
5
4
 

P
r
>
|
T
|
 

0
.
0
0
0
1
 

R
a
n
g
e
 

3
6



 
N
u
m
 
~
=
 
0
 

1
5
 

N
u
m
 
>
 
0
 

1
5
 

Q
3
-
Q
1
 

2
2



 
M
(
S
i
g
n
)
 

7
.
5
 

P
r
>
=
|
M
|
 

0
.
0
0
0
1
 

M
o
d
e
 

1
0



 
S
g
n
 
R
a
n
k
 

6
0
 

P
r
>
=
|
S
|
 

0
.
0
0
0
1



 
W
:
N
o
r
m
a
l
 

0
.
8
7
7
4
8
7
 

P
r
<
W
 

0
.
0
4
3
8



 
S
t
e
m
 
L
e
a
f
 

#
 

B
o
x
p
l
o
t
 

N
o
r
m
a
l
 
P
r
o
b
a
b
i
l
i
t
y
 
P
l
o
t



4
 
0
2
 

2
 

|
 

4
2
.
5
+
 

*
 

*
+
+
+



 
3
 

|
 

|
 

+
+
+
+



 
3
 
0
2
2
 

3
 

+
-
-
-
-
-
+
 

|
 

*
 
*
 
+
+
+
+



2
 

|
 

|
 

|
 

+
+
+
+



 
2
 
2
 

1
 

|
 
 
+
 
 
|
 

|
 

+
+
*
+



 
1
 
6
 

1
 

|
 

|
 

|
 

+
+
+
+
 
*



 
1
 
0
0
1
2
4
4
 

6
 

*
-
-
-
-
-
*
 

|
 

*
+
*
+
*
+
*
*



0
 
6
7
 

2
 

|
 

7
.
5
+
 

*
 

*
+
+
+



 
-
-
-
-
+
-
-
-
-
+
-
-
-
-
+
-
-
-
-
+
 

+
-
-
-
-
+
-
-
-
-
+
-
-
-
-
+
-
-
-
-
+
-
-
-
-
+
-
-
-
-
+
-
-
-
-
+
-
-
-
-
+
-
-
-
-
+
-
-
-
-
+



M
u
l
t
i
p
l
y
 
S
t
e
m
.
L
e
a
f
 
b
y
 
1
0
*
*
+
1
 

-
2
 

-
1
 

0
 

+
1
 

+
2



 
F
r
e
q
u
e
n
c
y
 
T
a
b
l
e



P
e
r
c
e
n
t
s
 

P
e
r
c
e
n
t
s
 

P
e
r
c
e
n
t
s
 

P
e
r
c
e
n
t
s



V
a
l
u
e
 
C
o
u
n
t
 

C
e
l
l
 

C
u
m
 

V
a
l
u
e
 
C
o
u
n
t
 

C
e
l
l
 

C
u
m
 

V
a
l
u
e
 
C
o
u
n
t
 

C
e
l
l
 

C
u
m
 

V
a
l
u
e
 
C
o
u
n
t
 

C
e
l
l
 

C
u
m



 
6
 

1
 

6
.
7
 

6
.
7
 

1
1
 

1
 

6
.
7
 

3
3
.
3
 

1
6
 

1
 

6
.
7
 

6
0
.
0
 

3
2
 

2
 

1
3
.
3
 

8
6
.
7



 
7
 

1
 

6
.
7
 

1
3
.
3
 

1
2
 

1
 

6
.
7
 

4
0
.
0
 

2
2
 

1
 

6
.
7
 

6
6
.
7
 

4
0
 

1
 

6
.
7
 

9
3
.
3



 
1
0
 

2
 

1
3
.
3
 

2
6
.
7
 

1
4
 

2
 

1
3
.
3
 

5
3
.
3
 

3
0
 

1
 

6
.
7
 

7
3
.
3
 

4
2
 

1
 

6
.
7
 
1
0
0
.
0


 

  Chapter 4 Data Analysis

F
ig

ur
e 

4-
13

. P
os

tim
pl

em
en

ta
tio

n 
da

ta
 s

et
. 

4-37 



Data Analysis Chapter 4 

Table 4-13. Highland Silver Lake TSS data for site 1. 

Preimplementation 
Date TSS (mg/L) 

Postimplementation 
Date TSS (mg/L) 

5/21/81 11 
6/18/81 21 
7/30/81 13 
9/3/81 12 

10/6/81 30 
11/5/81 37 
12/8/81 20 
4/8/82 60 

4/27/82 60 
5/25/82 20 
6/22/82 20 
7/20/82 16 
9/20/82 48 

10/26/82 35 
11/23/82 25 
12/2/82 42 

Overall: n = 31 mean = 24.77 
PreImplementation: n = 16 mean = 29.38 
PostImplementation: n = 15 mean = 19.87 

4/12/83 14 
5/10/83  6 
6/7/83 30 

7/27/83  7 
10/5/83 32 

11/18/83 14 
12/29/83 32 
1/25/84 10 
2/20/84 42 
4/11/84 22 
5/15/84 40 
7/17/84 12 
8/21/84 10 
9/26/84 16 

10/31/84 11 

s = 14.93 median = 20 
s = 16.15 median = 23 
s = 12.17 median = 14 

In the post-BMP sample distribution, the values for 
skewness (0.70) and kurtosis (-0.99) again indicate 
positive skew and low kurtosis. The Shapiro-Wilk 
W statistic (0.88) and associated probability 
(0.044) show that the null hypothesis (that the 
sample is from a normal distribution) can be 
rejected with 95.6 percent confidence. Also 
rejected is the assumption of a normal distribution 
for the post-BMP data set. 

Taking the logarithm (base 10) of each data point 
for the pre-BMP and post-BMP data sets, the SAS 
Univariate procedure is run to see if the 
assumption of normality would be appropriate for 
the log-transformed data set.  The output plots and 
statistics are shown in Figures 4-14 and 4-15. Note 
that the skewness (0.10) is much less pronounced, 

but the kurtosis (-1.09) is more negative for the 
transformed pre-BMP data set.  The higher W 
statistic (0.951) and associated probability (0.493) 
indicate that the null hypothesis that the 
transformed data are normally distributed should 
be accepted. 

For the log-transformed post-BMP data, the 
skewness (0.072) is also reduced and the kurtosis 
(-1.23) is more negative than for the raw data set. 
The W statistic (0.939) and associated probability 
(0.367) indicate that the null hypothesis that the 
transformed data are normally distributed should 
be accepted. In fact, there is a 63.3 percent 
probability that a lower W statistic could be 
obtained if the sample is from a normal 
distribution. 
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 Chapter 4 Data Analysis 

To test the randomness of the data sets, the test 
described in Section 4.4.3 can be used. Since the 
test requires only the number of runs and the 
number of values above and below the median, it 
does not matter whether the raw data or 
transformed data are used.  Using the raw data in 
Table 4-13, the number of runs for the pre-
implementation data set is 6 while the number for 
the postimplementation data set is 9.  The resulting 
z statistics (from Equation 4-24) for the 
preimplementation and postimplementation data 
sets are 1.5526 and 0.8971, respectively.  These 
values are compared to a critical value of 1.96 
(using α/2 = 0.025) from Table D1 and the null 
hypothesis is accepted.  Both samples are random. 

Once the data sets are randomly sampled and 
normally distributed (after log-transformations), 
the one-sample hypothesis test using the log-
transformed post-BMP data set can be performed. 
As shown in Figure 4-15, the mean of the log-
transformed post-BMP data set is 1.21969 and the 
standard deviation is 0.273571. The log of the 
hypothesized value (25 mg/L) is 1.3979.  Note that 
it is recommended that these values be rounded to 
the correct number of significant digits when 
reporting the results. The t statistic (Equation 4­
27) is used to determine whether the post-BMP 
mean TSS concentration is less than 25 mg/L. 

The schematic representation of this test is shown 
in Figure 4-16A, where the critical t value 
(-1.761) for the one-sided test (df = 14, α = 0.05) is 
taken from Table D2.  The computed t statistic 
falls to the left of the critical value, so the null 
hypothesis is rejected.  In turn, the alternative 
hypothesis that the post-BMP mean TSS 
concentration is less than 25 mg/L is accepted. 

Alternatively, had the participants in the Highland 
Silver Lake RCWP project selected a two-sided 
test where Ho and Ha are given as 

Ho: μ = 25 mg/L 
Ha: μ … 25 mg/L 

a two-sided t test would be appropriate. The 
critical t value for the two-sided test from Table 
D2 (df = 14, α/2 = 0.025) would be ± 2.145.  In 
this case, the computed t statistic (-2.52) still falls 
outside this range and it is concluded that the post-
BMP mean TSS concentration is less than 
25 mg/L.  Notice how the rejection region (shaded 
portion) in Figure 4-16B differs from Figure 4­
16A. The total shaded area in the two curves is the 
same (i.e., 5 percent); however, it is in one piece in 
Figure 4-16A and is split into two parts in Figure 
4-16B. 

The power of this test can be evaluated using the 
noncentral t distribution with respect to various 
alternative hypotheses.  The noncentral T statistic 
with n-1 degrees of freedom is given by 

(4-28) 

where Δ = μ1 - μ0, the difference between the real 
and hypothesized mean.  The noncentrality 
parameter (δ) is given by 

(4-29) 

Values of δ are given in Table D7 for a one-sided 
noncentral t distribution. Continuing with the 
current example, it is possible to develop a power 
curve that indicates the trade-offs between Type I 
and II errors. (Background discussion on power 
curves is provided in Section 4.1.1.) From Table 
D7 (df = 14, α = 0.05), one value of δ is obtained 

4-41 



Data Analysis Chapter 4 

Figure 4-16. One- and two-sided t test for post-BMP mean TSS concentration. 
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for each level of β (Table 4-14). In Table 4-14, 
power is computed as 1-β and Δ is obtained by 
rearranging Equation 4-29 and using s equal to 
0.273571 and n equal to 15. Note that Δ, referred 
to as the minimum detectable difference, is in log-
transformed units. 

Power can be plotted as a function of the 
minimum detectable difference (see Figure 4-17). 
The dotted line indicates an approximate 
extrapolation back to α when the minimum 
detectable difference is equal to zero. Using the 
log-transformed postimplementation data, Δ is 
equal to 0.178 (= 1.3979 - 1.21969). Interpolating 
from Table 4-14 or Figure 4-17 yields that there is 
a 77 percent probability (i.e., power = 0.77) that a 
significant difference would be detected (i.e., 
reject Ho) if the difference between the estimated 
mean and true mean using log-transformed data 
were 0.178. For Δ less than 0.027, there is only a 
10 percent chance of detecting a significant 
difference, whereas for Δ greater than 0.3 there is 
almost a 100 percent chance of detecting a 
significant difference. 

Table 4-14. Evaluation of power using the post-
implementation TSS data. 

Power β δ ∆ 
(1-β) 

0.10 0.90 0.38 0.027 
0.20 0.80 0.84 0.059 
0.30 0.70 1.18 0.083 
0.40 0.60 1.46 0.103 
0.50 0.50 1.73 0.122 
0.60 0.40 2.00 0.141 
0.70 0.30 2.28 0.161 
0.80 0.20 2.62 0.185 
0.90 0.10 3.08 0.218 
0.95 0.05 3.46 0.244 
0.99 0.01 4.18 0.295 

Wilcoxon Signed Ranks test 

Alternatively, if the log (or some other) 
transformation did not result in normally 
distributed data, the analyst could consider the 
Wilcoxon Signed Ranks test. Although less 
restrictive than the t test, this test requires that the 

Figure 4-17. Evaluation of power using the log-transformed postimplementation TSS data. 
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data are independent and come from a symmetric 
distribution. As the name implies, a symmetric 
distribution is one in which the distribution of data 
above the midpoint is a mirror image of the data 
distribution below the midpoint.  (The normal 
distribution is a special case of a sym-metric 
distribution.) When the data distribution is 
symmetric, the mean and median coincide and 
therefore inferences about the median are also 
valid for the mean (Conover, 1980).  For this 
presentation, the median concentration is 
evaluated rather than the mean using the following 
hypotheses: 

Ho: P.50 $ 25 or Ho: 25-P.50 # 0 
Ha: P.50 < 25 Ha: 25-P.50 > 0 

The test statistic, T, is normally distributed and is 
given by Conover (1980) as 

(4-30)
 

where di is equal to the difference between the 
hypothesized value (25 mg/L) and the actual data 
and the rank is assigned a negative value if di is 
negative. El-Shaarawi and Damsleth (1988) 
provide a modified version of the Wilcoxon 
Signed Ranks test for use with serially correlated 
data. 

Modification for Paired Data 

di corresponds to the difference 
between paired observations 
(e.g., di = xi - yi). 

From the previous example, it is already known 
that the raw postimplementation data are 
lognormal and thus not symmetric.  Therefore, the 
log-transformed data are analyzed since it has 
already been determined that the log-transformed 
observations are symmetric as well as indepen­
dent. Table 4-15 shows the calculations used to 
evaluate the log-transformed post-implementation 
data set. For convenience the data are sorted from 
smallest to largest observation.  The dif-ference, di, 
is computed as log(25) - log(TSSi). For example, 
the first entry is equal to log(25) - log(6) or 0.620. 
Since the log-transformed data were symmetric, di 

will also be symmetric.  The fourth column is the 
absolute value of the dif-ference, *di *. The last 
two columns are the rank and rank-squared of *di * 
where the rank is assigned a negative value if di is 
negative. T is equal to 76/(1238.5)0.5 or 2.16. 
Since 2.16 is greater than 1.645 (which is obtained 
from Table D1 using α = 0.05), the null hypothesis 
is rejected and it is concluded that the median 
concentration is less than 25 mg/L.  Had the raw 
data that are not symmetric been incorrectly used, 
T would have been equal to 1.54 and the null 
hypothesis would have been incorrectly accepted. 

Sign test 

Suppose that the postimplementation data could 
not be transformed into a symmetric distribution. 
By using the sign test, the symmetric distribution 
assumption can be relaxed (i.e., it is not required). 
In this case, the appropriate hypotheses for a one-
sided test are 

Ho: P(+) $ P(-) 
Ha: P(+) < P(-) 

where P(+) is defined as the probability of an 
observation’s being greater than the hypothesized 
value (in this case 25 mg/L).  As stated, Ho implies 
that 50 percent or more of the population is greater 
than or equal to the hypothesized value. 
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Table 4-15. Nonparametric evaluation of postimplementation data using the Wilcoxon Signed Ranks 
test. 

TSS 
(mg/L) Log(TSS) 

di=Log(25) 
-Log(TSSi) *di * 

rank 
*di *

a 
rank 
*di *

2 

6 
7 
10 
10 
11 
12 
14 
14 
16 
22 
30 
32 
32 
40 
42 

0.778 
0.845 
1.000 
1.000 
1.041 
1.079 
1.146 
1.146 
1.204 
1.342 
1.477 
1.505 
1.505 
1.602 
1.623 

0.620 
0.553 
0.398 
0.398 
0.357 
0.319 
0.252 
0.252 
0.194 
0.056 
-0.079 
-0.107 
-0.107 
-0.204 
-0.225 

0.620 
0.553 
0.398 
0.398 
0.357 
0.319 
0.252 
0.252 
0.194 
0.056 
0.079 
0.107 
0.107 
0.204 
0.225 

15 
14 

12.5 
12.5 

11 
10 
8.5 
8.5 

5 
1 

-2 
-3.5 
-3.5 

-6 
-7 

225 
196 

156.25 
156.25 

121 
100 

72.25 
72.25 

25 
1 
4 

12.25 
12.25 

36 
49 

SUM = 76 1238.5 
a Assign the negative of the rank if di is negative. 

Modification for Paired Data 

The comparison is made between 
the paired observations rather than 
with a hypothesized value. 

By comparing each observation from the random 
sample to the hypothesized value, the data set is 
converted into a series of “+,” “-,” and ties. The 
test statistic, T, is equal to the number of “+.”  The 
more “+” that result from the comparisons, the 
more Ho is supported. 

Using the raw postimplementation data, T is equal 
to 5 and n is equal to 15. There are no ties. In this 
one-sided test, small values of T indicate that “-” 
are more probable.  For sample sizes less than 20, 
use Table D8 with p equal to 0.5 and n equal to the 

number of “+” and “-” (ties are excluded).  Find 
the table entry,  y, that approximately equals α, 
rejecting Ho if T  #  y. If n is greater than 20, y can 
be computed as 

(4-31) 

were Zα is obtained from Table D1.  For example, 
if α is equal to 0.05 in a one-sided test, Z0.05 is 
equal to -1.645. Using the example data, a y equal 
to 4 (α=0.0592) is obtained from Table D7.  T is 
greater than 4, so Ho is accepted. 

Had the hypotheses been stated in the other 
direction (i.e., Ho: P(+) # P(-); Ha: P(+) > 
P(-)), Ho would be rejected if T $ n - y. Had this 
been a two-sided test, the rejection region would 
be for T # y or T $ n - y where y is obtained from 
Table D8 or Equation 4-31 using α/2. 
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Table 4-16 presents paired observations for BOD5 Comparison of example results 
collected at two locations from the same stream. 
In this case, the hypothesis that there is no 
difference in BOD5 concentrations between the 
two locations with a α = 0.10 is being tested: 

Hypotheses Description 
Ho: P(+) = P(-) BOD5 concentrations at the two 

locations are the same. 
Ha: P(+) … P(-) BOD5 concentrations at location 1 

tends to be larger or smaller than 
the BOD5 concentration at 
location 2. 

In this case, a two-sided test is appropriate where 
P(+) indicates the probability that an observation 
from location 1 is greater than an observation from 
location 2. The fourth column indicates whether 
the BOD5 concentration at location 1 is larger (+), 
smaller (-), or equal to (tie) the BOD5 

concentration at location 2. In this analysis there 
are 8 “+” and a total of 13 observation pairs 
without ties. From Table D8 with α/2 = 0.05 and 
n = 13, y = 3 (α = 0.0461) is obtained. Ho is 
accepted since 3 # 8# (13-3). 

In this case, the Student’s t test and Wilcoxon 
Signed Ranks test give the same conclusion.  It is 
proposed that the results from the t test are more 
appropriate for this example since all of the 
assumptions of the parametric test were met.  Had 
the assumptions not been met, the results from the 
Wilcoxon Signed Ranks test would have been 
more appropriate.  That is, if all assumptions are 
met, parametric procedures are more powerful than 
their nonparametric alternative.  The sign test, 
while not incorrect, was not a good choice for the 
example data because the distributional 
assumptions were met and more powerful tests 
could be applied. Applying the Wilcoxon Signed 
Ranks test to data that are not symmetric results in 
a level of significance (α) that is somewhat lower 
than what is specified, whereas applying the t test 
to data that are not normally distributed results in 
an α that is much larger than specified (Helsel and 
Hirsch, 1995). 

Table 4-16. Sign test for comparing paired BOD5 concentrations. 

Day Conc. at Location 1 
(mg/L) 

Conc. at Location 2 
(mg/L) 

Sign of 
Difference 

1 29 19 + 
2 22 20 + 
3 10 5 + 
4 26 24 + 
5 12 15 -
6 32 24 + 
7 23 25 -
8 11 23 -
9 32 32 tie 
10 27 30 -
11 28 20 + 
12 23 16 + 
13 18 33 -
14 35 25 + 
15 20 20 tie 
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4.5.2 Two-sample Tests 

In many instances, paired observations are not a 
practical or appropriate sampling methodology. 
Instead, two random samples are collected.  The 
pre- and postimplementation data in Table 4-13 
from the Highland Silver Lake RCWP are one 
example.  The Student’s t test for two samples and 
the Mann-Whitney test are the most appropriate 
tests for these types of data. 

Two-sample t test 

Suppose that a comparison of the pre- and post-
implementation TSS data sets is desired to see if 
the BMPs have had an effect on TSS levels in 
Highland Silver Lake. Remembering the 
assumptions made earlier about using the mean 
TSS concentration as a good measure of central 
tendency and assuming that any change in TSS 
mean concentration is due to the BMP alone, the 
pre- and postimplementation data sets can be used 
in a one-sided hypothesis: 

Ho: TSS (Post) $ TSS (Pre) or 
Ho: TSS (Post) - TSS (Pre) $ 0 

Ha: TSS (Post) < TSS (Pre) or 
Ha: TSS (Post) - TSS (Pre) < 0 

Note that in this case the Ho that the post-
implementation TSS is greater than or 
equal to the preimplementation TSS 
concentration is tested with an Ha that 
postimplementation TSS is lower.  The 
results from this analysis will be 
interpreted as simply indicating whether 
the BMPs worked. This could also have 
been set up as a two-sided test where Ho 

and Ha would be 

Ho: TSS (Post) = TSS (Pre) or 
Ho: TSS (Post) - TSS (Pre) = 0 

Ha: TSS (Post) … TSS (Pre) or 
Ha: TSS (Post) - TSS (Pre) … 0 

With confidence that the BMP would have only an 
effect of reducing TSS concentrations, Ho is tested 
using a one-sided t test. Both the pre-
implementation and postimplementation data sets 
are random samples and normal when log-
transformed.  However, the two-sample t test also 
requires that the variances of the two populations be 
equal (Gaugush, 1986). Since a major effect of 
many nonpoint source control practices is to reduce 
the occurrence of large loading events, it is very 
likely that these practices will have an effect on the 
variance of nonpoint source loads. Thus, an F test 
is performed to evaluate variance homogeneity 
before proceeding with the t test even though the t 
test is robust with respect to moderate departures 
from homogeneous variance (Winer, 1971). 

Since the log-transformed data (Figures 4-14 and 
4-15) are being used, the variance of the 
transformed data must also be used in the F test. 
The resulting F statistic is computed from 
Equation 4-23: 

F1 = 0.075/0.057 = 1.32 

The variances are substituted into Equation 4-23 so 
that the F statistic is greater than unity to account 
for the organization of Table D6. The critical F 
value from Table D6 (fn = 14, fd = 15, α/2 = 0.025) 
is 2.89. The value 1.32 is compared to 2.89, and 
the null hypothesis of equal variance is accepted. 

Tests for Two Independent Random Samples 

Testa Key Assumptions 

Two-Sample t •	 Both data sets must be 
normally distributed 

• Data sets should equal 
variancesb 

Mann-Whitney • None 

a The standard form of these tests requires independent
 
random samples.

b The variance homogeneity assumption can be relaxed
 
(see Table 4-17).
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Satisfied that the data meet all of the assumptions 
required of the two-sample hypothesis test, Ho 

(TSS (Post) $ TSS (Pre)) is now tested. The two-
sample t statistic with n1+n2-2 degrees of freedom 
is (Remington and Schork, 1970) 

(4-32) 

where sp is the pooled standard deviation, which is 
defined by 

(4-33) 

The difference quantity (Δo) can be any value, but 
in this case it is set to zero. Δo can be set to a non­
zero value to test whether the difference between 
the two data sets is greater than a selected value. 
Using the transformed data for preimplementation _
(n1 = 16, s1

2 = 0.057087, x1 = 1.407) and 
postimplementation conditions (n2 = 15, s2

2 = _
0.074812, x2 = 1.21969), sp is calculated as 

Comparing this t statistic in a one-tailed test to the 
t value from Table D2 (α = 0.05, df = n1 + n 2 - 2 = 
29), it is found that the 2.034 exceeds the table 
value of 1.6991. Therefore, the null hypothesis is 
rejected and it is concluded that the 
postimplementation mean log-transformed TSS 
concentration is lower than the preimplementation 
level (i.e., the BMPs worked given earlier 
assumptions).  Note that if a two-tailed test had 
been used, the null hypothesis would have been 
accepted since the corresponding t value from 
Table D2 is 2.0452. Remington and Schork (1970) 
give test statistics for other cases in which the 
difference between means is being tested.  These 
cases and corresponding equations are given in 
Table 4-17. In particular, note Case #3, which 
allows for unequal variances. 

The power of this test can be estimated using the 
noncentrality parameter (Larsen and Marx, 1981): 

(4-34)
 

where σ is approximated with the pooled standard 
deviation. Using the data in this example, 

and the t statistic is calculated as 

From Table D7 (df = 29, α = 0.05), a β 
approximately equal to 0.60 is obtained, so the 
power is equal to 0.40. Had the difference in 
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Table 4-17. Summary of parametric tests used to evaluate difference between means (Remington and 
Schork, 1970). 

Case 1: Difference between means when variances are known 
(test statistic is standard normal distribution) 

Null Hypothesis Test Statistic Assumptions 
Independent, random samples of size n1 

and n2 from two normally distributed 
populations. 

Case 2: Difference between means when variances are unknown 
but equal (test statistic is Student’s t distribution 

with n1+n2-2 degrees of freedom) 
Ho Test Statistic Assumptions 

Independent, random samples of size n1 

and n2 from two normally distributed 
populations with equal variances 

Case 3: Difference between means when variances are known and 
unequal (test statistic is approximately Student’s t; see below 

for degrees of freedom) 
Ho Test Statistic Assumptions 

Independent, random samples of size n1 

and n2 from two normally distributed 
populations with unknown and 
presumably unequal variances 

Case 4: Pairing—the mean difference (test statistic is 
Student’s t distribution with n-1 degrees of freedom) 

Ho Test Statistic Assumptions 
Random sample of size n paired 
differences from a normally distributed 
populations of differences 
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means (of the log-transformed data) been larger 
(e.g., 0.30), δ would be 2.31 and the power would 
be equal to 73 percent. 

Mann-Whitney (Wilcoxon’s rank sum) test 

The Mann-Whitney test can also be used to 
compare two independent random samples.  This 
test is very flexible since there are no assumptions 
about the distribution of either sample or whether 
the distributions have to be the same (Helsel and 
Hirsch, 1995). Wilcoxon (1945) first introduced 
this test for equal-sized samples.  Mann and 
Whitney (1947) modified the original Wilcoxon’s 
test to apply it to different sample sizes.  This test 
tests whether one data set tends to have larger 
observations than the other. Example two- and 
one-sided hypotheses are as follows: 

Two-sided 

Ho: Prob [TSS (Post) > TSS (Pre)] = 0.5 

Description:  The probability that the post-
implementation TSS is larger than the pre-
implementation TSS is equal to 50 percent. 

Ha: Prob [TSS (Post) > TSS (Pre)] … 0.5 

Description: The postimplementation TSS is 
larger or smaller than the preimplementation 
TSS. 

One-sided 

Ho: Prob [TSS (Post) > TSS (Pre)] $ 0.5 

Description:  The probability that the post-
implementation TSS is larger than the pre-
implementation TSS is equal to or greater than 
50 percent. 

Ha: Prob [TSS (Post) > TSS (Pre)] < 0.5 

Description:  The postimplementation TSS is 
smaller than the preimplementation TSS. 

If the distributions of the two samples are similar 
except for location (i.e., similar spread and skew), 
Ha can be refined to imply that the median 
concentration from one sample is “greater than,” 
“less than,” or “not equal to” the median 
concentration from the second sample.  To achieve 
this greater detail in Ha, transformations such as 
logs can be used. 

Table 4-18 shows the intermediate calculations 
using the same TSS data presented earlier.  First, 
all observations from the pre- and post-
implementation are sorted together and ranks 
assigned. Note that ties are assigned the average 
rank. The test statistic is equal to the sum of the 
ranks for the group with the smaller number of 
observations—in this case, the postimplementation 
data set. 

Tables of Mann-Whitney test statistics (e.g., 
Conover, 1980) may be consulted to determine 
whether to reject Ho for small sample sizes.  If n1 

and n2 are greater than or equal to 10 observations, 
the test statistic can be computed from the 
following equation (Conover, 1980): 

(4-35) 
where 

n1 =	 number of observations in sample with 
fewer observations (e.g., post-
implementation); 

n2 =	 number of observations in sample with 
more observations (e.g., pre-
implementation); 

N =	 n1 + n2; 
T =	 sum of ranks for sample with fewer 

observations; and 
Ri =	 rank for the ith ordered observation used in 

both samples. 
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Table 4-18. Nonparametric evaluation of post-implementation data using the Mann-Whitney test. 

Pre- Post-
Implement. Implement. 

Rank TSS (mg/L) TSS (mg/L) Rank 

Pre-
Implement. 
TSS (mg/L) 

Post-
Implement. 
TSS (mg/L) 

1 - 6 
2 - 7 
3.5 - 10 
3.5 - 10 
5.5 11 -
5.5 - 11 
7.5 12 -
7.5 - 12 
9 13 -

10.5 - 14 
10.5 - 14 
12.5 16 -
12.5 - 16 
15 20 -
15 20 -
15 20 -

17  
18  
19 
20.5 
20.5 
22.5 
22.5 
24 
25 
26 
27.5 
27.5 
29 
30.5 
30.5 

21  
-

25 
30 

-
-
-

35 
37 

-
42 

-
48 
60 
60 

-
22  

-
-

30 
32 
32 

-
-

40 
-

42 
-
-
-

Sum of ranks for post-implementation, T = 193.5 
Sum of all ranks squared, ΣRi 

2 = 10,409.5 

This equation is appropriate for situations when 
there are many ties.  Applying this equation yields 

T1 is normally distributed, and Table D1 can be 
used to determine the appropriate quantile.  Since 
the test was one-sided and α is equal to 0.05, the 
appropriate quantile from Table D1 is -1.645.  T1 

is less than -1.645, and therefore the null 
hypothesis is rejected.  The post-implementation 
TSS concentrations are significantly less than the 
pre-implementation TSS concentrations.  Had a 
two-sided test been used, the appropriate quantile 
from Table D1 would have been -1.96 and the Ho 

would have been accepted. In this case, the two-
sample t test and the Mann-Whitney test result in 
the same conclusion. 

4.5.3 Magnitude of Differences 

So far, Section 4.5 has described statistical tests for 
comparing one and two random samples for 
significant differences. A question remains:  How 
big is the difference? For data that are normally 
distributed, the difference can be computed as the 
difference between the two sample means.  The 
confidence interval (CI) for the differences can be 
computed under the equal variance scenario as 
(Winer, 1971): 

(4-36) 
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If the standard deviations were not similar, the CI 
would be 

(4-37) 

where df is from Table 4-17 (Case 3).  

Helsel and Hirsch (1995) recommend that a 
Hodges-Lehmann estimator (Δ̂) be used if the data 
have been transformed for testing or if the data are 
not normally distributed.  The Hodges-Lehmann 
estimator (Hodges and Lehmann, 1963) can be 
used as a nonparametric estimator of the difference 
between the two samples.  To compute the 
Hodges-Lehman estimate, the analyst computes 
the difference between all n1 and n2 observations. 
Using the TSS data used earlier, there are 16•15 or 
240 differences to compute.  The Hodges-
Lehmann estimator is the median of these 
differences or 8 mg/L.  This estimator is preferred 
to the difference between the medians of the 
random samples (Helsel and Hirsch, 1995).  For 
sample sizes larger than 10, the upper and lower 
confidence intervals for Δ̂ can be estimated: 

(4-38) 

(4-39) 

where Rl and Ru correspond to the lth and uth 

ranked difference. The 95 percent confidence 
interval for the difference between the pre- and 
post-implementation data would be computed as 

Therefore, the confidence interval on the median 
difference is equal to the 70th and 171st ranked 
difference or -1 #Δ̂ # 19. 

4.6 COMPARISON OF MORE THAN TWO 

INDEPENDENT RANDOM SAMPLES 

The analysis of variance (ANOVA) and Kruskal-
Wallis are extensions of the two-sample t and 
Mann-Whitney tests, respectively, and can be used 
for analyzing more than two independent random 
samples.  Unlike the t test described earlier, the 
ANOVA can have more than one factor or 
explanatory variable.  In the Highland Silver Lake 
RCWP project example used in Section 4.5, one 
factor described whether the data were collected 
before or after implementation of a BMP.  In the 
example that will be analyzed in this section, trout 
population, there are two factors. One factor is 
based on the stream from which the trout were 
collected; the other factor is based on the region 
from which the trout were collected.  The Kruskal-
Wallis test accommodates only one factor, whereas 
the Friedman test can be used for two factors.  In 
addition to applying one of the above tests to 
determine whether one of the samples is 
significantly different from the others, it is also 
necessary to do postevaluations to determine which 
of the samples is different.  This section 
recommends Tukey’s method to analyze the raw or 
rank-transformed data only if one of the previous 
tests (ANOVA, rank-transformed ANOVA, 
Kruskal-Wallis, or Friedman) indicates a 
significant difference between groups. The reader 
is cautioned that when performing an ANOVA 
using standard software, the ANOVA test used 
must match the data. 
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4.6.1 One-Factor Comparisons 

ANOVA 

The ANOVA for one factor is a procedure for
 
comparing the mean value from each group with
 
the overall mean.  Ho is typically stated that there
 
are no differences between the group means,
 
whereas Ha states that at least one group’s mean is
 
significantly different from the overall mean or
 

Ho: μ1 = μ2 = ... = μk.
 
Ha:  At least one group mean is different.
 

The basic assumptions made in using an ANOVA
 
are as follows (Remington and Schork, 1970):
 

•	 Each sample is a random sample from the 
corresponding population, and observations 
from different populations are independent. 

•	 The measurement variable is normally 
distributed in each of the k groups. 

•	 The groups have the same variance 
(homoscedasticity). 

The variation (or total noise) in the data can be
 
split into the treatment sum of squares (SST) and
 
the errors sum of squares (SSE) (see Equation 

4-40) (Helsel and Hirsch, 1995) where
 

k = number of groups,
 
nj = number of observations in the jth group,
 _ 
xj = mean of the jth group. 

_ xij = ith observation in the jth group, 
x = overall mean, and 

This notation is also used in Table 4-19, which 
indicates each observation, group sample size, 
group sample mean, and group true mean.  Note 
that sample sizes for the different groups need not 
be the same.  The reader should compare the 
notation in Table 4-19 to that used in Equation 
4-40. 

The observations (xij) within each group are 
assumed normally distributed about the mean, μj

and variance, σ². The variance is the same for all 
classes, but the mean can vary among classes.  The 
overall mean is denoted as μ, and the 
corresponding linear model is expressed as 
(Snedecor and Cochran, 1980) 

(4-41) 

This fixed effects model shows that each observed 
value is the sum of an overall mean (μ), a treatment 
or class deviation (αj), and a random element (εij) 
from a normally distributed population with a zero 
mean and a standard deviation equal to σ. The 
model is referred to as “fixed” because the αj, 
while unknown, are constant for a group. The 
random element represents variations due to such 
factors as unit-to-unit variation in treatment effect, 
measurement errors, or individual characteristics of 
the unit (Snedecor and Cochran, 1980). To detect 
a significant difference, the variation within the 
group (i.e., εij) must be sufficiently smaller than the 
variation between groups. 

(4-40) 
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Table 4-19. ANOVA notation. 

Factor Level 

1 2 ... k 

x11 

x21 

x12 

x22 

... x1k 

x2k 

.

. 

.

. 

. 

. 
...

. 

. 

. 

xn 1
1

xn 2 
2 

... xn k 
k 

Sample size: 

Sample mean: 

True mean: 

n1 _ 
x 1
μ1 

n2 _ 
x 2 

μ2 

... 

... 

... 

nk _ 
xk 

μk 
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The ANOVA test statistic, F, is based on a ratio of 
the treatment mean squares (MST) and error mean 
squares (MSE): 

(4-42) 

where 

(4-43) 

(4-44) 

and N is the total number of observations. 

An F value of 1 represents the condition where Ho 

is true, and large F values indicate differences 
among the μj. Snedecor and Cochran (1980) note 
that the F test is more affected by nonnormality 

and heterogeneity of variances when sample sizes, 
nj, are not equal. 

Table 4-20 presents a common format for the 
results from a one-factor ANOVA analysis 
generated by typical software.  The first column 
identifies which portion of the linear model is 
being displayed and corresponds to the top portion 
of Equation 4-40. The second column presents the 
sum of squares for each source of variation, the 
third column presents the degrees of freedom, and 
the fourth column presents the treatment and error 
mean squares (Equations 4-43 and 4-44).  F is 
calculated using Equation 4-42. The p value 
corresponds to the significance level associated 
with the computed F. The “F crit” corresponds to 
the critical value from Table D6 using k-1 and N-k 
degrees of freedom and a selected α. Note that 
some software packages do not present “F crit.” If 
the p value is less than the selected α, Ho is rejected 
because at least one of the groups has a different 
mean. 

As an example one-factor ANOVA, consider the 
situation where the trout populations of three 
streams are measured by the multiple-step Zippin 
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Table 4-20. Common one-way ANOVA output format. 

Source of 
Variation SS df MS F p-value F Criteria 

Between 
Groups 
(Treatment) 

SST k-1 MST = SST/(k-1) MST/MSE p F value for 
selected α 

Within 
Groups 
(Error) 

SSE N-k MSE = SSE/(N-k) 

Total SST + SSE N-1 

approach for electrofishing at five randomly 
selected sites in the Coastal Plain region (Platts et 
al., 1983). The data from this monitoring effort are 
shown in Table 4-21. 

Using the one-factor ANOVA procedure from a 
standard spreadsheet, trout population as a function 
of stream was modeled to test the null hypothesis 
that stream has no effect on trout population (i.e., 
the treatment effect is zero).  The results of this test 
are shown in Table 4-22. Note that the F value of 
6.332 is equal to MST (92.867) divided by MSE 
(14.667). The p value is 0.013. The critical value 

from Table D6 with 2 and 12 degrees of freedom 
and α = 0.05 is 3.885. Ho is rejected since at least 
one of the stream’s trout populations has a 
different mean.  Since Ho is rejected, it is 
appropriate to continue with postevaluations to 
determine which group has a different mean.  Had 
Ho not been rejected, postevaluations would be 
meaningless and inappropriate. 

One approach (Least Significant Difference) to 
determining which of the means is different is to 
compare each pair of means.  To do a pairwise 

Table 4-21. Trout population from streams in the coastal plain region. 

Site 

Stream 

Black Creek Blue Creek Red Creek 

Trout Population (Pounds/Acre/Year - Year Class 2) 

1 
2 
3 
4 
5 

60 
65 
64 
63 
58 

49 
60 
54 
58 
57 

50 
56 
51 
60 
52 

xGj 62.0 55.6 53.8 
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Table 4-22. One-way ANOVA of stream trout data from the coastal plain region using stream as the 
treatment. 

Source of 
Variation SS df MS F p-value F Criteria 

Between 185.733 2 92.867 6.332 0.013 3.885 
Groups 
(Treatment) 

Within 176.000 12 14.667 
Groups 
(Error) 

Total 361.733 14 

comparison, the standard error of the difference 
between two means is calculated as (Snedecor and 
Cochran, 1980) 

(4-45)
 

with N-k degrees of freedom.  Using the data from 
Table 4-22, sD- is equal to 2.422 with 12 degrees of 
freedom.  For α/2 equal to 0.025 (and df = 12), the 
value of t from Table D2 is 2.1788.  Therefore, if 
any pair of means exceeds a difference of 2.422 x 
2.1788 or 5.3, the difference is significant. The 
mean trout populations for Black, Blue, and Red 
Creeks are 62, 55.6, and 53.8 pounds/acre/year, 
respectively.  The trout population in Black Creek 
is significantly higher than the trout population in 
Blue Creek or Red Creek. Note that a pairwise 
comparison was made between the three groups 
(i.e., three pairwise comparisons) with α = 0.05; 
therefore, the overall error rate is 1-(1-0.05)3, or 
about 14 percent. Other approaches for multiple 
comparisons are discussed in Section 4.6.4. 

Kruskal-Wallis test 

The Kruskal-Wallis test is an extension of the
 
Mann-Whitney test described earlier.  This test can
 
be used when there are several independent
 
samples that do not have the same distribution.  In
 
this case, Ho and Ha are as follows:
 

Ho: All k groups have identical distributions.
 
Ha: At least one of the groups tends to yield larger
 

observations than at least one other group. 

If the distributions of all groups are similar except 
for location (i.e., similar spread and skew), Ha can 
be refined to imply that the median concentration 
from one group is different from the median 
concentration from at least one other group.  To 
achieve this greater detail in Ha, transformations 
such as logs can be used. 

Again consider the notation used in Table 4-19 
where there are k groups and each group has nj

observations. N is the total number of 
observations. To compute the Kruskal-Wallis 
statistic, the following steps (Conover, 1980) can 
be used: 
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•	 Rank all of the data from lowest to highest, 
assigning the average of ranks to ties. The 
rank of observation xij is denoted as R(xij). 

•	 Compute Rj for all k random samples using 

(4-46) 

•	 Compute the test statistic, T: 

(4-47) 

where 

(4-48) 

For k = 3, all nj are 5 or less, and there are no ties, 
special tables should be used to determine the 
rejection region for T (see Conover, 1980). If 
these criteria do not apply, Table D3 with p = 
1-α and k-1 degrees of freedom should be used.  If 
the computed T statistic from Equation 4-47 is 

greater than the value obtained from the table, Ho 

is rejected. 

Table 4-23 presents the rank of the trout 
population data used in the previous example; Rj

for each group has already been computed. 
Applying Equation 4-48 with the individual ranks 
from Table 4-23 and N = 15, S2 is equal to 19.82. 
Substituting S2, N = 15, nj = 5 (for all j) into 
Equation 4-47 along with the Rj summarized in 
Table 4-23, T is equal to 7.21. From Table D3 
with α = 0.05 and 2 degrees of freedom, the critical 
value is 5.991. Ho is rejected. Had there been no 
ties, the exact critical value would be 5.66 
(Conover, 1980). 

Since Ho has been rejected, it is acceptable to do a 
multiple comparisons evaluation.  One approach is 
to compare the ranks from each pairwise group. 
The groups i and j are different if the following 
inequality is satisfied (Conover, 1980): 

(4-49) 

In this example, all nj are equal to 5 and the above 
equation can be reduced to 

Table 4-23. Rank of trout population from streams in the coastal plain region. 

Site 

Stream 

Black Creek Blue Creek Red Creek 

Rank 

1  

2  

3  

4  

5  

11  

15  

14  

13  

8.5  

1  

11  

5  

8.5  

7  

Rj 61.5 32.5 26 

2  

6  

3  

11  

4  
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or 

where t is obtained from Table D2 with 15-3 
degrees of freedom.  By comparing the above 
result with Rj in Table 4-23, it can be concluded 
that the trout population in Black Creek is 
significantly greater than the trout population in 
Blue Creek or Red Creek. 

4.6.2 Two-Factor Comparisons 

ANOVA 

In a two-way ANOVA the variation due to two 
factors is quantified. One factor cannot be a subset 
of the other factor. Subsetted factors are referred 
to as nested factors, a subject that is not considered 
here. The reader is referred to Gaugush (1986) and 
Snedecor and Cochran (1980) for more thorough 
discussions regarding factorial experiments and 
hierarchical arrange-ments for fixed effects 
models.  In this section, Equation 4-41 is extended 
to include a second factor (Helsel and Hirsch, 
1995; Snedecor and Cochran, 1980), 

(4-50) 

where i = 1, ..., a; j = 1, ..., b; and k = 1, ..., n. The 
number of levels in factors A and B are represented 
by a and b, respectively.  There are axb treatment 
groups. The number of replicates is equal to n and 
is constant across all treatment levels i and j. That 
is, there are the same number of observations for 
each unique combination of factors A and B. In 
this case, each observed value is the sum of an 
overall mean (μ), the influence of the ith category 

of factor A (αi), the influence of the 
jth category of factor B (βj), the 
interaction effect between factors A 
and B ((αβ)ij), and a residual error 
(εijk). If (αβ)ij is equal to zero, there 

is no interaction. No interaction means that a 
change in factor B has the same impact on xijk 

regardless of factor A (and vice versa). 

Ho is that all treatment groups have the same mean, 
whereas Ha indicates that at least one treatment 
group mean has a different mean.  The two 
assumptions made using this model (Equation 4­
50) is that (1) the effects are additive, and 
(2) the residuals are independent, random variables 
normally distributed with a zero mean and constant 
variance across all treatment groups (Snedecor and 
Cochran, 1980). 

Helsel and Hirsch (1995) caution the practitioner 
that when evaluating data with unequal numbers of 
observations some smaller statistical packages 
incorrectly apply the balanced equations (equal 
number of observations) presented here to 
unbalanced data sets (unequal number of 
observations) without notice. Packages such as 
SAS and Minitab provide options for analyzing 
unbalanced data sets. Two-way ANOVA can be 
performed for two cases, one in which there is no 
interaction between the two variables and one in 
which there is an interaction between the two 
variables. The sum of squares for factor A (SSA), 
factor B (SSB), and the interaction between A and 
B (SSI) for a balanced data set including interaction 
can be computed using Equations 51 through 55 
(Helsel and Hirsch, 1995). 

Table 4-24 is an ANOVA table that incorporates 
the above equations into the second column, 
presents the degrees of freedom in column three, 
and provides the equations for the mean squared 
error terms and F statistics in the fourth and fifth 
columns. 
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(4-51) 

(4-52) 

(4-53) 

where 

(4-54) 

and 

(4-55)
 

Table 4-24. Common two-way ANOVA output format. 

Source of p- F 
Variation SS df MS F value criteria 

Factor A SSA a-1 MSA = SSA/ MSA/MSE p F value for 
(a-1) selected α 

Factor B SSB b-1 MSB = SSB/ MSB/MSE p F value for 
(b-1) selected α 

Interaction SSI (a-1)x MSI = SSI/ MSI/MSE p F value for 
(Factor AxFactor B) (b-1) [(a-1)x(b-1)] selected α 

Error SSE ab(n-1) MSE = SSE/ 
[ab(n-1)] 

Total Total SS abn-1 
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To demonstrate this procedure, the two-way 
ANOVA procedure is applied to the data in Table 
4-25. This data set includes the trout population 
data from three streams and three regions 
(i.e., a = b = 3). This test could reflect, for 
example, the hunch that regional effects on trout 
population differ across streams (e.g., perhaps the 
streams are impacted differently by point and 
nonpoint sources). In this experimental design, 
factor A is the region and factor B is the stream. 
Using standard statistical software, Table 4-26 
presents the results of the two-way ANOVA 
calculations. The p values for the region, stream, 

Stream Region 

Site 

1 2 3 4 5 

Trout Population 
(Pounds/Acre/Year - Year Class 2) 

Black Creek	 Mountain 
Piedmont 
Coastal Plain 

75 
68 
60 

70 65 72 
72 70 70 
65 64 63 

68 
67 
58 

Blue Creek	 Mountain 
Piedmont 
Coastal Plain 

70 
64 
49 

76 
66 
60 

69 
60 
54 

67 
69 
58 

74 
62 
57 

Red Creek	 Mountain 
Piedmont 
Coastal Plain 

68 
62 
50 

70 
66 
56 

63 
58 
51 

65 
69 
60 

70 
67 
52 

Table 4-25. Stream trout population. 

and region x stream factors are 1.0 x 10-10, 0.001, 
and 0.1458, respectively.  Using α = 0.05, Ho is 
rejected; there is a significant difference between 
treatment group means due to region and stream. 
The interaction of region and stream is not 
significant at the 95 percent confidence level. 
Based on this analysis, it is acceptable to perform a 
multiple comparisons analysis for regions and 
streams. 

This ANOVA discussion is simple in many 
respects. For example, a balanced data set and a 
fixed effects model were analyzed.  In situations 

Table 4-26. Two-way ANOVA of trout population data using an interaction term. 

Source of 
Variation SS df  MS F p-value 

F crit 
(α=0.05) 

Region 1213.73 2 606.87 46.60 1.0E-10 3.26 

Stream 219.73 2 109.87 8.44 0.0010 3.26 

Region x Stream 94.93 4 23.73 1.82 0.1458 2.63 

Error 468.80 36 13.02 

Total 1997.20 44 
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where multiple variables are examined, a balanced 
data set is not likely to be feasible or economical. 
A key limitation of the fixed effects model is that 
inferences cannot be made beyond the groups 
being tested. In the trout population example, only 
statements about the three streams and three 
regions analyzed can be made.  Nothing about a 
fourth stream or region can be inferred.  If the 
three streams had been randomly selected from 
across the state with the intent of determining 
whether there was a spatial difference in trout 
population, the stream factor would have been a 
random factor rather than a fixed factor, and the 
calculation of the F statistics would be different. If 
both factors were random, the F statistics would 
use the mean squares for interaction (MSI) rather 
than the MSE as the denominator.  If there were a 
mixture of fixed and random factors, the F statistic 
for the fixed factor would be computed with the 
MSI and the random factor would be computed 
with the MSE in the denominator (Helsel and 
Hirsch, 1995). 

Ranked transformed ANOVA 

To perform the ANOVA described in Section 
4.6.2, the data in each treatment group must be 
normally distributed with a constant variance.  If 
the data do not meet this requirement, it is possible 
to use transformations of the data such as 
logarithms to convert the data to a normal 
distribution with constant variance. The use of 
logarithms implies that the influences of each 
factor are multiplicative in the original units 
(Helsel and Hirsch, 1995; Snedecor and Cochran, 
1980). Alternatively, the data can be rank-
transformed (i.e., a rank from 1 to N can be 
assigned to the data) and a two-way ANOVA can 
be performed on the ranks.  Rejection of Ho using 
an ANOVA on the rank-transformed data indicates 
that the medians differ between treatment groups. 
Helsel and Hirsch (1995) state that “rank 
transformation results in tests which are more 
robust to non-normality, and resistant to outliers 

and non-constant variance, than is ANOVA 
without transformations.” 

4.6.3 Matched Data 

Collecting paired data to mask or block out 
unwanted noise due to meteorological or 
geographical differences is a common practice 
when comparing “before” and “after” data. 
Comparing just two groups was described in 
Section 4.5.1. Comparing matched data with more 
than two groups is described here. In this case, the 
objective is to compare one factor (referred to as 
the treatment) while blocking out the other factor 
(referred to as the block). 

The linear model for this analysis is (Helsel and 
Hirsch, 1995) 

(4-56) 

where j = 1, ..., k and i = 1, ..., n. In this case, each 
observed value is the sum of an overall mean (μ), 
the influence of the jth group effect (αj), the 
influence of the ith block effect (βi), and a residual 
error (εij). In addition to the two-way ANOVA 
without replication and the Friedman test described 
here, Helsel and Hirsch (1995) also describe the 
median polish and the median aligned-ranks 
ANOVA. 

Two-way ANOVA without replication 

In the ANOVA model, εij is assumed to be 
normally distributed.  The sums of squares for the 
two-way ANOVA without replication are 
computed using Equations 57 through 60 (Helsel 
and Hirsch, 1995). Table 4-27 presents a common 
format for a two-way ANOVA without replication. 
Removing the block effect from the calculation of 
the SSE results in a higher F statistic, thus 
improving the detection of significant differences 
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(4-57)
 

(4-58)
 

(4-59)
 

where 

(4-60)
 

Table 4-27. Common two-way ANOVA without replication output format. 

Source of 
Variation SS df MS F p-value 

F 
Criteria 

Treatment SST k-1 MST = SST/ 
(k-1) 

MST/MSE p F value for 
selected α 

Block SSB n-1 MSB = SSB/ 
(n-1) 

Error SSE (k-1) x (n-1) MSE = SSE/ 
[(k-1)x(n-1)] 

Total Total SS kn-1 
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between groups. Ho is rejected if the computed F 
is greater than the critical F value from Table D6 
with (k-1) and (k-1)(n-1) degrees of freedom. 

Friedman test 

The Friedman test is the most common 
nonparametric test for randomized complete block 
designs. It is an extension of the sign test (Helsel 
and Hirsch, 1995). Ho is that the median value of 
the k groups are identical, whereas Ha states that at 
least one median is different.  To compute the test 
statistic, the following steps are used: 

•	 Rank the data in each block from 1 to k. _ 
•	 Compute the average rank for each group (Rj). 
•	 Compute χƒ using the following formula, 

which accounts for ties: 

(4-61) 

where tij equals the number of ties of the extent j in 
block i. For k+n # 9, exact tables should be used 
(see Helsel and Hirsch, 1995). Otherwise, Ho is 
rejected if χƒ greater than or equal to the critical F 
value from Table D6 with (k-1) and (n-1)(k-1) 
degrees of freedom and p = 1-α. 

4.6.4 Multiple Comparisons 

All of the hypothesis tests featured to this point 
allow the analyst to determine whether at least one 
treatment results in a mean or median that is 
significantly different from that which results from 
the other treatments.  It does not indicate which 
treatment is different or whether there are multiple 
differences. Multiple comparisons should be done 
only if the analyses performed under Section 4.6.1, 
4.6.2, or 4.6.3 indicate a significant difference. 

Two key features distinguish multiple 
comparisons: (1) whether α is based on a pairwise 
or overall comparison and (2) whether the test is a 
multiple-stage test (MST) or a simultaneous 
inference method (SIM).  An important distinction 
should be made about whether a pairwise or 
overall α is used. The α level indicates the 
probability of making an incorrect comparison. 
Helsel and Hirsch (1995) cite an example of a one-
factor analysis with six groups (in which there are 
15 pairwise comparisons).  If α = 0.05, the 
potential for making at least one error is equal to 1­
(1-.05)15 or 0.54, a 54 percent chance of making 
one error. MSTs are valid for groups with constant 
sample size, whereas SIMs are valid for equal and 
unequal sample sizes. 

For these reasons, Helsel and Hirsch (1995) 
recommend using Tukey’s method, which uses an 

overall α and is a SIM. Other tests 
include the Bonferroni t tests, Duncan’s 
multiple range test, Gabriel’s multiple-
comparison procedure, the Ryan-Einot­
Gabriel-Welsch (REGW) multiple F 
test, the REGW multiple range test, 

Scheffe’s multiple-comparison procedure, and the 
Waller-Duncan k-ratio test. The reader should 
consult statistics texts (e.g., Snedecor and Cochran, 
1980) to learn more about these procedures, with 
preference given to Tukey’s method for equal or 
unequal sample sizes and the REGW tests when 
the sample sizes are equal.  If a nonparametric 
analysis was performed, the most appropriate 
approach is to rank-transform the data and apply a 
test based on the above discussion. 

Tukey’s method indicates that the mean between 
two groups can be considered different if (Helsel 
and Hirsch, 1995) 

(4-62) 
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where 

q = studentized range statistic from Neter, 
Wasserman, and Kutner (1985); 

α = overall significance level; 
k = number of treatment group means 

compared; 
N-k = MSE’s degrees of freedom; and 
ni, nj = sample size of group i and j respectively. 

Typically, the results of a multiple comparison are 
commonly displayed using letters to distinguish 
groups. For example, 

xG1 xG2 xG3 xG4 

A  AB  B  C  

indicates that xG1 . xG2; xG1 < xG3; xG2 . xG3; and xG4 is 
greater than xG1, xG2, and xG3. The letter groupings 
could also be placed in boxplots. 

4.7 REGRESSION TECHNIQUES 

4.7.1 Overview 

Regression can be used to model or predict the 
behavior of one or more variables.  The general 
regression model, where ε is an error term, is given 
as 

(4-63) 

In this equation, the behavior of a single dependent 
variable (y) is modeled with one or more 
independent variables (x1, ..., xn). The x’s may be 
linear or nonlinear (e.g., xi can represent x2, x3, x-1, 
etc.). β0, ..., βn are numerical constants that are 
computed using equations described later. 
Nonlinear models are commonly applied to 
physical systems, but they are somewhat more 
difficult to analyze because iterative techniques are 
involved when the model cannot be transformed to 
a linear model.  The use of two or more 
independent variables (x) in a linear function to 

describe the behavior of y is referred to as multiple 
linear regression. In either case, regression 
techniques attempt to explain as much of the 
variation in the dependent variable as possible. 

In nonpoint source analyses, linear regression is 
often used to determine the extent to which the 
value of a water quality variable (y) is influenced 
by land use or hydrologic factors (x) such as crop 
type, soil type, percentage of land treatment, 
rainfall, or stream flow, or by another water quality 
variable. Practical applications of these regression 
results include the ability to predict the water 
quality impacts due to changes in the independent 
variables. 

In developing a regression model, the analyst will 
want to select from a set of variables, normally 
selecting those independent variables that are most 
strongly correlated with the dependent variable. 
To begin, therefore, the analyst might want to 
compute correlation coefficients between 
numerous monitored variables at the exploratory 
phase of the analysis (sometimes referred to as 
correlation matrices).  In fact, determining which 
variables are most strongly correlated might be the 
entire goal of the analysis.  The correlation matrix 
can then be used to guide the analyst, to some 
extent, in selecting appropriate independent 
variables. In adding additional variables to a 
model, the analyst must be aware of correlations 
among different independent variables 
(multicollinearity) that can mask the relationship of 
one x to the y variable due to the correlation of this 
independent variable with another in the model. 

In contrast to the univariate models discussed 
above, where only one dependent response 
variable (y) is involved, multivariate models can 
have several dependent variables. Multivariate 
analyses (which include MANOVA and principal 
component analysis, among others) are designed to 
take into account the correlation structure of the x’s 
and y’s to reduce the overall variance.  For 
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example, a nonpoint source application might be to 
examine the effect of different BMP 
implementation programs on several water quality 
parameters. 

Analysts are encouraged to read the detailed 
discussion of regression in statistics texts such as 
Snedecor and Cochran (1980), Cochran (1977), 
and Srivastava and Khatri (1979) for a more 
complete discussion of this important statistical 
procedure. 

4.7.2 Simple Linear Regression 

The simplest form of regression is to consider just 
one dependent variable and one independent 
variable using 

(4-64)
 

where y is the dependent variable, x is the 
independent variable, and β0 and β1 are numerical 
constants representing the y-intercept and slope, 
respectively.  Helsel and Hirsch (1995) summarize 
the key assumptions regarding application of linear 
regression (Table 4-28). The uses of a regression 
analysis should not be extended beyond those 
supported by the assumptions that are met.  Note 
that the normality assumption (assumption 5) can 
be relaxed when testing hypotheses and estimating 
confidence intervals if the sample size is relatively 
large. 

The first step in applying linear regression is to 
examine the data to see if linear regression makes 
sense—that is, to use a bivariate scatter plot to see 
if the points approximate a straight line.  If they 
fall in a straight line, linear regression makes 
sense; if they do not, data transformation might be 
needed, or perhaps a nonlinear relationship should 
be used. 

To illustrate the use of linear regression, the data in 
Table 4-29, which are a subset of calibration data 

for a plot-size runoff sampler (Dressing et al., 
1987), can be used. In this data set the sampling 
percentage (split) was measured for a range of flow 
rates. The scatter plot in Figure 4-18 shows that 
linear regression can be applied to the data. 

Presuming that the data are representative 
(assumption 2 in Table 4-28), the next step is to 
develop the regression line using the method of 
least squares, which minimizes the sum of the 
squares of the vertical deviations from the points to 
the line (Freund, 1973). To determine the values 
of β0 and β1 in Equation 4-64, the following 
equations can be used (Helsel and Hirsch, 1995): 

(4-65) 

(4-66) 

For the data in Table 4-29, the above equations 
were used to compute a slope of -0.0119 and an 
intercept of 3.1317. Thus, the linear model for 
predicting split versus flow rate is 

Split = 3.1317 - 0.0119 C Flow rate 

Assumption evaluation 

The top section of Table 4-30 provides the same 
information along with additional characteristics 
about the β0 and β1 that were computed using 
standard spreadsheet software. Before looking at 
these additional characteristics, the analyst must 
make sure that β0 and β1 make sense.  In this case, 
perhaps the best approach is to plot the regression 
line with the raw data as shown in Figure 4-18. 
The bottom portion of Table 4-30 contains the 
predicted split (data for the regression line in 
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Table 4-28. Assumptions necessary for the purposes of linear regression. 

Assumption 

Purpose 

Predict y 
given x 

Predict y and a 
variance for the 

prediction 

Obtain best 
linear unbiased 
estimator of y 

Test hypotheses, 
estimate confidence 

or prediction intervals 

(1) Model form is 
correct: y is linearly 
related to x 

T T T T 

(2) Data used to fit 
the model are 
representative of data 
of interest 

T T T T 

(3) Variance of the 
residuals is constant 
and does not depend 
on x or anything else 

T T T 

(4) The residuals are 
independent 

T T 

(5) The residuals are 
normally distributed 

T 

T Indicates that assumption is required. 
Source: Helsel and Hirsch, 1995. 

Figure 4-18) for each flow rate as well as the 
residual, ei, defined as yi - íi. 

Residuals plotted as a function of predicted values 
of y and time, and normal probability plots of 
residuals, are the most effective approaches to 
evaluate the last three assumptions listed in Table 
4-28, respectively.  As shown in Case A of Figure 
4-19, the plot of residuals versus predicted values 
of y or time should appear to be a uniform band of 
points around 0 (Ponce, 1980a). The analyst 
should look for two types of patterns when 
evaluating assumption 3 from Table 4-28 (e.g., 
constant variance). The first is a pattern of 
increasing or decreasing variance with predicted 
values of y, as depicted in Case B of Figure 4-19. 

The second is a pattern (e.g., a trend, a curved line) 
of the residual with predicted values of y. Both 
characteristics are usually assessed based on a 
review of the residual plots and professional 
judgment alone.  The analyst may also need to 
examine variables other than predicted values of y 
to fully evaluate assumption 3. 

Independence of residuals (assumption 4 from 
Table 4-28) can be evaluated by examining 
residuals plotted as a function of time.  The analyst 
should look for the same patterns as before.  As an 
alternative for evaluating independence, the analyst 
can also plot the ith residual, ei, as a function of the 
(i-1)th residual, ei-1. One word of caution is in 
order when reviewing any residual plot: 
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Table 4-29. Runoff sampler calibration data. 

X 
Flow Rate 

(gpm) 

Y 
Split 
(%) 

X 
Flow Rate 

(gpm) 

Y 
Split 
(%) 

52.1 
19.2
 4.8
 4.9 
35.2 
44.4 
13.2 
25.8 

2.65 
3.12 
3.05 
2.86 
2.72 
2.70 
3.04 
2.83 

17.6 
37.6 
41.4 
40.1 
47.4 
35.7 
13.9 

2.84 
2.60 
2.54 
2.58 
2.49 
2.60 
3.19 

n = 15 Σx 
)x 
Σx2 

Σxy 

=  433.30 
=  28.89 
= 15,940.33 
=  1,166.93 

Σy 
)y 
Σy2 

=  41.81 
= .  2.79 
= 117.25 

Sxy = - 40.817533 
SSx = 3423.73733 
SSy = 0.70929333 

Figure 4-18. Split versus flow rate. 
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Table 4-30. Regression analysis of runoff sampler calibration data. 

Coefficients 
Standard 

Error t Statistic p Value 
Lower 
95% 

Upper 
95% 

Intercept (β0) 
Flow Rate (β1)

 3.1317 
-0.0119 

0.072914 
0.002237 

42.950756 
-5.330126

 2.14E-15 
0.00014

 2.97420 
-0.01675

 3.28924 
-0.00709 

df SS MS F 
Significance 

F 

Regression 
Residual 
Total

 1 
13 
14 

0.486623 
0.222670 
0.709293 

0.486623 
0.017128 

28.410248 0.0001366 

Flow Rate 
(gpm) 

Split 
(%) 

Predicted 
Split 

Residual 
ei=yi-y ^ 

i 

52.10 
19.20 
4.80 
4.90 

35.20 
44.40 
13.20 
25.80 
17.60 
37.60 
41.40 
40.10 
47.40 
35.70 
13.90 

2.65 
3.12 
3.05 
2.86 
2.72 
2.70 
3.04 
2.83 
2.84 
2.60 
2.54 
2.58 
2.49 
2.60 
3.19 

2.5106 
2.9028 
3.0745 
3.0733 
2.7121 
2.6024 
2.9743 
2.8241 
2.9219 
2.6835 
2.6382 
2.6536 
2.5666 
2.7061 
2.9660 

0.1394 
0.2172 

-0.0245 
-0.2133 
0.0079 
0.0976 
0.0657 
0.0059 

-0.0819 
-0.0835 
-0.0982 
-0.0736 
-0.0766 
-0.1061 
0.2240 

If there are more points in a certain section of the 
residual plot, the residuals might not appear to be a 
uniform band of points around 0 (as suggested in 
Case A of Figure 4-19); instead, that section might 
have a somewhat wider band (Helsel and Hirsch, 
1995). This is an expected result. 

The normality of residuals can be assessed by 
examining a probability plot.  Two problems with 
non-normal residuals are the loss of power in 
subsequent hypothesis tests and increased 
prediction intervals together with the impression of 
symmetry (Helsel and Hirsch, 1995). 

Figure 4-20 displays all three of these plots for the 
split data analyzed from Table 4-29.  From Figure 
4-20, A and B, the split residuals appear to be 
independent of predicted values of y and time as 
well as having a constant variance. The regression 
meets assumptions 3 and 4 listed in Table 4-28.  In 
this analysis, testing for residual independence is 
important since the testing apparatus was 
calibrated initially.  The pumps or other equipment 
could have differed in performance over time, 
which in turn would affect the results. Figure 4­
20C, the probability plot, suggests that the data 
might not rigorously follow the normality 
assumption, although by inspection any normality 
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Figure 4-19. Plot of residuals versus predicted values. 
(Source: Ponce, 1980a) 

violation is believed to be relatively minor.  To 
check, the Shapiro-Wilk W statistic (see Section 
4.4.1) is computed as 0.935.  Comparing 0.935 to 
the test statistic (with p=0.95, n=15) from Table 
D5, 0.98, the split residuals can be accepted as 
being normally distributed.  (Note that accepting 
Ho in this case might be due to small sample size 
and resulting lack of power.) Had this analysis 
violated any of these assumptions, using a different 
regression technique, transforming the data, or 
adding additional variables to the regression would 
have to be considered. Alternatively, the use of the 
regression results could be limited to those 
identified in Table 4-28 as restricted by the 
assumptions met. 

Model evaluation 

To determine how well the regression line fits 
the data, several things can be evaluated: 

•	 Evaluate the proportion of variation in y 
explained by the model. 

•	 Test whether β0 is zero. 
•	 Test whether β1 is zero. 
•	 Compute the confidence interval for β0. 
•	 Compute the confidence interval for β1. 

The coefficient of determination, R2, can be used 
to evaluate what proportion of the variation can 
be explained by the model (Gaugush, 1986).  R2 

can be computed as (Helsel and Hirsch, 1995) 

(4-67) 
where 

(4-69) 

The residual, ei, is defined as yi - íi. Sxy and SSx can 
be computed from Equation 4-65.  Values for R2 

range between 0 and 1, with 1 representing the 
case where all observed y values are on the 
regression line. The correlation coefficient, r, 
measures the strength of linear relationships 
(Freund, 1973) and is computed as the square root 
of R2. The sign of r should be the same as the sign 
of the slope. It ranges from -1 to 1, with the 
extreme values representing the strongest 
association and 0 representing no correlation. 
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Figure 4-20. Plot of split residuals. 
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Using the split data from above, the sum of 
residuals-squared (SSE) is equal to 0.2227; thus, R2 

is equal to 1 - (0.2227/0.7093) = 0.686, or 68.6 
percent of the variance is explained by the model. 
(The 0.7093 is from Table 4-29.)  The overall 
model can also be evaluated with the F statistic 
(28.41), which is computed in Table 4-30.  The F 
statistic is a measure of the variability in the data 
set that is explained by the regression equation in 
comparison to the variability that is not explained 
by the regression equation.  Since the p value of 
0.0001366 is less than 0.05, the overall model is 
significant at the 95 percent confidence level. 

Are β0 and β1 significantly different from zero? 
The standard error for β0 and β1 in the top portion 
of Table 4-30 can be calculated as (Helsel and 
Hirsch, 1995) 

(4-70) 

(4-71) 

where 

(4-72) 

The value s is equal to the standard error of the 
regression (which is the same as the standard 
deviation of the residuals). The corresponding t 
statistics (with n - 2 degrees of freedom) for β0 and 
β1 are then equal to β0 and β1 divided by their 
respective standard error. The t statistic can then 
be compared to values from the t distribution to 
determine whether β0 or β1 are significantly 
different from zero.  In this case β0 and β1 are both 
significantly different from zero based on 
inspection of their associated p values in 
Table 4-30. The overall model can also be 

evaluated with the F statistic computed in the 
middle portion of Table 4-30.  This portion of 
Table 4-30 has the same format as the ANOVA 
tables described in the previous section. The 
values in this table are computed using the 
equations summarized in Table 4-31.  Verification 
of the results in Table 4-30 is left to the reader. 

The confidence intervals for β0 and β1 can be 
computed using the following formulas (Helsel and 
Hirsch, 1995): 

(4-73) 

(4-74) 

where tα/2,n-2 is from Table D2.  The lower and 
upper 95 percent confidence limits for β0 and β1 are 
provided in the top portion of Table 4-30, from 
which tα/2,n-2 was obtained as 2.1604. 

The correlation coefficient, r, calculated from 
sample data, is an estimate of the corresponding 
population parameter, ρ, referred to as the 
population correlation coefficient. Establishing a 
confidence interval for ρ requires that x also be a 
normally distributed random variable (Freund, 
1973). The Shapiro-Wilk W statistic for x (the 
flow rate data in Table 4-29) is 0.931. Comparing 
0.931 to the test statistic of 0.98, obtained earlier, 
the data can be accepted as normally distributed. 
Using Table D9 (Remington and Schork, 1970) the 
95 percent and 99 percent confidence limits for ρ 
can be obtained knowing n and r. For the data in 
Table 4-29, n is 15 and r is -0.828. So, the 99 
percent confidence limits from Table D9 are 
approximately -0.95 to -0.50. 

A t test can also be used to test Ho that ρ is zero. 
The t statistic (with n - 2 degrees of freedom) for 
this test is (Freund, 1973) 
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Table 4-31. Common ANOVA output format for linear regression. 

SS df MS F 
Significance 

FSource of Variation 

Regression SSR = (Sxy)
2/SS 1 MSR = SSR/1 MSR/MSE px 

Residual SSE n-2 MSE = SSE/(n-2) 

Total SSR + SSE n-1 

The two-sided z statistic at 95 percent significance 
(Table D1) is -1.96, Ho is accepted, ρ = -0.8. 

A confidence interval for ρ can be determined by 
calculating an interval for μz, and then 
retransforming the confidence interval from Z 
values to ρ (Freund, 1973). The formula for the 
confidence interval for μz is (Freund, 1973) 

(4-78) 

Again using the sample data, the 95 percent 
confidence interval for μz becomes 

Solving for ρ, 

(4-75)


For the above data t would be -5.33. From Table 
D2 the two-sided t value for 95 percent signifi­
cance (df = 13) is -2.1604. Therefore, Ho 

(ρ = 0) is rejected and Ha that ρ is not zero is 
accepted. 

The Fisher Z transformation can be used to test Ho 

of ρ equal to values other than zero (Freund, 1973). 
For this test, r is changed into a Z value using 
(Freund, 1973) 

(4-76) 

Freund (1973) provides a table of Z values to 
simplify this procedure.  The test statistic is 
(Freund, 1973) 

(4-77) 

where μz corresponds to the Z value for the 
nonzero value of ρ being tested for. For 
illustration, Ho that ρ is equal to -0.8 for the 
regression performed can be tested using the data 
from Table 4-29.  Equation 4-76 yields -1.1827 for 
r = -0.828 and -1.0986 for r = -0.8. Substituting 
these values in Equation 4-77 yields 
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Using the regression line 

The most obvious use of the regression line is to 
predict y values for selected values of x. For 
example, using the regression equation 

Split = 3.1317 - 0.0119 x Flow Rate, 

the split for any flow rate can be estimated.  (It is 
not good practice, however, to predict values 
beyond the range of test conditions.)  For a flow 
rate of 10 gpm, the predicted split is 3.01 percent; 
for a flow rate of 50 gpm, the predicted split is 
2.53 percent. 

Since in most cases the regression line will not fit 
the data perfectly, the uncertainty associated with 
the predicted values should be quantified. The 
regression line can be used either to establish the 
confidence interval for the population mean of y or 
to determine the prediction interval for a single 
value of y. The limits for the single value of y are 
wider than the corresponding limits on the mean of 
y (Remington and Schork, 1970) because single 
observations vary more than means. 

The equation for the confidence interval for the 
population mean y at x = x0 is (Helsel and Hirsch, 
1995) 

(4-79) 

_
This interval is most narrow at x and widens as x0 _
moves farther from x. By calculating the interval 
at each point along the regression line, a curve 
such as the dashed line in Figure 4-21 for the 
example data can be plotted.  The equation for the 
prediction interval for individual values of y at 
x = x0 is (Helsel and Hirsch, 1995) 

(4-80) 

Figure 4-21 also shows this interval for the 
example data. 

One of the simplest (in theory) nonpoint source 
control applications of linear regression is the 
regression of a water quality indicator against an 
implementation indicator.  For example, flow-
adjusted total suspended solids (TSS) 
concentration could be regressed against a 
sediment control variable such as the total 
combined erosion rate of all cropland for which 
delivery to the stream is likely to be 50 percent or 
greater. A significant negative slope would 
suggest (but not prove) that water quality has 
improved because of implementation of sediment 
control practices. 

Another possible use of simple linear regression is 
to model a water quality parameter versus time.  In 
this application a significant slope would indicate 
change over time.  The sign of the slope would 
indicate either improvement or degradation 
depending on the parameter used.  For nonpoint 
source studies, a simple regression versus time will 
most likely be confounded by the variability in 
precipitation and flows. Thus, considerable data 
manipulation (transformations, stratification, etc.) 
might be required before regression analysis can be 
successfully applied.  In these cases, it might be 
more appropriate to apply one of the alternatives to 
regression described by Helsel and Hirsch (1995). 

In many cases water quality parameters are 
regressed against flow. This is particularly 
relevant in nonpoint source studies. In analysis of 
covariance, regressions against flow are often 
performed prior to an ANOVA (Spooner et al., 
1985). One of the implicit goals of nonpoint 
source control is to change the relationship 
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Figure 4-21. Plot of split versus flow rate with confidence limits for mean response and individual 
estimates. 

between flow and pollutant concentration. This 
will be discussed in greater detail under analysis of 
covariance. 

In paired watershed studies, measured parameters 
from paired samples are often regressed against 
each other to compare the watersheds.  These 
regression lines can be compared over time to test 
for the impact of nonpoint source control efforts 
(Spooner et al., 1985). This will be discussed in 
greater detail under analysis of covariance. 

4.7.3	 Nonlinear Regression and 
Transformations 

The discussion of nonlinear or curvilinear 
regression is limited to cases where the nonlinear 
relationship can be transformed into a linear 
relationship for which simple linear regression can 
be performed.  Data inspection should indicate to 
the analyst the nature of the relationship between 

the dependent and independent variables. Possible 
curvilinear relationships include exponential 
curves (semi-log), power functions (log-log), and 
parabolas, among others (Freund, 1973). 

Nonlinear regression (as discussed here) involves 
transformation to linear equations, followed by 
simple linear regression.  Helsel and Hirsch (1995) 
provide a detailed discussion on transformations 
using the “bulging rule” described by Mosteller 
and Tukey (1977), which can be used to select 
appropriate transformations.  Crawford et al. 
(1983) list the numerous regression models most 
often applied by the U.S. Geological Survey for 
flow-adjusting concentrations. The selection of 
which transformation to use is ultimately based on 
an inspection of the residuals and whether the 
assumptions described earlier are met.  Typical 
transformations include x2, x3, ln x, 1/x, x0.5, etc. 
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When the residuals do not exhibit constant 
variance (heteroscedasticity), one of several 
common transformations should be used. 
Logarithmic transformations are used when the 
standard deviation in the original scale is 
proportional to the mean of y. Square root 
transformations are used when the variance is 
proportional to the mean of y. In many instances, 
the right transformation will “fix” the nonlinear 
and heteroscedastic problem.  With data that are 
percentages or proportions (between the values of 
0 and 1), the variances at 0 and 1 are small.  The 
arcsin of the square root of the individual values is 
a common transformation that helps spread out the 
values near 0 and 1 to increase their variance 
(Snedecor and Cochran, 1980). 

There are several disadvantages when applying 
transformations to regression applications.  The 
most important issue is that the regression line and 
confidence intervals are symmetric in the 
transformed form of the variables.  When these 
lines are transformed back to their normal units, 
the lines will no longer be symmetrical.  The most 
notable time in hydrology when this creates a 
problem is when estimating mass loading.  To 
estimate the mass, the means for short time periods 
are regressed and summed to estimate the total 
mass over a longer period.  This approach is 
acceptable if no transformations are used—the 
analyst is summing the means.  However, if a log 
transformation is used, summing the mass over the 
back-transformed values results in summing the 
median, which will result in an estimate that is 
biased low for the total mass (Helsel and Hirsch, 
1995). 

As an example of nonlinear regression, consider a 
common relationship that is used to describe load 
(L) as a function of discharge (Q): 

(4-81) 

Taking the logarithms of both sides yields 

(4-82) 

which has the same form as Equation 4-64, 
introduced at the beginning of this section, where 
ln(L) corresponds to y, ln(a) corresponds to β0, b 
corresponds to β1, and ln(Q) corresponds to x. By 
taking the logarithms of both sides, the nonlinear 
problem has been reduced to a simple linear 
model.  The only additional step that the analyst 
must perform is to convert L and Q to ln(L) and 
ln(Q) before using standard software. The analyst 
should be aware that all of the confidence limits 
are in transformed units; when they are plotted in 
normal units, the confidence intervals will not be 
symmetric. 

Figure 4-22 demonstrates how transforming the 
data may improve the regression analysis.  In 
Figure 4-22A, sulfate concentrations (in milligrams 
per liter) are plotted as a function of stream flow 
(in cubic feet per second). The apparent 
downward trend is typical of a stream dilution 
effect; however, the trend is clearly nonlinear.  The 
trend line plotted in this figure, as well as the 
residuals plotted in Figure 4-22C, demonstrate that 
a linear model would tend to over- and 
underestimate sulfate concentrations depending on 
the flow. Figure 4-22B displays the same data 
after computing the logarithms (base 10) of the 
sulfate and flow data. A trend line fitted to these 
data and the residual plot (Figure 4-22D) clearly 
demonstrate that applying linear regression after 
log transformation would be appropriate for these 
data. 

4.7.4 Multiple Regression 

Multiple regression is applied to quantify a 
relationship between a dependent variable and 
more than one independent variable (Gaugush, 
1986). The assumptions made for simple linear 
regression also apply to multiple regression 
(Ponce, 1980a). The method of least squares is 
also used to determine the best multiple 
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Figure 4-22. Comparison of regression analyses using raw and log-transformed data. 

regression line. The general linear model to 
consider is (Ponce, 1980a) 

The corresponding normal equations are presented 
below (Ponce, 1980a). 

(4-83) 
After solving for the β1, ..., βn, β0 can be calculated 
from (Ponce, 1980a): 

(4-84) 

(4-85) 

(4-86) 

. . . 

(4-87) 
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(4-88) 

Ponce (1980a) presents a hand-computed example 
of multiple regression using three independent 
variables. The reader is encouraged to follow 
through that example to develop an understanding 
of multiple regression before using computerized 
procedures. Gaugush (1986) states that multiple 
regression with two independent variables can be 
performed using textbook formulas, but that matrix 
algebra is required for broader appli-cations. 
Winer (1971) provides a matrix algebra approach 
to multiple regression, but the discus-sion is 
complicated and probably not critical to 
appropriate use of multiple regression techniques 
(especially when the analyst consults a statis­
tician). 

Gaugush (1986) also provides an example of 
multiple regression in which the SAS procedure 
GLM (SAS Institute, Inc., 1985b) is used. This 
example relates pollutant level to three indepen­
dent variables—distance from source, tempera­
ture, and discharge. An interpretation of the SAS 
output is also provided. 

Key points made in the examples above include: 

• An  F test indicates the significance of the 
regression. 

•	 The coefficient of multiple determination (R2), 
which is calculated as in simple linear regres­
sion, shows the proportion of variation in y 
explained by the model. 

•	 Computerized output such as that from SAS 
can be used to refine the model for subsequent 
runs. 

As a further note regarding use of SAS, the 
RSQUARE procedure (SAS Institute, Inc., 1985b) 
can be used in an exploratory fashion to perform 

all possible multiple regressions for subsets of 
independent variables, listing the models in 
decreasing order of R2 magnitude.  Thus, the model 
with the largest R2 value will be listed first. The 
STEPWISE procedure allows five approaches to 
stepwise regression for users who wish to 
determine which variables should be included in a 
regression model (SAS Institute, Inc., 1985b). 
However, this procedure is not guaranteed to 
identify the model with the largest R2. Other 
computer software packages, such as SPSS 
(Statistical Package for the Social Sciences), can 
also be used for multiple regression (Ingwersen, 
1980). 

The following discussion of R2, taken largely from 
a technical nonpoint source newsletter (Spooner, 
1984), emphasizes proper interpretation of R2 

values. 

The purpose of regressing a response variable (y) 
on one or more independent variables (x) is to 
“explain” some of the variation observed in the 
measured values in y. The F tests for each 
individual x variable can be used to determine 
whether they are individually important to the 
regression on y. R2 is a measure of the fraction of 
variation in y explained by the linear regression on 
x1, x2, ..., xn variables in the model.  Specifically, R2 

is the fraction of the sum of squares (SS) of the 
deviations of y from its mean that is attributed to 
the regression. R2 values range from 0 (model 
useless) to 1 (model perfect)(Equation 4-87). 

Ho that 

R2 = 0 (i.e., β1 = β2 = β3 = ... = βk = 0) 

can be tested using the F statistic to determine 
whether the regression model explains any of the 
variation in Y. The F statistic is 
(n-k-1) R2/(k-1)(1-R2) with (k-1) and (n-k-1) 
degrees of freedom.  It should be noted that (k-1) is 
the degrees of freedom for the regression 
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model SS and (n-k-1) is the degrees of freedom for 
the error SS. 

(4-89) 

A small R2 might be significantly different from 
zero if n is large. Conversely, a large R2 might be 
insignificant if n is small compared to the number 
of x’s in the model. 

If R2 is small, most of the variation in Y is 
unexplained by the linear regression model.  This 
remaining “noise” might be random variation, or it 
might be due to other independent variables not 
considered in the regression. If these other 
variables are added to the regression, the 
relationships among the x’s already included might 
change. 

When new variables are added to the model, R2 

always increases although the adjusted R2 might 
not increase. This explains why a large R2 might 
not be meaningful when the sample size is small. 
Also, it is not legitimate to compare two models 
with different numbers of x’s solely by their R2 

values. However, R2, adjusted for the degrees of 
freedom, may be used to compare models, where 
adjusted R2 is 

(4-90) 

How does one test whether a new variable added to 
a model adds significant information to explain 
further the variation in y (i.e., is the increase in R2 

significant)? In SAS, for example, the “type III SS 
or IV SS” (also known as the partial sum of 
squares) and their associated F tests can be used. 
These statistics measure the amount of variation in 
y explained by the addition of an individual x after 

all other ’s are in the model.  An equivalent 
method is to compare the SSE (sum of squares due 
to error) from “full” and “reduced” models (i.e., 
SSE from models with and without, respectively, 
the extra term in question).  If the SSE is reduced 
significantly by the addition of a new variable to 
the model, the variable is important.  The F 
statistic is 

x

(4-91) 

where dfR and dfF are the degrees of freedom for 
the reduced model SS and full model SS, 
respectively. 

4.7.5 Multivariate Regression 

Multivariate regression can be a very useful 
technique in nonpoint source monitoring and 
evaluation efforts. It involves the development of 
a linear model to relate two or more dependent 
variables to two or more independent variables.  A 
detailed discussion of the theory behind 
multivariate regression is beyond the scope of this 
document.  Readers are referred to statistics texts 
(e.g., Srivastava and Khatri, 1979) for more on 
multivariate regression.  Multivariate regressions 
are designed to take into account the correlation 
structure of the x’s and y’s to reduce the overall 
variance. 

Users of SAS (SAS Institute, Inc., 1985b) can use 
the REG procedure for multivariate regression.  An 
example of the MODEL statement used in this 
procedure is the following (SAS Institute, Inc., 
1985b): 

MODEL Y1 Y2 = X1 X2 X3 

where 

Y1 and Y2 are the dependent variables and 
X1, X2, and X3 are the independent variables. 
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Within this procedure the MTEST statement can 
be used to test hypotheses regarding the 
multivariate regression model.  F values are 
calculated for the following procedures (SAS 
Institute, Inc., 1985b): 

• Wilks’ lambda 
• Pillai’s trace 
• Hotelling-Lawley trace 
• Roy’s maximum root 

4.8 ANALYSIS OF COVARIANCE 

Suppose an analyst is interested in evaluating 
BMPs by comparing data collected from a paired 
watershed design. Data are collected from two 
watersheds during two periods—calibration and 
treatment.  During calibration, neither watershed 
has a BMP in place, while during the later period, 
one of the two watersheds has a BMP installed. A 
natural extension of the regression techniques 
described in Section 4.7 is to compare regression 
equations between the treatment watershed and the 
control watershed, with one regression equation 
developed during the calibration phase and the 
second regression equation developed during the 
treatment phase.  The analysis of covariance 
(ANCOVA), a procedure that combines features of 
ANOVA and regression, can be used to evaluate 
this situation. ANCOVA can also be used to test 
for differences in the average value for a dependent 
variable (e.g., sediment concentration) between the 
levels of a group variable (e.g., seasons or years) 
after adjusting for an independent variable (e.g., 
flow or upstream concentration). 

A typical ANCOVA model in which the slopes and 
intercepts for the two groups are suspected to be 
different can be represented as (Helsel and Hirsch, 
1995) 

(4-92) 

where Z is a binary variable that is equal to 0 or 1 
depending on which group x and y are from.  For 
example, Z could be 0 during calibration and 1 
during treatment of a paired watershed analysis.  In 
this case, β0 and β0+β2 are the intercepts during the 
calibration and treatment periods, respectively. β1 

and β1+β3 are the slopes during the calibration and 
treatment periods, respectively.  If β2 is nonzero 
and β3 is zero, the regression produced by Equation 
4-92 would be a pair of parallel lines (Figure 
4-23A). If β2 and β3 are nonzero, the regression 
produced by Equation 4-92 would be a pair of lines 
like those presented in Figure 4-23B. 

The remainder of this discussion follows an 
analysis performed for field runoff (cm) during the 
conversion from conventional to conservation 
tillage in Vermont (USEPA, 1993c).  Two 
watersheds were monitored during a calibration 
period during which 49 (n1) paired observations of 
runoff were made.  Figure 4-24A is a bivariate log-
log plot of storm runoff for the treatment 
watershed as a function of storm runoff for the 
control watershed. Based on an inspection of this 
plot, it seems reasonable to perform the analyses 
using log-transformed (base 10) data. 

A regression analysis was performed on these data 
to determine whether there was a significant 
relationship between the watersheds, whether 
enough data had been collected during calibration, 
and whether the residual errors were smaller than 
the expected BMP effect. A summary of the 
regression ANOVA is provided in Table 4-32 
(with n1 = 49, SSy = 148.441, SSx = 70.933, and Sxy

= 78.463). (Equations 4-65 through 4-67 and 
Table 4-31 can be used to hand-check the table 
entries.) The p value associated with the resulting 
F statistic indicates that the model explains a 
significant proportion of the variation. 

To determine whether enough calibration data have 
been collected, the ratio of the MSE to the 
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Figure 4-23. Comparison of regression equations for data from two periods. 
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Figure 4-24. Storm runoff from calibration and treatment periods in Vermont. (Source: EPA, 1993c). 
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Table 4-32. ANOVA for regression of treatment watershed runoff on control watershed runoff during 
calibration. 

Source of Variation SS df MS F 
Significance 

F 

Regression  86.792 1 86.79 66.17 0.0001 

Residual  61.649 47  1.31 

Total 148.441 48 

smallest worthwhile difference (d) can be 
compared using the following formula (EPA, 
1993c): 

(4-93) 

where n1 and n2 are the number of observations in 
the calibration and treatment periods, respec-tively, 
and F is from Table D6 with 1 and n1 + n2 - 3 
degrees of freedom.  If the treatment period has not 
been initiated, assume that n1 = n2. Using the _
example data where x  of the log-transformed data 
is -2.518, the number of observations necessary to 
detect a 20 percent change can be estimated.  The 
left side of the above equation would be equal to 
1.31/(0.2 x -2.518)2 or 5.2. With n1 = n2 = 49 and 
F = 3.94 (p = 0.95, 1 and 95 df), the right side of 
the above equation can be evaluated as 6.0. Since 
the left side of the equation is less than the right 
side, there would be enough samples to detect a 20 
percent change in discharge. Equation 4-79 can be 
used to determine the confidence bands for the 
regression equation, which allow determining the 
level of change needed to have a significant 
treatment effect. 

Once the treatment period data have been 
collected, the same type of regression analysis is 
performed.  Following this step, the significance of 
an overall regression (which combines calibration 
and treatment data) can be evaluated and the 
difference between the individual slopes and 
intercepts can be evaluated. Continuing with the 
example, a summary of the regression ANOVA for 
the treatment period is provided in Table 4-33 
(with n2 = 114, SSy = 135.0, SSx = 227.43, and Sxy

= 101.32). The p value associated with the 
resulting F statistic indicates that the model 
explains a significant proportion of the variation. 

The ANCOVA can be performed by combining the 
results from Tables 4-32 and 4-33.  Table 
4-34 demonstrates the general format for 
performing ANCOVA hand calculations.  Note 
that Σ indicates summation of terms.  This 
approach is applied to the example data with the 
results presented in Table 4-35. Table 4-36 
presents the same calculations performed with 
SAS. (An appropriate SAS program is provided at 
right.) The ANCOVA indicates that the overall 
treatment and calibration regressions were 
significantly different and that the slopes and 
intercepts of the equations were also different. The 
difference in slopes is evident from Figure 4-24B. 
The small differences between the calculations in 
Tables 4-35 and 4-36 are due to rounding errors. If 
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Table 4-33. ANOVA for regression of treatment watershed runoff on control watershed runoff during 
treatment. 

Source of Variation SS df MS F 
Significance 

F 

Regression 45.13 1 45.13 56.25 0.0001 

Residual 89.87 112  0.80 

Total 135.00 113 

Table 4-34. ANCOVA for comparing regression lines. 

Source df Ssx Sxy Ssy β1 df SS (res.) MS F 

Within
 Calibration 

  Treatment 

n1-1 

n2-1 

Eq.
 4-65 

Eq.
 4-65 

Eq.
 4-65 

Eq.
 4-65 

Eq.
 4-68 

Eq.
 4-68 

Sxy/SSx 

Sxy/SSx 

n1-2

n2-2

 SSy-(Sxy)
2/SSx 

 SSy-(Sxy)
2/SSx 

SS/df 

SS/df 

--

--

Error: Σ Σ SS/df 

Slopes n1+n2-2 Σ Σ Σ Sxy/SSx 

Slope difference: 

n1+n2-3

1 

 SSy-(Sxy)
2/SSx 

Slope SS-Error SS 

SS/df 

SS/df MS/Error MS 

Intercepts n1+n2-1 combined data 

1 

n1+n2-2

Comb. SS- Slope SS SS/df MS/Slope MS 

 SSy-(Sxy)
2/SSx 
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Table 4-35. ANCOVA for comparing regression lines from calibration and treatment (hand 
calculations). 

Source df Ssx Sxy Ssy β1 df SS (res.) MS F 

Within
 Calibration 

  Treatment 

48 

113 

70.933 

227.430 

78.463 

101.315 

148.441 

135.00 

1.106 

0.445 

47 

112 

61.650 

89.866 

1.3117 

0.8024 

--

--

Error: 159 151.516 0.9529 

Slopes 161 298.363 179.778 283.441 0.603 

Slope difference: 

160 

1 

175.116 

23.600 

1.0945 

23.600 24.77* 

Intercepts 162 311.671 178.762 283.492 --

1 

161 

5.8453 

180.961 

5.8453 5.34† 

* Significant at p = 0.001 
† Significant at p = 0.05 

Table 4-36. ANCOVA for comparing regression lines from calibration and treatment (computerized 
software). 

Source of Variation df MS F Significance F 

Model 3 43.99 46.17 0.001 

Error 159  0.95 

Overall 1 103.09 108.18 0.0001 

Intercept 1  5.47  5.74 0.0178 

Slope 1 23.42 24.58 0.0001 
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SAS Program to Compare Regression Lines 

PROC GLM; 
CLASS PERIOD;
 MODEL LOGFLOW2 = LOGFLOW1 PERIOD
 LOGFLOW1*PERIOD;


 RUN;
 

/* LOGFLOW1 = log-transformed data from control
 
watershed */
 
/* LOGFLOW2 = log-transformed data from treatment
 
watershed */
 
/* PERIOD = indicator for whether paired data were
 
from the calibration or treatment period */
 

there are not significant differences between the 
slopes, all of the periods can be represented by a 
common slope and the relationship between y and 
x is constant over the tested period. 

4.9 EVALUATION OF TIME SERIES 

In nonpoint source data analysis, we often want to 
know whether there is a tendency for a pollutant 
concentration to increase or decrease over time.  If 
such a tendency exists, we say there is a trend. 
Trend analysis is often used to determine whether 
the implementation of a BMP actually reduces the 
pollutants in a stream, or whether the development 
of an urban area is causing the deterioration of 
water quality downstream, as well as maintaining a 
status of ambient water quality conditions.  A trend 
can be visually examined by plotting the observed 
data versus time.  A statistical test is required to 
analyze the trend.  This section describes statistical 
procedures for detecting and evaluating monotonic 
(continuously nonincreasing or nondecreasing) 
trends in a single time series (e.g., 10 years of 
monthly TSS at a single station) and presents 
several methods for evaluating temporal 
correlation. 

The first issue to consider is when a monotonic 
trend test should be used. The most important 
factor before beginning the analysis is to assess 

whether any interventions or activities led to the 
hypothesis that a shift in water quality might have 
occurred. For example, suppose a BMP to reduce 
sediment loadings was installed during the course 
of the monitoring program.  A shift in TSS 
concentration (hopefully downward) after BMP 
installation would be expected. In this case, it is 
more appropriate to divide the data into “before” 
and “after” groups and analyze the data using the 
two independent random sample procedures 
described in Section 4.5. On the other hand, if a 
series of BMPs are being implemented across a 
watershed over several years and monitoring is 
being performed in a downstream estuary, the 
changes would be expected to be gradual. In this 
case a monotonic trend test might be more 
appropriate. If there is no hypothesis to naturally 
divide the data, it is also best to use a monotonic 
trend test. Concentration data should not be used to 
determine data groupings for the purposes of 
developing hypotheses or selecting between a two-
sample or monotonic trend test. 

The second issue to consider is the case where 
sampling was interrupted for several years in the 
middle of a 10-year monitoring effort.  It is 
suggested that if the data gap is greater than one-
third of the total data record, it is better to use a 
two-sample test (Helsel and Hirsch, 1995).  A 
similar issue to consider is the case where several 
data records will be examined, but they have 
different starting and stopping points. Helsel and 
Hirsch (1995) suggest that the analyst divide the 
data record into three periods of equal length; if 
any third of the record has more than 20 percent 
missing values, that record should not be used. 

The final issue to consider is whether to account 
for exogenous variables (e.g., flow, temperature, 
rainfall) before testing for trends. A common 
example is the approach used by the USGS to 
account for flow variability in its National Stream 
Quality Accounting Network (NASQAN) stations. 
In USGS analyses, water quality variable 
concentrations are adjusted to account for flow. 
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The flow-adjusted concentrations are then 
evaluated for trends. These adjustments can be 
made using simple linear regression analyses, as 
discussed in Section 4.7 or the nonparametric 
procedures (e.g., locally weighted scatter plot 
smoothing) discussed by Helsel and Hirsch (1995). 
The purpose of adjusting the data for an exogenous 
variable is to reduce the background noise so that 
the detection of time trends is more powerful. 

There are several methods to detect monotonic 
trends in time series.  Regression analyses have 
already been discussed in Section 4.7.  To apply 
linear regression where time is the independent 
variable, all of the assumptions listed in Table 
4-28 are necessary.  If these assumptions are met, 
linear regression is an acceptable approach. 
Significant trends are declared when the slope 
term, β1, is significantly different from zero. 
Multivariate regression procedures that model the 
water quality variable as a function of an 
exogenous variable (e.g., flow) and time 
simultaneously can also be used to detect trends if 
the regression assumptions are met.  When 
evaluating several data sets for a single report, 
these assumptions are rarely met for all of the data 
sets. In these cases, nonparametric procedures are 
recommended.  This is not to say that data 
transformations for nonparametric tests are not 
desirable, as will be discussed later. Since simple 
linear and multivariate regression have been 
discussed, this section is limited to discussing the 
Mann-Kendall τ and the Seasonal Kendall tests. 
Both are nonparametric. 

Following the monotonic trend discussion, 
procedures for computing the autocorrelation 
coefficient and Spearman’s rho are provided. 
These procedures are useful for evaluating whether 
the data are truly independent, one of the 
fundamental assumptions in the procedures 
described next. If the data are serially correlated, it 
is possible to systematically sample from the data 
set, to group the data into time periods and use a 
summary statistic (e.g., time- or volume-weighted 
mean or median), or to use more advanced time 

series analysis procedures (Helsel and Hirsch, 
1995) to analyze these data. 

4.9.1 Monotonic Trends 

Regression 

Refer to Section 4.7 for a discussion on simple 
linear and multivariate regression. 

Mann-Kendall τ Test 

The Mann-Kendall τ test analyzes the sign of the 
difference between later-measured data and the 
earlier-measured data.  Each later-measured datum 
is compared to all data measured earlier.  This 
approach results in a total of n(n-1)/2 possible pairs 
of data, where n is the total number of observations 
in the time series.  The Mann-Kendall τ test 
assumptions include the typical requirements that 
the data be independent and that one value can be 
declared larger than, smaller than, or equal to 
another value. The third assumption is similar to 
the regression requirements that the residuals must 
have a constant variance, but no distribution 
requirements are necessary. 

The usual hypotheses for a Mann-Kendall τ test is 
whether y tends to increase or decrease with time 
(Helsel and Hirsch, 1995): 

Mann-Kendall τ Test Assumptions 

•	 The random variables y1, y2, ..., yi, ..., yj, ..., 
yn are mutually independent. 

•	 The measurement scale of the data is at 
least ordinal (i.e., yi can be declared as <, 
>, or = yj). 

•	 The data are identically distributed with 
only a shift in the central location if there is 
a trend. 
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Two-sided test 
Ho: Prob [yj > yi] = 0.5 where tj > ti 

Ha: Prob [yj > yi] … 0.5 (two-sided test) 

The next step is to compute the difference between 
the later-measured value and all earlier-measured 
values, (yj - yi), where j > i and assign the integer 
value of 1, 0, -1 to positive differences, no 
differences, and negative differences, respectively. 
The test statistic, S, is then computed as the sum of 
the integers: 

where sign(•) is equal to 1, 0, or -1 as indicated 
above. This task is most easily accomplished 
assuming the data are ordered in increasing time 
order. When S is a large positive number, 
later-measured values tend to be larger than 
earlier-measured values and there might be an 
upward trend. When S is a large negative number, 
later-measured values tend to be smaller than 
earlier-measured values and there might be a 
downward trend. When the absolute value of S is 
small, there might be no trend.  The test statistic, τ, 
can be computed as 

(4-94) 

(4-95) 

which has a range of -1 to 1 and is analogous to the 
correlation coefficient in regression analyses. 
Computing S or τ becomes tedious when n is large. 
Gilbert (1987) provides a FORTRAN program to 
alleviate the computation effort.  S and τ are 
invariant to transformations such as logs (i.e., S 
and τ will be the same value whether the raw or 
log-transformed data are used). 

Data Analysis 

One-sided test 
Ho: Prob [yj > yi] = 0.5 where tj > ti 

Ha: Prob [yj > yi] > 0.5 (one-sided test, 
increasing trend) 

For sample sizes greater than 10, the large sample 
approximation can be used to compute a test 
statistic that can be compared to a normal 
distribution using the following equation: 

(4-96) 

where 

(4-97) 

for when there are no ties or 

(4-98) 

for when there are ties, where ZS is zero if S is zero 
and ti is equal to the number of ties of extent i. ZS 

is compared to the critical z value from Table D1. 
For a two-sided 95 percent confidence level, the 
critical z value would be ±1.96.  If ZS is not 
contained within this range, reject Ho. See Helsel 
and Hirsch (1995) for sample sizes of 10 or less. 
To determine ti, consider the following 20 
observations that are in ascending order: 

<1, <1, <1, 4, 4, 6, 6, 8, 8, 10, 11, 11, 11, 11, 16, 
19, 20, 22, 32, 45 

In this example there are seven ties of extent 1 
(i.e., no ties), three ties of extent 2 (4, 4, 6, 6, 8, 8), 
one tie of extent 3 (<1, <1, <1), one tie of extent 4 
(11, 11, 11, 11), and zero ties of extent 5 and 
greater. Thus, the summation term that includes ti 

from above can be evaluated as 

7x1x0x7 + 3x2x1x9 + 1x3x2x11 + 1x4x3x13 
= 276 
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Table 4-37 presents a 
list of annual rainfall 
for 21 years.  Table 
4-38 presents the 
intermediate calcula­
tions for computing S. 
The top portion of 
Table 4-38 is a table of 
the differences 
yj - yi, for example 
y2 - y1 = 13.2. 
Observations y8 

through y16 were 
omitted from Table 
4-38 for presen-tation 
purposes. The bottom 
portion of Table 4-38 
presents the interme-

Table 4-37. Annual total rainfall for 21 years. 

Year Rainfall (in.) Year Rainfall (in.) 

1 40.2 12 51.2 
2 53.4 13 54.3 
3 43.5 14 41.5 
4 37.7 15 44.8 
5 50.2 16 46.7 
6 38.7 17 51.8 
7 47.8 18 49.5 
8 39.5 19 34.1 
9 44.9 20 33.2 

10 41.7 21 53.7 
11 36.4 

diate calculations for sign(yj - yi).  Summing these 
values (including those not presented in this table) 
yields a value of 12.  Since there were no ties, ZS = 
(12-1)/(1096.7)0.5 or 0.33, Ho is accepted— there is 
no trend in the rainfall data. 

Had there been a significant trend in the data, the 
Sen slope estimator could be estimated as (Helsel 
and Hirsch, 1995) 

(4-99) 

for all i < j and i = 1, 2, ..., n-1 and j = 2, 3, ..., n; in 
other words, computing the slope for all pairs of 
data that were used to compute S. The median of 
these slopes is the Sen slope estimator.  Using the 
rainfall data as an example, the slope between y4 

and y2 is equal to (37.7-53.4)/(4-2) or -7.9. Had 
there been a significant trend, this process would 
have been carried out for the remaining pairs of 
observations and the median slope selected as the 
Sen slope estimator. 

As might be expected, any linear slope estimator is 
a poor choice when the apparent slope is 
exponential. In Section 4.7.3, transformations to 
reduce the analysis to a linear problem were 

discussed. These same approaches are also 
appropriate here. So while it does not matter for 
computing S or τ that the trend be linear, 
transforming the data prior to computing the slope 
estimator might be useful.  For example, if the data 
were transformed using natural logs, the 
percentage change from year to year in the above 
example would be estimated as (eβ1 -1) x 100 
(Helsel and Hirsch, 1995). 

Seasonal Kendall test 

In the nonpoint source area, many data follow 
seasonal patterns. The decision to use a seasonal 
Kendall test (Hirsch et al., 1982) can usually be 
made by examining boxplots by season.  The test 
statistic is computed by performing a Mann-
Kendall calculation for each season and then 
combining the results for each season.  That is, if 
sampling is monthly, January observations are 
compared only to other January observations, etc. 
Thus Sk is computed as the sum of the S from each 
season (Helsel and Hirsch, 1995): 

(4-100) 
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Table 4-38. Analysis of rainfall data using Mann-Kendall J test. 

yi 

yj y1 

40.2 
y2 

53.4 
y3 

43.5 
y4 

37.7 
y5 

50.2 
y6 

38.7 
y7 

47.8 
... 
... 

y17 

51.8 
y18 

49.5 
y19 

34.1 
y20 

33.2 
y21 

53.7 
y1 40.2 13.2 3.3 -2.5 10.0 -1.5 7.6 ... 11.6 9.3 -6.1 -7.0 13.5 
y2 53.4 -9.9 -15.7 -3.2 -14.7 -5.6 ... -1.6 -3.9 -19.3 -20.2 0.3 
y3 43.5 -5.8 6.7 -4.8 4.3 ... 8.3 6.0 -9.4 -10.3 10.2 
y4 37.7 12.5 1.0 10.1 ... 14.1 11.8 -3.6 -4.5 16.0 
y5 50.2 -11.5 -2.4 ... 1.6 -0.7 -16.1 -17.0 3.5 
y6 38.7 9.1 ... 13.1 10.8 -4.6 -5.5 15.0 
y7 47.8 4.0 1.7 -13.7 -14.6 5.9 
... ... ... ... ... ... 
y17 51.8 -2.3 -17.7 -18.6 1.9 
y18 49.5 -15.4 -16.3 4.2 
y19 34.1 -0.9 19.6 
y20 33.2 20.5 
y21 53.7 

40.2 53.4 43.5 37.7 50.2 38.7 47.8 ... 51.8 49.5 34.1 33.2 53.7 

y1 40.2 1 1 -1 1 -1 1 ... 1 1 -1 -1 1 
y2 53.4 -1 -1 -1 -1 -1 ... -1 -1 -1 -1 1 
y3 43.5 -1 1 -1 1 ... 1 1 -1 -1 1 
y4 37.7 1 1 1 ... 1 1 -1 -1 1 
y5 50.2  -1  -1  ...  1  -1  -1  -1  1  
y6 38.7 1 ... 1 1 -1 -1 1 
y7 47.8 1 1 -1 -1 1 
... ... ... ... ... ... 

y17 51.8 -1 -1 -1 1 
y18 49.5 -1 -1 1 
y19 34.1 -1 1 
y20 33.2 1 
y21 53.7 

where Si is S from the ith season and m is the 
number of seasons.  ZSk is estimated as 

or ZSk is zero if Sk is zero and 

(4-101) 

where ni is the number of observations in the ith 

season. 
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4.9.2 Correlation Coefficients 

Spearman’s rho 

Spearman’s rho test is used to detect whether there 
is a correlation between paired data. Spearman’s 
rho is computed as (Conover, 1980) 

(4-103)
 

where R(•) represents the rank of the observation 
and n is the number of observations.  If there are 
ties, Equation 4-104 may be used. 

The resulting value of ρ is then compared to 
critical values in Table D10. Spearman’s rho can 
be used in the same manner as the τ statistic 
computed in Section 4.9.1.  Spearman’s rho can 
also be used to evaluate serial correlation by 
setting yi = xi+k to determine the lag-k 
autocorrelation. For k = 1, the first observation is 
compared to the second observation, the second 
observation to the third observation, and so on. 

Using the rainfall data, Table 4-39 presents the 
intermediate calculations for Spearman’s rho for 
k = 1. Notice that yi = xi+1 and that there are only 
20 observations in this analysis.  The third and 
fourth represent the ranks of xi and yi, respectively. 
The remaining three columns are intermediate 

calculations for the numerator of the above 
equation. Finally, ρ is equal to -126/ 
[(20(202-1)/12] or -0.19.  Assuming a two-sided 
hypothesis, the critical value from Table D10 (with 
n = 20 and α = 0.05) is ±0.4451; the rainfall data 
are not correlated at lag-1. This result cannot be 
compared with the previous example.  In the 
previous example the correlation between annual 
rainfall and time was evaluated.  In this example, 
“this year’s annual rainfall” is compared to “next 
year’s annual rainfall.” 

Autocorrelation coefficient 

The analyst may also use the correlation 
coefficient, r. Salas et al. (1980) provided the 
formula for the lag-k autocorrelation coefficient as: 

(4-105)
 

Anderson (1941) gave the limit 

(4-106) 

for the 95 percent probability levels for the lag-k 
autocorrelation coefficient where n is the sample 
size. 

(4-104)
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Table 4-39. Analysis of rainfall data using Spearman's rho. 

xi 

40.2 

yi 

53.4 

R(xi) 

7 

R(yi) 

18 

R(xi)-
(n+1)/2 

-3.5 

R(xi)-
(n+1)/2 

7.5 

Numer. 

-26.25 
53.4 43.5 19 9 8.5 -1.5 -12.75 
43.5 37.7 10 4 -0.5 -6.5 3.25 
37.7 50.2 4 15 -6.5 4.5 -29.25 
50.2 38.7 16 5 5.5 -5.5 -30.25 
38.7 47.8 5 13 -5.5 2.5 -13.75 
47.8 39.5 14 6 3.5 -4.5 -15.75 
39.5 44.9 6 11 -4.5 0.5 -2.25 
44.9 41.7 12 8 1.5 -2.5 -3.75 
41.7 36.4 9 3 -1.5 -7.5 11.25 
36.4 51.2 3 16 -7.5 5.5 -41.25 
51.2 54.3 17 20 6.5 9.5 61.75 
54.3 41.5 20 7 9.5 -3.5 -33.25 
41.5 44.8 8 10 -2.5 -0.5 1.25 
44.8 46.7 11 12 0.5 1.5 0.75 
46.7 51.8 13 17 2.5 6.5 16.25 
51.8 49.5 18 14 7.5 3.5 26.25 
49.5 34.1 15 2 4.5 -8.5 -38.25 
34.1 33.2 2 1 -8.5 -9.5 80.75 
33.2 53.7 1 19 -9.5 8.5 -80.75 
33.2 - - - - - -

Sum -126.00 

4.10 MULTIVARIATE ANALYSES 

There are several multivariate procedures in 
addition to the multivariate regression discussed in 
4.7.4. Mathematical descriptions of these 
procedures are beyond the scope of this guidance, 
but researchers should consult a statistician to 
assess the opportunities for using these procedures. 
In general, the multivariate procedures described in 
this section have not found wide usage in day-to­
day applications. 

With the current availability of computerized 
statistical procedures (e.g., SAS, SPSS), it is 
possible to perform multivariate analyses with 
ease, requiring of the researcher only that he or she 
understands and meets the assumptions of the 
particular test and knows how to interpret correctly 

the results of the test. It is extremely important 
that a qualified statistician be consulted regarding 
the assumptions involved and the appropriate 
interpretation of test results. Without such 
precautions, our current computer technology will 
only facilitate the proliferation of misguided 
analyses and misinterpreted results. 

The multivariate analyses described briefly in this 
guidance include canonical correlation, cluster 
analysis, principal components and factor analysis, 
and discriminant analysis.  These procedures were 
selected for discussion based on the work of 
Gaugush (1986), which should be reviewed in 
addition to the detailed discussions provided in 
statistics texts for a better understanding of these 
multivariate analyses. 
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4.10.1 Canonical Correlation 

Canonical correlation is a technique for analyzing 
the relationship between two sets of variables, with 
each set able to contain several variables (SAS 
Institute, Inc., 1985b). It follows that simple and 
multiple correlation are special cases of canonical 
correlation in which one or both sets of variables 
contain only one variable (SAS Institute, Inc., 
1985b). 

Gaugush (1986) states that “[c]anonical correlation 
is used to identify and estimate a linear function 
(called a canonical variate) of one set of variables 
that is maximally correlated with a linear function 
of a second set of variables.” The SAS 
CANCORR procedure (SAS Institute, Inc., 1985b) 
finds as many canonical variates as there are 
variables in the smaller set of variables.  The first 
and subsequent canonical variates are uncorrelated, 
with the first having the highest correlation 
coefficient, followed by the second-highest 
correlation coefficient for the second canonical 
variate, etc. It should be noted that “the first 
canonical correlation is at least as large as the 
multiple correlation between any variable and the 
opposite set of variables” (SAS Institute, Inc., 
1985b). 

Gaugush (1986) notes that the information 
resulting from canonical correlation is largely 
descriptive and therefore the procedure has not 
been used as much as other multivariate 
procedures that support hypothesis testing and/or 
prediction. 

Gaugush (1986) promotes the use of canonical 
correlation to, for example, “describe the strength 
of a relationship between a linear combination of 
nutrient variables and a linear combination of 
biomass-related variables.”  The strength of such a 

relationship is estimated by the canonical 
correlation coefficient. 

Another use of canonical correlation is in 
determining how many “common elements” are 
contained within two sets of variables (Gaugush, 
1986). The percent overlapping variance (i.e., the 
squared canonical correlation coefficient) can be 
used to indicate the relative importance of each 
canonical variate (Gaugush, 1986). 

To use canonical correlation in hypothesis testing, 
it is important that the assumption of multivariate 
normality is satisfied (Gaugush, 1986).  Snedecor 
and Cochran (1980) discuss the multivariate 
normal distribution briefly and state its property 
that “any variable has a linear regression on the 
other variables (or on any subset of the other 
variables), with deviations that are normally 
distributed.” Gaugush (1986) notes that the 
assumption of multivariate normality is often 
satisfied by “creating data distributions that are 
approximately normal.” 

To satisfy the assumptions of canonical 
correlation, Gaugush (1986) recommends: 

•	 Use transformations if needed to create roughly 
symmetric univariate data distributions. 

•	 Carefully examine the validity of outliers and 
run analyses with and without outliers to 
document their impact on the correlations. 

•	 Transform data if necessary to create linear 
relationships among the variables in each set of 
variables. 

Finally, Gaugush (1986) gives an example 
application of canonical correlation using the SAS 
CANCORR procedure described above. 
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4.10.2 Cluster Analysis 

Cluster analysis is a classification method for 
placing “objects into groups or clusters suggested 
by the data, not defined a priori, such that objects 
in a given cluster tend to be similar to each other in 
some sense, and objects in different clusters tend to 
be dissimilar” (SAS Institute, Inc., 1985b).  SAS 
offers several clustering options under the 
CLUSTER procedure (SAS Institute, Inc., 1985b). 
It is important to recognize that numerous methods 
come under the heading of cluster analysis and 
these methods will give different results.  The 
types of cluster analysis include the following 
(SAS Institute, Inc., 1985b): 

•	 Disjoint clusters, which place each object in 
one and only one cluster. 

•	 Hierarchical clusters, in which one cluster may 
be contained entirely within another cluster, but 
for which no other kind of overlap is allowed. 

•	 Overlapping clusters with or without 
constraints placed on the number of objects that 
belong to two clusters. 

•	 Fuzzy clusters, which are defined by a 
probability of membership of each object in 
each cluster. (These can be disjoint, 
hierarchical, or overlapping.) 

Example analyses include the following: 

•	 Gaugush (1986) used Ward’s method of cluster 
analysis to group reservoirs based on similarity 
in log total phosphorus concentration, log total 
nitrogen concentration, log Secchi disk depth, 
and log chlorophyll a concentration. 

•	 Kimball (1986) used cluster analysis to group 
wells based on mean nitrate, well depth, 
maximum nitrate, coefficient of variation of 

nitrate, and variance of nitrate. Mean nitrate 
and coefficient of variation of nitrate yielded 
the most information.  A major conclusion 
made from this investigation of wells in South 
Dakota was that “classification of ground water 
sample locations by geologic environment and 
depth is crucial to understanding the system.” 

4.10.3 Principal Components and Factor 
Analysis 

Principal component analysis (PCA) is a 
multivariate procedure for examining relationships 
among several quantitative  variables (SAS 
Institute, Inc., 1985b). PCA is used with factor 
analysis to “create a relatively small number of 
new variables (called ‘factors’) from a larger 
number of original variables” (Gaugush, 1986). 
The primary use of these procedures is exploratory 
analysis; that is, hypothesis testing is not normally 
performed (SAS Institute, Inc., 1985b). 

Gaugush (1986) notes that PCA is usually 
performed before factor analysis.  Principal 
components are linear combinations of the original 
variables. The first principal component explains 
the most variability associated with the data, while 
the second principal component explains the 
second-most variability associated with the data 
and is not correlated to the first principal 
component.  As an example, Gaugush (1986) 
describes how PCA can be used to develop a 
trophic state index from biological, nutrient, and 
physical data.  It is sometimes helpful to prepare a 
scatter plot of the data using the first two principal 
components for exploratory analysis. 

Factor analysis is then used to enhance the 
scientific interpretation of the principal 
components developed.  Factor analysis can then 
be used to redefine the factors (i.e., the linear 
functions of one or more of the original variables) 
so that they can be interpreted in more scientific 
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terms.  That is, factor analysis can be used to 
reshape a principal component such that the factors 
match more closely a researcher’s intuitive (or 
research-based) model of the relationships among 
the variables. 

Although hypothesis testing is not normally 
performed on the results of PCA and factor 
analysis, Gaugush (1986) recommends that data 
distributions be approximately symmetric with no 
outliers. As in other cases, data transformations 
might be needed to meet these recommendations. 
Because of problems of scale, Gaugush (1986) 
recommends that PCA and factor analysis be based 
on the correlation matrix unless the variables are 
all of approximately the same magnitude.  In cases 
where the variables are of the same magnitude, the 
covariance matrix can be used. 

This discussion of PCA and factor analysis is 
intended only to familiarize the water quality 
researcher with the general use of these techniques. 
Gaugush (1986) goes several steps farther in 
describing these procedures, including an 
illustrative example.  SAS gives a fairly detailed 
mathematical description of PCA and factor 
analysis (SAS Institute, Inc., 1985b) and offers 
procedures for performing both (PRINCOMP and 
FACTOR procedures). 

4.10.4 Discriminant Analysis 

Discriminant analysis resembles regression 
analysis, but with a major difference in that the 
dependent variable in discriminant analysis is 
categorical, whereas the dependent variable in 
regression analysis is often continuous (Gaugush, 
1986). An example application of discriminant 
analysis might be to predict the presence or 
absence of brook trout based on pH and aluminum 
concentration. Researchers are encouraged to 
follow the descriptions of discriminant analysis 
offered by SAS (SAS Institute, Inc., 1985b) and 
Gaugush (1986) before using the procedure. The 

following are some of the uses for discriminant 
analysis (SAS Institute, Inc., 1985b): 

•	 To find a mathematical rule (or “discriminant 
function”) for predicting to which class an 
observation belongs, given data for the 
independent quantitative variables. 

•	 To find linear combinations of the independent 
quantitative variables that best reveal the 
differences between the classes. 

•	 To find a subset of the independent quantitative 
variables that best shows the differences 
between the classes. 

Discriminant analysis requires prior knowledge of 
all classes (e.g., a sample), whereas cluster analysis 
has no such requirement (SAS Institute, Inc., 
1985b). In fact, cluster analysis is used to define 
the classes. Gaugush (1986) also cautions that 
outliers can adversely affect the results of 
discriminant analysis and that the predictor 
variables should follow a multivariate normal 
distribution within each group, with variance-
covariance matrices that are constant across 
groups. There is, however, at least one procedure 
(NEIGHBOR procedure) that can be used for non-
normal data (SAS Institute, Inc., 1985b). 

4.11 EXTREME EVENTS 

One of the key characteristics that separate 
environmental, and in particular nonpoint source-
influenced data, is the presence of extreme events. 
The majority of nonpoint source pollution entering 
streams occurs during runoff from precipitation 
events. This section presents an approach for 
estimating annual precipitation and storm events, 
describes the approach used by EPA’s DESCON 
model for estimating design flows, and concludes 
with statistical methods appropriate for evaluating 
water quality extreme events.  Earlier sections 
describe methods for summarizing average 
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conditions and determining changes.  This section 
also describes methods for evaluating extreme 
conditions in water quality variables.  This is 
important for evaluating standard violations or 
evaluating peak concentrations to determine if a 
BMP was effective. 

4.11.1 Rainfall Analyses 

Annual precipitation 

Chow (1951) presents a method for computing 
annual precipitation for a variety of return periods. 
This method is outlined below assuming that the 
annual rainfall is available for n years. 

•	 Compute the mean and standard deviation for 
the n years of data.  Also compute the 
coefficient of variation (CV). 

•	 Use CV to estimate the log-probability 
frequency factor, K, for a given return period 
(Table 4-40). 

•	 Compute the annual precipitation (Xc) for 
different return periods using Equation 4-107. 

_
For the rainfall data presented in Table 4-37, x and 
CV are equal to 44.5 inches and 0.15, respectively. 
From Table 4-40, the value of K corresponding to 
a 2 year return period is -0.09.  Substituting this 
value into the above equation yields Xc equal to 
44.5(1+(0.15)(-0.09)) or 43.9 inches. The 100 year 
annual precipitation would be equal to 
44.5(1+(0.15)(2.70)) = 62.5 inches. The adequacy 
of the record length can be evaluated using 
(Mockus, 1960): 

(4-108) 

where Y is the minimum record length in years, t is 
the Student’s t quantile (Table D2) at the 90% 
level with Y-6 degrees of freedom, and R is the 
ratio of the 100 year event to the 2 year event. 

To solve the above equation, an iterative approach is 
necessary.  Using an initial guess of Y equal to 15 
years, t is equal to 1.8331, while R is equal to 
62.5/43.9 or 1.42. Substituting these values into the 
above equation yields Y = [(4.3)(1.8331)(.1534)]2+6 
or 7.5. Adjusting our guess of Y to 9 years, t is 
equal to 2.3534 and Y = [(4.3)(2.3534)(.1534)]2+6 
or 8.4 years (which is close enough to our initial 
guess). Since the actual length of record is 21 years, 
our 100 year return annual precipitation estimate of 
62.5 inches can be expected to be reasonable. 

Storm return period 

The method developed by Hershfield (1961) is the 
most usually applied method in the field today and 
is commonly referred to as “TP40.”  The method is 
based on interpolating the design storm from four 
figures (Figures 4-25 through 4-28) and applying 
the following equation (Weiss, 1962): 

(4-109) 

where I is the rainfall amount (in inches); A is the 
2-year, 1-hour rainfall (in inches) interpolated from 
Figure 4-25; B is the 2-year, 24-hour rainfall (in 
inches) interpolated from Figure 4-26; C is the 
100-year, 1-hour rainfall (in inches) interpolated 
from Figure 4-27; and D is the 100-year, 24-hour 
rainfall (in inches) interpolated from Figure 4-28. 
The return period, x, and duration, y, are taken 
from Table 4-41 and 4-42, respectively. 

(4-107) 
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Table 4-40. Theoretical log-probability frequency factors. 

Return Period (years) 

1.01 2 5 20 100 

Cs 

Probability (%) equal to or greater than the given variate 

99 50 20 5 1 Cv 

0.0 
0.5 
1.0 
1.139 
1.4 
1.5 
2.0 
3.0 
4.0 

-2.33 
-1.98 
-1.68 
-1.61 
-1.49 
-1.45 
-1.28 
-1.04 
-0.90 

0.0 
-0.09 
-0.15 
-0.16 
-0.19 
-0.20 
-0.24 
-0.28 
-0.29 

0.84 
0.80 
0.75 
0.73 
0.69 
0.68 
0.61 
0.51 
0.42 

1.64 
1.77 
1.85 
1.86 
1.88 
1.89 
1.89 
1.85 
1.78 

2.33 
2.70 
3.03 
3.11 
3.26 
3.31 
3.52 
3.78 
3.91 

0.0 
0.166 
0.324 
0.363 
0.436 
0.462 
0.596 
0.818 
1.000 

Source: Chow, 1951 

Table 4-41. Linearized rainfall frequency variate for equation 4-109. 

Return Period
 (in years) 

1 2 5 10 25 50 100 

Linearized 
Variate (x) 

-6.93 0 9.2 16.1 25.3 32.1 39.1 

Source: Weiss, 1962 

Table 4-42. Linearized rainfall duration variate for equation 4-109. 

Duration (hours) 0.17 .033 0.5 0.67 1 

Linearized Variate
 (y) 

-37 -24 -15.6 -9.4 0 

Duration (hours) 2 3 6 12 24 

Linearized Variate
 (y) 

17.6 28.8 49.9 73.4 100.0 

Source: Weiss, 1962 
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Suppose the analyst is interested in estimating the 
1-year, 2-hour storm in El Paso, Texas.  From 
Figures 4-25 through 4-28, A, B, C, and D are 
estimated as 0.8, 1.5, 2.0, and 4.0, respectively. 
From Table 4-41, x is equal to -6.93 and from 
Table 4-42, y is equal to 17.6. Substituting these 
values into Equation 4-109 yields a 1-year, 2-hour 
storm equal to 0.7 inches. 

4.11.2 Design Flows 

This section describes the computational steps 
employed by DFLOW and DESCON for each of 
the three types of design flows considered and has 
been extracted and adapted from Rossman (1990). 
It begins with the extreme value design flow, since 
this type of design flow also serves as a starting 
point in computing the biologically-based design 
flow. 

Extreme value design flow (low flows) 

The extreme value design flow is computed from 
the sample of lowest m-day average flows for each 
year of record, where “m” is the user-supplied flow 
averaging period. Established practice uses 
arithmetic averaging to calculate these m-day 
average flows. A log Pearson Type III probability 
distribution is fitted to the sample of annual 
minimum m-day flows.  The design flow is the 
value from the distribution whose probability of 
not being exceeded is 1/R, where R is the user-
supplied return period. The procedure is modified 
slightly to accommodate situations where some 
annual low flows are zero. 

STEP 1. Initialize each element of a vector X of 
daily flow values to UNKNOWN (i.e., a very large 
number such as 1x 1020). 

STEP 2. Read in daily flow values from the 
retrieved STORET flow file into X, where X(1) 
corresponds to the first day of record.  (Note: 
February 29th of leap years is ignored.) 

STEP 3. Create m-day running arithmetic averages 
from the daily flows in X, and replace the daily 

flows of X with these values. The running average 
of X(i), X(i+1), ..., X(i+m-1) is placed in X(i). 

STEP 4. Find the lowest m-day running average 
value for each water year recorded in X (where a 
water year begins on April 1) and store the 
resulting values in vector Y. Let NY denote the 
number of entries in Y. 

STEP 5. Let N be the number of non-zero entries 
in Y. Assume that these Y-values are a sample 
drawn from a log Pearson Type III probability 
distribution. The design flow is the value from this 
distribution whose probability of not being 
exceeded is 1/R, where R is the user-supplied 
return period. Use the following procedure to find 
the design flow: 

STEP 5a. Find the mean (U), standard deviation 
(S), and skewness coefficient (G) of the natural 
logarithms of the non-zero entries in Y. 

STEP 5b. Let F0 be the fraction of entries in Y that 
are zero: 

(4-110) 

Let P be the cumulative probability corresponding 
to the user-supplied return period of R years, 
adjusted for the presence of zero-flow years: 

(4-111) 

In other words, if F0 is the probability of having a 
year with zero stream flow, and 1/R is the allowed 
probability of a year with an excursion below the 
design flow, then P is the corresponding excursion 
probability in years with non-zero flows. 

STEP 5c. Let Z be the standard normal deviate 
corresponding to cumulative probability P. Z can 
be computed using the following formula (Joiner 
and Rosenblatt, 1971): 
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(4-112) 

TEP 5d. Compute the gamma deviate, K, 
corresponding to the standard normal deviate Z and 
skewness G using the Wilson-Hilferty 
transformation (Loucks et al., 1981): 

(4-113) 

STEP 5e. Compute the design flow as 

(4-114) 

Biologically-based design flow 

Biologically-based design flows are computed by 
starting with a trial design flow, then counting how 
often this flow is not exceeded by m-day average 
flows in the historical record. (In contrast with the 
traditional method of computing extreme value 
design flows, the m-day flow averages are 
harmonic means, not arithmetic ones.  This count 
is compared to the allowed number of such 
occurrences, and the trial design flow is adjusted 
accordingly.  The specific computational steps 
involved are as follows: 

STEP 1. Initialize each element of a vector X of 
daily flow values to UNKNOWN (i.e., a very large 
number such as 1x 1020). 

STEP 2. Read in daily flow values from the 
retrieved STORET flow file into X, where X(1) 
corresponds to the first day of record.  (Note: 
February 29th of leap years is ignored.) 

STEP 3. Create m-day running harmonic averages 
from the daily flows in X, and replace the daily 
flows of X with these values. The running average 
of X(i), X(i+1), ..., X(i+m-1) is placed in X(i) and is 
computed as follows: 

Define B(j) as 1/X(i+j-1) if X(i+j-1 > 0, and 0
 
otherwise, for j = 1 to m. Let DSUM be the sum of
 
B(j) for j = 1 to m and m0 be the number of B(j)
 
values that equal 0. Then replace X(i) with X(i) =
 
(m-m0)/DSUM*(m-m0)/m.
 

Note that this procedure takes into account the
 
possibility of zero flows when forming a harmonic
 
average.
 

STEP 4. Compute an extreme value m-day
 
average trial design flow (DFLOW) using the
 
biologically-based average number of years
 
between flow excursions (R) as the return period.
 

STEP 5. Compute the allowed number of flow
 
excursions, A, (i.e., the number of distinct m-day
 
average flows allowed to be below the design
 
flow) over the NDAYS of stream flow record: A =
 
NDAYS/365/R.
 

STEP 6. Use the procedure described below to
 
compute the number of biologically-based flow
 
excursions resulting under the trial design flow
 
DFLOW. Because the trial flow was computed as
 
an extreme value flow, the resulting number of
 
biologically-based excursions will most likely be
 
larger than the allowed number, A. If it is not, then
 
keep increasing the trial design flow by some fixed
 
increment until the resulting number of excursions
 
exceeds A.
 

STEP 7. Use the Method of False Position
 
(Carnahan et al., 1969) to successively refine the
 
estimate of the biologically-based design flow as
 
follows:
 

STEP 7a. Set lower and upper bounds on the
 
design flow with their corresponding excursion
 
counts:
 

FL = 0; XL = 0.
 
FU = DFLOW; XU = number of excursions under
 
DFLOW.
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STEP 7b. Check on convergence of the bounds. If 
FU - FL is within 0.5 percent of FL, then end with 
DFLOW = FU. If XL is within 0.5 percent of A, 
then end with DFLOW = FL. If XU is within 0.5 
percent of A, then end with DFLOW = FU. 
Otherwise proceed to the next step. 

STEP 7c. Interpolate between the bounds to find a 
new trial design flow, FT: 

(4-115) 

and compute the number of excursions (XT) 
occurring for this flow (see procedure described 
below). 

STEP 7d. Update the bounds based on the value of 
XT: If XT # A, then set FL = FT and XL = XT. 
Otherwise set FU = FT and XU = XT. Then return 
to the convergence check of step 7b. 

The process used to count the number of flow 
excursions for a given design flow proceeds in two 
phases. The first phase identifies all excursion 
periods in the period of record. An excursion 
period is a sequence of consecutive days where 
each day belongs to an m-day running average 
flow that is below the given design flow. Recall 
that “m” is the flow averaging period set by the 
user. Phase two groups these excursion periods 
into excursion clusters and counts up the total 
number of excursions occurring within all clusters. 
An excursion cluster consists of all excursion 
periods falling within a prescribed length of time 
from the start of the first period in the cluster (120 
days is the default cluster length).  The number of 
excursions counted per cluster is subject to an 
upper limit whose default value is 5. 

Before describing the detailed procedures for each 
of these phases a simple numerical example will be 
used to illustrate the method.  Suppose that the 

design flow under consideration is 100 cfs and that 
the period of record yields a sequence of 4-day 
running average flows as detailed in Box 1. 

The first flow excursion period for this record 
consists of the 4-day averages occurring on days 
1,2 and 3. Thus the period extends from day 1 to 
day 6 (days 4, 5 and 6 belong to the averaging 
period that begins on day 3). There are two other 
excursion periods consisting of days 13 to 18 and 
513 to 548. Under the default clustering 
parameters, there are 2 excursion clusters; cluster 1 
contains periods 1 and 2, and cluster 2 contains 
period 3. The number of excursions in each cluster 
is detailed in Box 2. 

Note that the number of excursions in each period 
equals the period length divided by the averaging 
period. The nominal number of excursions in 
cluster 2 is 9, and since this exceeds the limit of 5, 
only 5 are counted. The total number of excursions 
for the design flow of 100 cfs in this example is 3 
+ 5 = 8. 

The detailed procedure for counting biologically-
based flow excursions under a specified design 
flow is as follows: 

PHASE 1 

Define: 

P1(i) = day which begins excursion period i,
 
P2(i) = day which ends excursion period i,
 
XP(i) = number of excursions in period i,
 
XKLmax = maximum cluster length (e.g., 120
 
days).
 
t = current day of record.
 

STEP 1. Set i = 0, P2(0) = 0, and t = 1.
 

STEP 2. If the m-day running average beginning
 
on day t is greater or equal to the specified design
 
flow then proceed to Step 5.
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Day 
4-Day Average Flow 

(cfs) Day 
4-Day Average Flow 

(cfs) 

1 
2 
3 

4-12 
13 
14 
15 

16-512 

34 
65 
25 

> 100 
57 
34 
26 

> 100 

513-545 

546-end 

< 100 

> 100 

Box 1 

Cluster Period Start Day 
Length 
(days) 

No. of 
Excursions 
in Period 

No. of 
Excursions 
in Cluster 

1 

2 

1 
2 

3 

4 
13 

513 

6 
6 

36 

6/4 = 1.5 
6/4 = 1.5 

36/4 = 9.0 

3.0 

5.0 

Box 2 

STEP 3. If the current day t is more than a day
 
beyond the end of the current excursion period 

(t > P2(i) + 1), or if the length of the current
 
excursion period equals XKLmax then begin a new
 
excursion period by setting:
 

i = i + 1
 
P1(i) = t
 
P2(i) = m - 1
 
XP(i) = 0.
 

STEP 4. Update the ending day of the current
 
excursion period and the excursion count for this
 
period:
 

P2(i) = P2(i) + 1
 
XP(i) = (P2(i) - P1(i)) / m.
 

STEP 5. Proceed to the next day of record (t = t + 
1). If not at the end of the record then return to 
Step 2. Otherwise proceed to phase 2. 

PHASE 2 

Define: 

i = current excursion period,
 
k = current excursion cluster,
 
K1 = day of record which begins cluster k,
 
XK(k) = number of excursions in cluster k,
 
Xkmax = maximum number of excursions counted
 
per cluster (e.g., 5),
 

STEP 1. Set i = 1, k = 0, and K1 = a large negative
 
number.
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STEP 2. If the length of the current cluster is 
greater than the maximum length (i.e., P2(i) - K1 > 
XKLmax) then begin a new cluster with excursion 
period i, i.e., 

k = k + 1 
K1 = P1(k) 
XK(k) = 0. 

STEP 3. Update the excursion count for the 
current cluster, 

XK(k) = minimum(XK(k) + XP(i), XKmax). 

STEP 4. Proceed to the next excursion period 
(i = i + 1) and return to Step 2. If no more 
excursion periods remain, then total up the 
number of excursions in each cluster 
(XK(1) +XK(2) + ... + XK(k)) to determine the 
total number of excursions. 

4.11.3 Frequency of Extreme Events 

This section describes methods for evaluating 
extreme conditions in water quality variables.  This 
is an important consideration for evaluating 
standard violations or evaluating peak 
concentrations to determine if a BMP was 
effective. Gilbert (1987) presents an approach for 
evaluating proportions. The method is based on 
computing the number of observations exceeding a 

threshold value Xc. The proportion of 
observations, p, exceeding Xc can be computed as 

(4-116) 

where u is the number of observations exceeding 
Xc and n is the number of observations.  For n # 
30, Table D11 can be used to develop 
nonparametric 90th or 95th percentile confidence 
limits.  For n > 30, Equations 4-117 and 4-118 may 
be used. The lower limit is equal to 0 if u is 0 and 
the upper limit is 1 if the u is equal to n. 

If np and n(1-p) are greater than 5 (some authors 
suggest a value of 10), then Gilbert (1987) 
suggests that the normal approximation can be 
used to compute the upper and lower limits with 
the following equation: 

(4-119) 

The confidence intervals can be used to evaluate 
one-sample hypotheses such as 

Ho: p = 0.10 
Ha: p … 0.10 

(4-117) 

(4-118) 
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If the 95 percent confidence intervals include 0.10, 
we accept the null hypothesis.  Otherwise the null 
hypothesis is rejected. 

An evaluation of proportions can also be used to 
determine the necessary sample size to ensure that 
q percent of the population is less than the largest 
randomly sampled observation.  This approach 
provided by Conover (1980) is demonstrated with 
the next example. 

Example: 

Determine the number of random samples that 
would be required to ensure with a 95 percent 
probability (α=0.05) that 90 percent of the 
population is less than the largest observation. 

Solution: 

Enter Table D11 with q equal to 0.9 and 1-α equal 
to 0.95 and directly read a sample size of 29. 
Therefore, it would require 29 samples to ensure 
that the largest observation is greater than 90 
percent of the population. 

Application of this example is similar to quality 
control processes. In this case, once 29 samples 
have been collected, the upper bound is set equal to 
the largest observation. From then on, we would 
expect that only 10 percent of the future samples 
would exceed the upper bound with 95 percent 
confidence. If more than 10 percent of future 
observations exceeded the upper bound, we would 
infer that some change has occurred (Ward et al., 
1990). 

It is also possible to compare the proportions p1 

and p2 between two samples with sample sizes 
equal to n1 and n2. For example, it may be 
appropriate to compare the percent of standard 
violations from before and after.  In this case, the 
null and two-sided alternative hypothesis are 

Ho: p1 = p2 

Ha: p1 … p2 

Moore and McCabe (1989) provide the test 
statistics as 

(4-120) 

where sp and p are given by 

(4-121) 

(4-122) 

Moore and McCabe (1989) suggest that n1p, 
n1(1 - p), n2p, and n2(1 - p) all be greater than or 
equal to 5 for application. If the absolute value of 
z is greater than the associated normal deviate 
(e.g., 1.96 for a two-sided test with α equal to 
0.05), then Ho is rejected. 
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