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Minimum Detectable Change 
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Introduction

Background
Documenting water quality improvements linked to best management practice (BMP) imple-
mentation is a critical aspect of many watershed studies. Challenges exist in targeting critical 
contaminants, dealing with timing lags, and shifting management strategies (Tomer and Locke 
2011). Therefore, it is important to establish monitoring programs that can detect change (Schilling 
et al. 2013). The “minimum detectable change”—or MDC—is the smallest amount of change in a 
pollutant concentration or load during a specific time period required for the change to be consid-
ered statistically significant (Spooner et al. 2011). Practical uses for the MDC calculation include 
determining appropriate sampling frequencies and assessing whether a BMP implementation plan 
will create enough of a change to be measurable with the planned monitoring design. The same 
basic equations are used for both applications with the specific equations depending primarily on 
whether a gradual (linear) or step trend is anticipated. In simple terms, one can estimate the required 
sampling frequency based on the anticipated change in pollutant concentration or load, or turn the 
analysis around and estimate the change in pollutant concentration or load that is needed for detec-
tion with a monitoring design at a specified sampling frequency. 

The process of conducting MDC analysis is described in Tech Notes 7 (Spooner et al. 2011) and 
includes the following steps: 

1. Define the monitoring goal and choose the appropriate statistical trend test approach.

2. Perform exploratory data analyses.

3. Perform data transformations.

4. Test for autocorrelation.

5. Calculate the estimated standard error.

6. Calculate the MDC.

7. Express MDC as a percent change.

Sample size determination is often performed by selecting a significance level1, power of the test, 
minimum change one wants to detect, monitoring duration, and type of statistical test. MDC is 
calculated similarly, except that the sample size (i.e., number of samples), significance level, and 

1 Significance level and power are defined under “Hypothesis Testing”

1

This Technical Memorandum is one of a series of 
publications designed to assist watershed projects, 
particularly those addressing nonpoint sources of 
pollution. Many of the lessons learned from the 
Clean Water Act Section 319 National Nonpoint 
Source Monitoring Program are incorporated in these 
publications.
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power are fixed and the minimum detectable change is computed. Tech Notes 7 includes the specific 
equations to use in performing an MDC analysis and provides guidance on evaluating explanatory 
variables to reduce the standard error (Spooner et al. 2011). 

Purpose and Audience
Other authors have reviewed and examined the procedures for computing MDCs and deter-
mining sample sizes (Ward et al. 1990; Loftis et al. 2001; USEPA 1997a, 1997b, 2002). Generally, they 
recommend procedures similar to those presented in Tech Notes 7. These authors, however, also 
recommend that, for most applications of MDC calculations for sample size estimation, statistical 
powers other than 0.5 (i.e., the default power used in Tech Notes 7) should be considered. This 
technical memorandum extends Tech Notes 7 to include evaluation of minimum detectable changes 
using powers other than 0.5 for step-trend analysis with no explanatory variables. It has been devel-
oped for analysts both looking for a basic understanding of integrating power into MDC analyses 
and framing sample size selection for water resource managers.

Basic Principles
The data analyst usually summarizes a data set with a few descriptive statistics rather than 
presenting every observation collected. “Descriptive statistics” include characteristics designed 
to summarize important features of a data set such as range, central tendency, and variability. A 
“point estimate” is a single number that represents a descriptive statistic. Statistics typically used 
to summarize water quality data associated with BMP implementation include proportions, means, 
medians, totals, and variance. When estimating parameters of a population, such as the proportion 
or mean, it is useful to estimate the “confidence interval,” which indicates the probable range in 
which the true value lies. For example, if the average total nitrogen (TN) concentration is estimated 
to be 1.2 mg/L and the 90 percent confidence limit is ±0.2 mg/L, there is a 90 percent chance that 
the true value is between 1.0 and 1.4 mg/L. 

Hypothesis Testing
Hypothesis testing should be used to determine whether a change has occurred over time. The “null 
hypothesis” (H

o
) is the root of hypothesis testing. Traditionally, H

o
 is a statement of no change, no 

effect, or no difference; for example, “the average TN concentration after the BMP implementation 
program is equal to the average TN concentration before the BMP implementation program.” The 
“alternative hypothesis” (H

a
) is counter to H

o
, traditionally being a statement that change, effect, or 

difference has occurred. If H
o
 is rejected, H

a
 is accepted. Regardless of the statistical test selected 

for analyzing the data, the analyst must select the acceptable error levels for the test. There are two 
types of errors in hypothesis testing:

zz Type I error: H
o
 is rejected when H

o
 is really true

zz Type II error: H
o
 is accepted when H

o
 is really false

Table 1 and Figure 1 depict these error types, with the magnitude of Type I errors represented by α 
(the significance level or probability of committing a Type I error) and the magnitude of Type II errors 
represented by β. The probability of making a Type I error is equal to the α of the test and is selected 
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by the data analyst. In most cases, the manager or analyst will define 1-α to be in the range of 0.90–
0.99 (i.e., a confidence level of 90–99 percent), although there have been applications in which 1-α 
has been set to as low as 0.80. Selecting a 90-percent confidence level implies that the analyst will 
reject the H

o
 when H

o
 is true (i.e., a false positive) 10 percent of the time. The same notion applies to 

the confidence interval for point estimates described above: α is set to 0.10, and there is a 10 percent 
chance that the true average TN concentration is outside the 1.0–1.4 mg/L range.

Table 1. Errors in Hypothesis Testing

Decision

State of Affairs in the Population

H
o
 is True H

o
 is False

Accept Ho 1-α (Confidence level) β (Type II error)

Reject Ho α (Significance level) (Type I error) 1-β (Power)

Type II errors (β) depend on the significance level, sample size, and data variability. In general, for a 
fixed sample size, α and β vary inversely. And similarly, for a fixed α, β can be reduced by increasing 
the sample size (Remington and Schork 1970). Power (1-β) is defined as the probability of correctly 
rejecting H

o
 when H

o
 is false and is discussed further in the next section.

Power Curves
The above principles are demonstrated in the hypothetical power curves shown in Figure 2. The 
green lines in Figure 2 represent hypothesis tests with α = 0.05 and the orange lines represent 
hypothesis tests with α = 0.10. When there is no change in water quality between pre- and post-BMP 
implementation (i.e., MDC = 0% on the x-axis), the plotted value in Figure 2 is equal to the selected 
significance level (i.e., α) of the hypothesis test. As the MDC increases (i.e., the difference between 

Figure 1. Type I and Type II Errors.
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pre- and post-BMP implementation water quality becomes larger), the power increases. Ideally, the 
power curve starts at α where the MDC = 0 and rapidly rises to a power of 1.0 as the MDC increases. 
The rate at which the power increases is controlled by the significance level, sample size, and 
variability. Power also is affected by the amount of autocorrelation in the collected data (Spooner 
et al. 2011). As illustrated by the dashed versus solid lines in Figure 2, increasing the sample size, 
decreasing the variability of the data set, or lower autocorrelation generally will improve the power.

Analysts and managers often rely on preliminary data or data from previous studies to help establish 
the likely variability of a data set for estimating sample size. As stated in Spooner et al. (2011), incor-
porating explanatory variables into the calculation increases the probability of detecting significant 
changes by reducing data set variability and produces statistical trend analysis results that better 
represent true changes due to BMP implementation rather than to hydrologic and meteorological 
variability. Commonly used explanatory variables for hydrologic and meteorological variability 
include streamflow and total precipitation (Spooner et al. 2011). Based on a numerical study, Loftis 
et al. (2001) suggest that including poorly correlated explanatory variables (i.e., ρ<0.3) is not helpful 
while correlations greater than 0.6 can yield significant improvements in MDC calculations. 

Practical Considerations
Establishing an appropriate level of power when designing a monitoring program is as important as 
establishing the significance level and often is tied to a management or risk trade-off. In many cases, 
a water resource manager is interested in detecting changes in the monitored resource as a result of 
a BMP implementation program. Selecting a power from 0.8 to 0.9 might be an appropriate choice 
that will detect a resulting change with an 80 to 90 percent probability if a change really happened. 

The choice of power in combination with other factors including significance level, data variability, 
sample size, and autocorrelation can be weighed against the actual changes that could result 
from BMP implementation. For example, the four power curves presented in Figure 2 represent a 

Figure 2. Hypothetical Power Curves.
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range of conditions considered in the power analysis; the gray shading highlights the portion of 
the curves that intersects with a power from 0.8 to 0.9. The solid green line (with α = 0.05) indicates 
that a change of 24 percent or greater can be detected with a 90 percent probability (i.e., power = 
0.9). This example is not particularly helpful, however, if BMP implementation is expected to cause 
only a 15–20-percent change. Detecting this smaller change would require taking more samples or 
accepting different probabilities of Type I and Type II errors. Selecting a significance level of α = 0.10 
(solid orange line) is more appropriate as an MDC of 19 percent now can be achieved with a power 
of 0.9. By also reducing the power to 0.8, a change of 16 percent can be detected (solid orange line). 
Both dashed lines, on the other hand, allow for MDCs smaller than the change expected from BMP 
implementation. The results can then be tied to monitoring costs and communicated to managers. 
Because these types of analyses are developed with incomplete and imperfect information, some 
level of safety needs to be built into the range of conditions being evaluated and the resulting design 
recommendations to ensure that the monitoring program meets its intended data quality objectives. 

Application to MDC
Tech Notes 7 presents equations for computing the MDC assuming a power of 0.5. The equations are 
generally applicable in this context except as noted below to allow for alternative levels of power 
(see Tech Notes 7 for more details about the applicable equations). A Student’s t-test or Analysis of 
Covariance (ANCOVA) is used for step-trend analysis. For log-normal data, this analysis is conducted 
on log-transformed data (Spooner et al. 2011). 

The MDC calculation requires an estimate of the standard deviation of the difference between the 
mean values of pre-BMP data vs. post-BMP data ( ). Use the following formula to obtain 
this estimate:

where:

= the estimated standard error of the difference between the mean values of the 
pre- and post-BMP periods. 

MSE =  = the estimate of the pooled Mean Square Error (MSE) or, equivalently, the pooled 
variance of the two time periods.

n
pre

 and n
post

 = the number of samples in the pre- and post-BMP periods.

The variance of pre-BMP data ( ) can be used to estimate MSE—or —for both pre- and 
post-BMP periods if post-BMP data are not available. If the variability of the post-BMP data set is 
expected to be different from the pre-BMP data set,  can be estimated as:

https://www.epa.gov/polluted-runoff-nonpoint-source-pollution/nonpoint-source-monitoring-technical-notes
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If autocorrelation is present, then generalized least squares (GLSs) with Yule Walker methods 
should be used to estimate the standard deviation. If ordinary least squares (OLSs) are used, then 
an estimate of the true standard deviation can be estimated using the following large sample 
approximation formula:

where:

  
= the true standard deviation of the trend (difference between two means) estimate (e.g., 

calculated using GLS).

 = the incorrect variance of the trend estimate calculated without regard to autocorrelation 
using OLS (e.g., using a statistical linear regression procedure that does not take into account 
autocorrelation).

ρ = the autocorrelation coefficient for autoregressive lag 1, AR(1).

In practice, an estimate of the MDC for a step trend is obtained by using the following formula:

where: 

 = Student’s t-value with (n
pre

 + n
post

 -2) degrees of freedom 
corresponding to α.

 = Student’s t-value with (n
pre

 + n
post

 -2) degrees of freedom 
corresponding to 2β.

This MDC equation includes an additional Student’s t-value term ( ) relative to the 
equation presented in Tech Notes 7 to allow for alternative values of power. If a power of 0.5 is 
selected, the value of  is equal to zero and reduces to the equation shown in Tech 
Notes 7 (Spooner et al. 2011). 

To convert the above MDC to percent MDC, the following two formulas are used depending on 
whether raw or log-transformed values were used in the analysis:

zz Raw data: MDC% = 100*(MDC/ )

zz Log-transformed data: MDC% = (1 – 10-MDC) * 100 

https://www.epa.gov/polluted-runoff-nonpoint-source-pollution/nonpoint-source-monitoring-technical-notes
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Example Power Curve Calculations
The calculations are illustrated below with the following assumptions (following the example 
initiated in Tech Notes 7):

One-sided, two-sample t-test (H
o
: H

a
: )

Significance level (α) = 0.05

Power (1-β) = 0.5 and 0.8

ρ = 0 (no autocorrelation)

n
pre

 = 52 samples in the pre-BMP period

n
post

 = 52 samples in the post-BMP period

 = 36.9 mg/L, mean of the 52 samples in the pre-BMP period

s
p
 = 21.2 mg/L = standard deviation of the 52 pre-BMP samples

MSE = = 449.44 

Table 2 presents sample Excel formulas that can be used to calculate  and 
 as 1.6599 and 0.8452, respectively. These equations can be adopted for general use.

Percent change required = MDC% = 100*(6.9/36.9) = 19%.

Percent change required = MDC% = 100*(10.4/36.9) = 28%.

There is a 50 percent probability that a decrease of 6.9 mg/L (or 19 percent) or an 80 percent proba-
bility that a decrease of 10.4 mg/L (or 28 percent) can be detected (see Figure 3, points A and B). 

Table 2. Sample Excel© Formulas for Computing t
2β

 + t
α
 Assuming a One-Sided t-test, 52 Samples in Both 

Pre- and Post-BMP Data Sets, a Significance Level of 0.05 and Power of 0.80

Row Column A Column B Column C 

1 1- or 2-sided test (set as 1-sided) 1 1

2 Pre-BMP n 52 52

3 Post-BMP n 52 52

4 Significance Level (α) 0.05 0.05

5 Power (1-β) 0.80 0.80

6 2β 0.4 = 2*(1-B5)

7 t
2β

0.8452 = T.INV(1-B6/2,(B2+B3-2))

8 t
α

1.6599 = T.INV(1-B4/B1,(B2+B3-2))

9 t
2β

 + t
α

2.5051 = B7+B8

https://www.epa.gov/polluted-runoff-nonpoint-source-pollution/nonpoint-source-monitoring-technical-notes
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Power Curve Interpretation and Use in Monitoring Design
Figure 3 displays a series of power curves using a variety of sample sizes (n

pre
 = n

post
 = 8, 12, 24, 52, 

104) and the above assumptions. Each plotted line in Figure 3 was created by selecting an alterna-
tive value of power (1-β), computing  and , and replicating the above 
sample calculations for MDC(%). When there is no change (i.e., MDC = 0%), the plotted value corre-
sponds to the chosen significance level. Power increases with increased MDC. If we presume that 
developing a monitoring program with a power of 0.8–0.9 is desirable and the expected benefit of 
a BMP program might result in a 30–50-percent reduction in the measured water quality parameter, 
then it is logical that sampling programs with just 8 and 12 pre- and post-BMP samples will not 
likely detect the expected changes and have little value for documenting the effectiveness of BMPs. 
Increasing the sample size to 52 would allow detection of a 30–50-percent reduction with a power 
of 0.8. Sampling programs using a pre- and post-BMP sample size of 24 fall between clearly having 
little value (n= 8 or 12) and meeting the objective (n= 52 and 104).

Another approach for evaluating alternative monitoring designs is to fix the significance level and 
power and select alternative monitoring strategies. This approach might be necessary, for example, 
if pre-BMP data already have been collected and the only option left is to collect an increased level 
of post-BMP data. Figure 4 displays MDC(%) with a power equal to 0.8 as a function of post-BMP 
sample size for fixed pre-BMP sample sizes. The unlabeled markers in Figure 4 indicate locations 
where pre- and post-BMP sample sizes are equal (and correspond to the similar markers in Figure 3). 
Continuing with the scenario in which the pre-BMP data set has 24 samples (yellow line), it is clear 

Figure 3. Power Curves Associated with Alternative Sample Sizes. (Point A: 50% 
probability that a decrease of 19% can be detected with a monitoring 
program that includes 52 samples in the pre- and post-BMP periods. 
Point B: 80% probability that a decrease of 28% can be detected with 
the same monitoring program. Black box: Targeted power [0.8–0.9] and 
expected reductions from BMP implementation [30–50%]. Other unlabeled 
markers: MDC(%) that can be detected with a 0.8 power for alternative 
sampling designs.)
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that if the post-BMP sampling effort is increased from 24 to 52 samples, the MDC decreases from 42 
percent to 36 percent. Increasing the post-BMP data set to 104 reduces the MDC to 33 percent, for a 
total of 128 (24+104) samples—not as sensitive as if a total of 104 collected samples were split evenly 
between the pre- and post-BMP monitoring period (i.e., the MDC for 52 samples in the pre- and 
post-BMP periods is 28 percent). The latter observation is confirmed by Loftis et al. (2001) in demon-
strating that for a fixed cost, the best allocation of resources is to split the sampling effort evenly 
between pre- and post-BMP monitoring periods.

Summary
The calculation of MDC has several practical uses, including determining appropriate sampling 
frequencies and assessing whether a BMP implementation plan will be sufficient for creating change 
that is measurable with the planned monitoring design. Evaluation of MDC should consider power 
other than 0.5 for step trends with no explanatory variables. 

Figure 4. Comparison of MDC(%) with Power = 0.8 as a Function of Increasing Post-BMP 
Sample Size for Fixed Pre-BMP Sample Sizes. (Unlabeled markers indicate 
locations where pre- and post-BMP sample sizes are equal—see Figure 2.  
Black box: Expected reductions from BMP implementation [30–50%].)
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