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assessment population 

bottleneck effect 

carrying capacity 

cohort 

compensation 

compensatory mechanism 

critical abundance 

demographic rates 

density dependence 

emergent property 

equilibrium abundance 

error 

GLOSSARY OF KEY TERMS 

a group of conspecific organisms occupying a defined area 
which has been selected to serve as an assessment endpoint 
entity for an ecological risk assessment 

a reduction in genetic heterogeneity within a population as 
a result of stressor-induced mortality 

the maximum abundance of a biological population that is 
sustainable by a habitat or environment 

a group of similarly-aged members of a population 

a feedback between the density of a population and some 
biological property of that population (typically 
demographic rates) (synonymous with density dependence) 

a biological mechanism, such as homeostatic acclimation of 
individuals, genetic adaptation, and density dependence in 
vital rates and migration, that can ameliorate adverse 
effects over the short or long term 

the specific population density or abundance below which 
adverse population-level effects are known or suspected to 
occur 

age- or stage-specific birth and death rates of individuals 
within the population (synonymous with vital rates) 

a feedback between the density of a population and some 
biological property of that population (typically 
demographic rates) (synonymous with compensation) 

a property of a system that cannot be predicted simply by 
understanding processes occurring at lower levels of 
organization in that system 

the abundance of a population at steady state 

uncertainty resulting from the use of the wrong methods, 
models, and data in assessment activities 
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ignorance uncertainty resulting from a lack of knowledge about the 
true value of a parameter that can result from inadequate or 
imperfect measurement 

inbreeding depression detrimental changes in birth and death rates resulting from 
reduced genetic diversity (usually a problem of small 
effective population sizes) 

life-table age- or stage-specific schedules of fecundity and 
survivorship 

meta-analysis an analysis that compares the outputs of two or more 
models constructed using different assumptions 

metapopulation a biological population consisting of two or more 
subpopulations separated in space 

parameterization quantification of the variables in a model 

population variously: a collection of individuals of a single species that 
occupy some defined geographical space; a subset of all 
individuals of a given species that share a common area and 
that interbreed 

population attribute a characteristic of the assessment population 

population measure a metric used to quantify a population attribute 

prediction a quantitative description of the future abundances or 
behavior of a population 

projection a qualitative description of the future abundance or 
behavior of a population assuming constant environmental 
conditions 

sensitivity analysis an evaluation of the influences of model variables on model 
outputs 

state variable a component or property of the system being modeled that, 
when aggregated with other state variables, determines 
what the system looks like 

subpopulation an internally coherent subdivision of the larger population 

vi 



transition probability a demographic model parameter describing the likelihood 
that individuals will move from one age or stage to another 

transmutation qualitative changes in the causes and mechanisms of 
response at different levels of biological organization 

variability uncertainty resulting from actual differences in the value of 
a parameter or attribute among units in a statistical 
population 

vital rates age- or stage-specific birth and death rates of individuals 
within the population (synonymous with demographic 
rates) 
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1.	 Statement of Problem and Scope of Response 
In July 2000, ORD’s Ecological Risk Assessment Support Center received a request from 
the Ecological Risk Assessment Forum (ERAF) to provide insight to issues associated 
with site-specific ecological risk assessments involving populations (Appendix).  This 
request contained questions that have frequently been asked in the context of several 
regulatory programs, including Superfund, Resource Conservation and Recovery Act 
(RCRA), pesticide registration, water quality criteria and standards development, and 
National Pollutant Discharge Elimination System (NPDES) permitting, as well as in 
efforts undertaken by natural resource trustees.  These questions include: 

•	 How should populations be defined? 

•	 What should we measure to characterize populations?  

•	 How do we make the connection between measurements made on individual 
organisms and population effects? 

•	 How can we measure and interpret effects on natural populations? 

•	 What spatial and temporal scales are appropriate when assessing risks to populations? 

Although relevant to almost all risk assessments involving populations, the problem 
reflected in these questions is particularly acute in the Superfund Remedial 
Investigation/Feasibility Study (RI/FS) and RCRA Facility Investigation/Corrective 
Measures Study (RFI/CMS) processes.  While objectives like "population effects will be 
addressed" are something to be desired and are often required, Remedial Project 
Managers (RPMs) and site managers may lack practical knowledge of the concepts, 
approaches, and methods for assessing the effects of environmental stressors on 
populations. This problem creates difficulties during the problem formulation stage of 
the assessment and often leads to uncertainty in the interpretation and use of assessment 
results in support of management decisions. 

This white paper attempts to support performance and interpretation of population-level 
risk assessments conducted during Superfund RI/FS and RCRA RFI/CMS processes by 
providing information relevant to the above questions.  Its structure and content are 
determined by the ERASC request and subsequent discussions with ERASC and 
Regional Office staff.  It does not attempt to provide specific, “how to” guidance for 
performing site-specific population-level risk assessments, and it specifically avoids 
explicit consideration of salient exposure analysis methods and approaches for risk 
characterization (i.e., for comparing and interpreting site-related population-level effects). 
Although much needed, development of such guidance is well beyond the scope of the 
ERASC support function. Rather, the focus of this white paper is strictly on issues 
relevant to characterizing effects on populations.  And although structured in a way to 

1




support site-specific risk assessment for Superfund and RCRA, it is written primarily 
from the viewpoint of population ecology.  (As this white paper was being reviewed, the 
Society of Environmental Toxicology and Chemistry (SETAC) organized an international 
workshop on population-level ecological risk assessment.  This workshop addressed 
many of the issues salient to the ERASC request, and considered other issues that may be 
germane to assessing risk to populations at Superfund and RCRA sites.  The proceedings 
of that workshop (Barnthouse et al., in review) were undergoing external peer review as 
the current document was being finalized.  Agency staff are encouraged to refer to 
Barnthouse et al. (in review) for discussions of several scientific issues, management and 
population protection issues, empirical and modeling tools, and application of the 
Agency’s Ecological Risk Assessment Guidelines to population-level ecological risk 
assessment.) 

In addition to this context-setting material, the white paper consists of seven major 
sections: Section 2 describes ways in which populations can be defined relative to site-
specific risk assessments, settling upon the concept of “assessment population” as 
described by the Risk Assessment Forum’s recently completed Generic Endpoints for 
Ecological Risk Assessments project; Section 3 enumerates the attributes that describe 
populations, and offers some opinion about which might be relevant to Superfund and 
RCRA risk assessments; Section 4 surveys mathematical and other models that can be 
used to extrapolate effects on individuals to population response, and includes 
information about using toxicity test data in such extrapolations; Section 5 describes 
techniques and issues associated with estimating population attributes, and the 
demographic parameters used to calculate them, in populations at field sites; Section 6 
identifies some of the major outstanding research needs relative to population-level risk 
assessments, and describes some of the work ORD is conducting to meet those needs; and 
Section 7 lists the extensive literature cited throughout the paper, identifying key 
references for additional description of relevant topics.  

Although reasonably complete, no attempt was made in this white paper to provide an 
exhaustive review of available concepts and methods in population ecology.  The 
information contained herein should be used as an entrée and primer to the state-of-the­
science that supports evaluation of population-level effects.  With time and significant 
additional effort, this work might form the basis of guidance for assessing risks to 
populations. Plans for accomplishing this have yet to be identified. 
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2.	 Definition of Population 
What is a population?  

This question is of central importance when establishing assessment endpoints and 
identifying analysis activities as part of a site-specific risk assessment.  Several 
definitions have been used for the term population, including general definitions used in 
classical ecology and modern biology, and operational definitions developed for specific 
purposes.  The usefulness of any of the definitions in a Superfund or RCRA risk 
assessment depends upon the context of the assessment and the risk it is attempting to 
characterize. 

2.1	 Ecological Definitions 
In the most general sense, a population is simply a collection of individuals of a single 
species that occupy some defined geographical space.  This definition works well for 
many ecological studies, as long as the rates of migration into and out of that collection of 
individuals are small relative to rates of internal replacement (i.e., reproduction).  More 
specific definitions add requirements for interbreeding and the exchange of genetic 
material.  Thus, a population can be defined on the basis of a shared gene pool.  Such a 
collection of individuals can be called a Mendelian population (Pianka, 1974), reflecting 
classical concepts of Mendelian segregation and heredity.  Mendelian populations might 
be defined on the basis of genotypes and allele frequencies, using modern techniques of 
population genetics and molecular biology.  This definition, of course, applies to 
organisms that reproduce sexually, as true asexual organisms have no opportunity for 
genetic exchange.  

Thus, the term population as used in ecological studies denotes a subset of all individuals 
of a given species that share a common area and that interbreed.  In reality, it is unlikely 
that all individuals in a given geographical space truly interbreed.  Population studies 
therefore generally rely on demarcations imposed by boundaries that constrain organism 
movement (or more specifically, genetic exchange) such that the dynamics of population 
size and structure are controlled by processes operating internally as opposed to by 
external processes such as migration.  Such boundaries can be natural (as functions of 
geography and geology) or artificial and imposed.  However, when boundaries are not 
obvious, or when they don’t appear to coincide with those of the hazardous waste site or 
operable unit/waste management unit, the question of how to define the population for the 
purposes of the assessment likely remains. 

There is a substantial literature describing the concepts and theory of population ecology 
that build from these general definitions.  Because most of this is beyond the scope of this 
white paper, we refer those interested to any modern, general ecology text. 
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2.2	 Operational Definitions - the Assessment Population Concept 
Academic definitions notwithstanding, a population needs to be defined in a manner 
meaningful to site-specific risk assessments to be useful to the Superfund and RCRA 
processes.  The U.S. EPA’s Risk Assessment Forum (RAF) has undertaken a project to 
develop generic endpoints for ecological risk assessment.  Recently finalized, this effort 
has drafted two operational definitions relevant to site-specific population-level risk 
assessments (U.S. EPA, 2003): 

Assessment Population – A group of conspecific organisms occupying a defined area 
which has been selected to serve as an assessment endpoint entity for an ecological risk 
assessment. 

Assessment Community or Assemblage – A group of organisms occupying a defined area 
which has been selected to serve as an assessment endpoint entity for an ecological risk 
assessment. The group may include all organisms in the area, in a taxon (a plant 
community or bird community), or in certain samples (macroinvertebrates in Hester-
Dendy samples). 

Reflecting the intent of the Generic Ecological Assessment Endpoints project, the 
remainder of this document relies on the assessment population concept (see Text Box 1 
for further discussion on assessment populations and communities). 

Factors to consider in problem formulation when defining the assessment population 
include various ecosystem and receptor characteristics, such as the biology and life 
history of the species, it’s range relative to the hazardous waste site or operable unit, and 
the potential for movement between subpopulations. In addition, conservation 
management and policy goals and other factors that define the decision context of the risk 
management question are important considerations.  Probably the most important 
consideration is driven by site management goals that the risk assessment is intended to 
support (see Munns et al., 2002).  These goals establish the specific risk questions to be 
asked in the assessment, the analysis approaches to answer the questions, and ultimately, 
the definition of assessment population. 
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Text Box 1. Assessment Populations and Communities
 (Prepared by Glenn Suter, ORD National Center for Environmental Assessment (NCEA), 

for the RAF generic endpoints project; U.S. EPA, 2003) 

Because the conventional ecological meaning of populations and communities presents 
problems in practice, this document introduces the terms “assessment population” and 
“assessment community” (defined in text).  Although ecological assessment endpoints 
inevitably include population properties such as abundance and production, and community 
properties such as species richness, it is difficult to delineate populations and communities in 
the field. Classically defined populations are discrete and interbreeding.  Classically defined 
communities are discrete and their constituent species are relatively consistent and interact in 
predictable ways.  Although these classical definitions have been important to the 
development of genetics, evolution, and ecology (e.g., Hardy-Weinberg equilibrium and the 
competitive exclusion principle), they have always had manifest limitations in practice.  More 
recently, ecology has become more focused on temporal dynamics, spatial patterns and 
processes, and stochasticity that belie the notion of static, independent populations. One 
example of this is metapopulation analysis which reveals that population dynamics are 
significantly determined by exchange of individuals among habitat patches or differential 
movement across a landscape that continuously varies in suitability (Hanski, 1999). 
Communities are subject to the same dynamics.  For example, the species diversity of Pacific 
coral reefs is apparently determined by the availability of recruits from other reefs within 600 
km (Bellwood and Hughes, 2001).  If the composition of coral reefs, which would appear to 
be classic discrete communities, is in fact determined by regional dynamics, there is little 
chance of delimiting discrete communities in general. 

Populations may be readily delimited if they are physically isolated within a broader species 
range (e.g., a sunfish population in a farm pond) or if the species consists of only one 
spatially discrete population (e.g., the endangered Florida panther, whose current range is 
restricted almost exclusively to southwest Florida). Otherwise, population boundaries are 
difficult to define because they are typically structured on multiple scales.  Genetic analyses, 
which are needed to define discontinuities in interbreeding frequencies, are not a practical 
option for most ecological risk assessments. 

The practical problems are even greater for communities.  Although the members of a 
population consist of a single species, it is not always clear whether a particular group of 
organisms constitutes an instance of a particular community type.  This is because the species 
composition of communities varies over space and time. 
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Text Box 1 (cont.) 

To protect properties such as population production or community species richness, it is 
necessary to develop a pragmatic solution to these problems.  An example of such a solution is 
the approach taken by the Nature Conservancy and NatureServe (formerly the Association for 
Biodiversity Information) to inventory and map biodiversity (Stein et al., 2000).  Because it is 
not feasible to define discrete populations or communities, these organizations inventory and 
map occurrences of conservation elements, which may be defined at various scales, depending 
on the elements and circumstances.  For example, a plant community occurrence may be “a 
stand or patch, or a cluster of stands or patches.”  However, an occurrence of a bird species 
would be defined quite differently.  

We propose a similar solution for GEAEs [generic ecological assessment endpoints].  For 
individual assessments, the population or community entities to be protected must be defined 
during the problem formulation stage of risk assessment.  These assessment populations and 
assessment communities should be defined in a way that is biologically reasonable, supportive 
of the decision, and pragmatic with respect to policy and legal considerations.  For example, it 
would not be reasonable to define the belted kingfishers occurring in a 20 m stream reach as 
an assessment population if that reach cannot fully support one belted kingfisher pair.  On the 
other hand, even though the kingfisher’s range is effectively continuous, it would not be 
reasonable to define the entire species as the assessment population, given that it ranges across 
nearly all of North America.  Rather, it may be reasonable to define the kingfishers on a 
watershed or a lake as an assessment population. 

Assessment populations may be defined by nonbiological considerations as well.  For 
example, for Superfund ecological risk assessments on the Department of Energy’s Oak Ridge 
Reservation, populations of large terrestrial vertebrates were delimited by the borders of the 
reservation (Suter et al., 1994).  This definition was reasonable not only because the 
Superfund site was defined as the entire reservation, but also because the reservation was large 
enough to sustain viable populations of deer, wild turkey, and bobcat, among others. 
Although the reservation is more forested than are the surrounding agricultural and residential 
lands, its borders are not impenetrable and are not ecologically distinct at all points.  However, 
the pragmatic definition proved useful and acceptable to the parties.  For similarly practical 
reasons, one might define an assessment community of benthic invertebrates in the first fully 
mixed reach of a stream receiving an effluent. 

The selection of a scale to define an assessment population or community involves a tradeoff. 
If the area is large relative to the extent of the stressor, the effects of that stressor will be 
diluted. However, if the area is small, the assessment population or community may be 
significantly affected but may seem too insignificant to prompt stakeholder concern or action 
by the decisionmaker.  Hence, appropriate spatial scales should be determined during the 
problem formulation stage for individual risk assessments, taking into consideration both the 
ecological and policy aspects of the problem; it should not be manipulated during the analysis 
to achieve a desired result. 

6




Imprecisely framed or communicated management goals can lead to confusion about how 
to conduct the assessment and interpret its results.  It probably is too vague to state the 
goal simply as “to control risks of the site to a naturally occurring population.”  Such a 
goal can open the door to a range of analysis approaches, and can result in answers that 
may not address the intent of site managers directly.  Often, this problem boils down to 
one of incomplete specification of the goal relative to spatial and scalar relationships 
between the site and the natural range of the population.  It may be useful to consider 
three general scalar situations or cases (Figure 1) as they relate to management goals, lead 
to different assessment questions, and therefore different analysis approaches: 

Case 1 – The site boundaries encompass the majority of the natural range of the 
population. 

Case 2 – The site is located within, and is substantially smaller than, the natural 
range of the population. 

Case 3 – The site is located outside the seasonal range of the population, but some 
portion of individuals utilize the site during migration. 

The simple management goal articulated above is applicable in each of these cases, and 
while it is possible (and reasonable) to assess the risks of the site to the entire population 
in each case, the relevant assessment questions and analysis approaches likely would 
differ.  Certainly, the level of adverse effect on overall population dynamics expected 
from a given site would differ across cases, with Case 1 representing the greatest risk and 
Case 3 the smallest (simply as a function of the proportion of the population exposed). 
Therefore, differences in the analysis approaches to address the simply-stated goal, and 
their outcomes, can contribute to problems in interpretation of assessment results.  

Clarification of the management goal by defining the assessment population should help 
to minimize such problems.  In situations like Cases 2 and 3, if the goal is to manage site 
risks as if the population’s range was limited to the site itself (making the analysis most 
conservative and analogous to that for Case 1), the assessment population should be 
defined as those organisms using the site.  This might be the appropriate goal when the 
health and sustainability of local subpopulations are a concern for aesthetic or other 
societal reasons.  In this situation, special consideration may need to be given in the 
analysis to migration of individuals from and to the surrounding area.  Conversely, when 
the goal is to manage risks of the local site in its broadest context, the assessment 
population might be defined as the entire natural population.  This situation might arise 
when particular advocacy groups, operating as stakeholders in the risk assessment/risk 
management process, are concerned more about overall cumulative risks to a resource 
species (for example, northern pintail ducks) than they are about local site effects.  The 
analysis in this situation should include evaluation of how localized adverse effects on 
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Figure 1.  Spatial and scalar relationships between site and
 range of population.  See text for explanation of cases. 
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individuals at the site impact the dynamics of the broader population as a whole; if severe 
effects occur within the site, the site might act as a “sink” that continually removes 
individuals from the assessment population in a manner that significantly reduces overall 
population abundance. 

In final analysis, the definition of population used within a site-specific risk assessment is 
situationally-dependent and specific to the management goal and risk problem being 
addressed.  Clear communication of how the population is defined and the assumptions 
made to support that definition will guide analysis approaches and facilitate 
understanding of assessment results and limitations by site managers and stakeholders. 
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3.	 Survey of Population-Level Attributes 
Populations and their vitality can be characterized using a number of different attributes. 
However, not all population-level attributes are useful in site-specific risk assessments; 
use of some of the more esoteric attributes is perhaps best reserved for theoretical 
exercises of population biology.  Some 16 attributes potentially useful in Superfund and 
RCRA assessments are described below, and are summarized in Table 1.  These are 
organized into four broad, and potentially overlapping, categories: abundance, population 
growth, structure, and persistence.  Much of the following has been abstracted from 
Maltby et al. (2001); additional considerations about specific attributes can be found there 
and in modern ecological texts. 

3.1	 Population Abundance 
Population size - Population size, expressed as total number of individual organisms, 
total biomass, or any other summed quantity of mass or energy, is one of the most basic 
attributes of a population.  It usually is denoted by N or N , where t equals time, although t 

when expressed as biomass or some other quantity, other symbols may be used. 

Population density - Density is simply the size of a population expressed on a per area or 
per volume basis.  It is a convenient way to describe abundance in that it facilitates 
comparisons of abundance among populations or areas.  Probably more importantly, 
however, the density of a population has implications to regulation of the population, in 
that density dependence (or compensation) can influence the demographic rates that 
determine population abundance.  Although simple in concept, the idea that density can 
affect birth and death rates (say, through intraspecific competition for limiting resources) 
can be difficult to quantify and model. 

Equilibrium abundance - The equilibrium abundance, or steady state abundance of a 
population is that population size at which inputs to the population (births, immigration) 
are exactly balanced by losses (deaths, emigration).  It is related to the concept of carrying 
capacity, the number of individuals that the resources of the environment can support 
without increasing or decreasing.  Maltby et al. (2001) suggest that changes in 
equilibrium abundance have greater significance than do changes in population size, since 
the former implies some long-term effect whereas the latter implies a temporary effect. 
Equilibrium abundance is probably best thought of as a theoretical concept in that most 
populations actually fluctuate around some average abundance as a result of 
environmental variability, demographic stochasticity, and so on.  

Production and yield - These two attributes generally relate to the amount of a 
population (in terms of biomass or numbers) that can be harvested from a population. 
Generally applied in fishery management, they are appropriate for any situation in which 
the population is managed for take.  
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TABLE 1  

Population-level Attributes for use in Ecological Risk Assessment 
(see Maltby et al., 2001 for other descriptive information) 

Attribute Measure 
Example Units of 

Measurement 

Applicability to Site-Specific 

Risk Assessment* 

Abundance 

population size 
numbers, biomass, energy 

content, etc. 
#, kg general 

population density 
population size per unit area 

or volume 
#/km , g/m 2 3 general 

equilibrium abundance 

steady-state numbers, 

biomass, energy content, 

etc. 

#, kg specific 

production/yield harvestable quantity kg, # specific 

spatial distribution 

extent of spatial occupation, 

number of habitat patches 

used 

hectares, # of 

patches 
specific 

Growth Rate 

population growth rate 
change in population size 

per unit time 
)#/)t, d#/dt general 

Structure 

age/size/stage structure 

distribution of population 

among classes of 

age/size/developmental 

stage 

#/class, kg/class general 

genetic diversity 
heterogeneity in gene 

frequency 
various indices specific 

tolerance distribution 
variability in resistence to 

stressor effects 

# affected in each 

treatment 
specific 

sex ratio 
proportion of one sex 

relative to the other 
%:& specific 

spatial distribution 

extent of spatial occupation, 

number of habitat patches 

used 

hectares, # of 

patches 
specific 
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TABLE 1 (cont.) 

Attribute Measure 
Example Units of 

Measurement 

Applicability to Site-Specific 

Risk Assessment* 

Persistence 

probability of extinction 
likelihood that population 

abundance will go to zero 
probability curves specific 

time to extinction 

time between introduction 

of stressor and population 

extinction 

years specific 

quasi-extinction 

likelihood that population 

size will fall below some 

defined abundance 

probability curves specific 

minimum viable 

population 

smallest population 

abundance that will persist 

for a fixed period of time 

#, kg specific 

stability 
resistence or resilience to 

change 
specific 

recovery time 

time between removal of 

stressor and return of 

population to equilibrium 

abundance 

years specific 

spatial distribution 

extent of spatial occupation, 

number of habitat patches 

abused 

hectares, # of 

patches 
specific 

* Information in this column reflects value judgments by the authors 
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Spatial distribution - The spatial distribution of a population might be thought of as an 
attribute related to abundance, structure, and/or persistence.  As an abundance attribute, it 
is related to population size - as the range of the population increases, its abundance also 
increases (assuming density to be constant).  As a structure attribute, it describes the 
locations of the population and its uses of various habitats in the landscape.  And as a 
persistence attribute, it can be related to the probability that a population will become 
extinct due to the local effects of anthropogenic stressors and environmental variability. 
However, few examples exist of the direct use of this attribute as an indicator of 
population level effect (but see Goldingay and Possingham, 1995). 

3.2	 Population Growth 
Population growth rate - Changes in population abundance can be characterized by 
population growth rates that express those changes as a function of time.  Population 
growth rate is generally denoted as r, the intrinsic rate of natural increase (also referred to 
as the Malthusian parameter), or as 8, the finite rate of population increase (also called 
the population multiplication rate).  These two rates are related mathematically (r = 
ln(8)), and their use to express population growth rate generally is a matter of preference, 
although the nuances of how they are calculated and how they are used in population 
models (see below) can dictate which expression to use.  Generally, r ranges from -4 to 
+4, and is symmetric around the value 0, which represents zero population growth.  Thus, 
values less than 0 indicate a declining population abundance, whereas positive values of r 
indicate a growing population.  8, on the other hand, ranges from 0 to +4, with a value of 
unity representing zero population growth, values less than unity a declining population, 
and values greater than unity a growing population.  Thus, at r = 0 and 8 = 1, births and 
immigration into the population are exactly balanced by deaths and emigration out of the 
population. 

In addition to characterizing changes in abundance through time, population growth rate 
can be thought of as an attribute related to population fitness (Leslie, 1945; Demetrius, 
1975; reviewed in Caswell, 2001).  That is, in a theoretical sense, populations with 
genotypes more suited to a particular environment should have greater rates of population 
growth than do those less well suited, and as a result, the better suited (i.e., more “fit”) 
population will out compete all others (all else being equal).  Conversely, the degree to 
which population growth rate is adversely affected by environmental conditions (e.g., 
contaminant loadings) is a measure of risk to the population.  In extreme cases, 
population growth rate may be reduced to such an extent that the population is projected 
to go (at least locally) extinct.  Less radical reductions might increase the risk of 
extinction when such impacts occur in conjunction with other environmental insults or 
with stochastic fluctuations in controlling processes. 

Population growth rate, and the extent to which it is impacted by stressors, is therefore of 
central importance in ecological and evolutionary theory.  It is generally acknowledged to 
be the key variable linking individual effects to populations (Sibly, 1999; Calow et al., 
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1997), is a fundamental underpinning to population regulation (Sinclair, 1996), and 
underlies most fisheries and wildlife management concepts and approaches (Sutherland 
and Reynolds, 1998).  However, the use of population growth rate in ecotoxicology has 
been limited (Sibly, 1996), despite its usefulness as a measure of stress having been 
demonstrated some 40 years ago (Marshall, 1962).  As with changes in all population-
level attributes, care should be taken in the interpretation of differences in population 
growth rate potentially attributable to a hazardous waste site, since factors other than 
toxic chemicals can and do influence this attribute.

 3.3	 Population Structure 
Age/size/stage structure - Population structure can be characterized by the relative 
distributions of individuals (or biomass) among classes of age, individual size, and 
developmental stage.  These classes can be delimited on a fairly arbitrary basis (such as 
years in calendar time), or can be tightly linked to the biology of the species (e.g., eggs, 
larvae, pupae, adults).  In general, the distribution of individuals among classes is an 
indication of the status of the population.  In populations that are growing rapidly, the 
distribution of individuals typically is skewed towards the younger classes.  The opposite 
may be true for populations experiencing reductions in overall size.  To illustrate this 
idea, human populations in developing countries that are experiencing relatively rapid 
population growth generally have lots of young and few old adults, whereas the 
distribution among ages in industrialized countries with more stable population sizes 
tends to be more even (Thomlinson, 1965).  

Anthropogenic stressors can affect the age or size structure of a population by modifying 
the processes of births and deaths.  Depending upon how these effects manifest, the 
age/size/stage structure can shift from pre-exposed conditions in ways that do not map 
neatly onto the generalization above.  If, for example, the susceptibility of individuals to a 
particular chemical increases with age, the resulting distribution might still be skewed 
towards younger age classes, even though a population-level effect is occurring.  Thus, 
caution is needed when interpreting age/size/stage distributions.  However, a comparison 
of assessment population structure with that of a pre-exposed or reference population 
would still indicate an effect. 

Genetic diversity - The genetic diversity of a population may be related to its fitness (i.e., 
its ability to persist through time).  Population biology theory suggests that populations 
with greater genetic heterogeneity in fitness-related genes should be able to withstand a 
wider range of environmental conditions (including the presence of anthropogenic 
stressors) than can those with less diversity.  Thus, genetic diversity can be an indicator of 
susceptibility to future environmental impact.  It also can be an indicator of current and 
past stress, because such stress can reduce genetic heterogeneity when population size 
decreases rapidly in response to disturbance (the so-called bottleneck effect; Weins, 
1977).  Chronic or multiple episodic stressors may cause multiple bottlenecks, 
magnifying the reduction in genetic diversity, and there is mounting evidence that non­
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migratory populations at sites that have experienced pollution or other forms of 
disturbance have reduced genetic diversity (Lavie and Nevo, 1982; Lavie et al., 1984; 
Nevo et al., 1986; Benton and Guttman, 1990).  Reduced genetic diversity can expose the 
population to greater risks of adverse impact from other anthropogenic stressors, disease, 
and environmental stochasticity, and can cause detrimental changes in birth and death 
rates (inbreeding depression).  The importance of genetic diversity in fitness-related genes 
to the persistence of wild and captive populations has been recognized by conservation 
biologists and is incorporated into management strategies for the preservation of 
threatened and endangered species.  It should be noted that pollution stress can also 
increase genetic diversity through selection for tolerant genotypes in populations that still 
contain pollution-sensitive genotypes, but interesting, that mechanism would produce a 
pattern consistent with the general heterogeneity/persistence argument (i.e., increased 
heterogeneity and increased likelihood of persistence). 

Tolerance distribution - Basically a concept of ecotoxicology, the distributions of 
tolerances (or conversely, susceptibilities) to chemical stressors is directly related to the 
previous attribute in that tolerance is a phenotypic measure of the underlying genetics.  As 
with shifts in genetic diversity, temporal or spatial changes in tolerance distribution of the 
assessment population relative to pre-exposed or reference populations can provide an 
indication of population-level effects. 

Sex ratio - The sex ratio of a population describes the relative abundances of the two 
sexes in sexually reproducing dioecious populations (and sometimes seasonally 
parthenogenetic species, such as daphnids, rotifers, and aphids).  Substantial theory exists 
concerning the evolutionary consequences of skewed sex ratios in populations (Maynard 
Smith, 1978), although the use of this attribute as an indicator of population-level effects 
is limited primarily to quantifying differential effects among the sexes.  However, it also 
can provide information regarding the mechanisms of such effect.  For example, certain 
chemicals have been demonstrated to interfere with hormonal systems controlling sexual 
differentiation in certain birds (Fry and Toone, 1981), mammals (Jones and Hajek, 1995; 
Gray and Kelce, 1996), reptiles and amphibians (Bergeron et al., 1994; Guillette et al., 
1994, 1995), and fish (Gimeno et al., 1996; Jobling et al., 1996; Gray and Metcalfe, 
1997).  In such cases, ecological theory (if not empirical evidence) suggests that a change 
in sex ratio affects population dynamics by influencing total reproductive output of the 
population and by altering frequencies of encounter between the sexes during the 
reproductive season (Kalmus and Smith, 1960; Hamilton, 1967).  Stressor-induced 
imposex, such as that reported for certain invertebrates (Gibbs and Bryan, 1986; Moore 
and Stevenson, 1991), should have population-level ramifications similar to changes in 
sex ratio. Thus, sex ratio is a potentially useful attribute in descriptions of the effects of 
stressors, particularly in situations where such effects might be diagnostic. 
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3.4	 Population Persistence 
Probability of extinction and time to extinction - Probability of extinction and time to 
extinction are related measures of population persistence.  Probability of extinction as an 
attribute describes the likelihood that population abundance will go to zero under defined 
demographic, genetic, and environmental conditions.  Time to extinction can be derived 
directly from the probability of extinction (Foley, 1994; Gillman and Hails, 1997). 
Examples of the use of these attributes are described by Harrsion et al. (1991) and Foley 
(1994) for butterflies, and Gillman and Silvertown (1997) for plants.  Snell and Serra 
(2000) recently suggested that probabilities of extinction can be used to interpret the 
ecological significance of toxicity test results.  Because they are difficult to quantify in 
natural populations, and are only slightly less so in laboratory experiments (due to the 
replication required), estimates of these attributes are best made using modeling and 
simulation techniques.  

Quasi-extinction - Related to probability of extinction is quasi-extinction, defined as the 
probability that the population will fall below some critical abundance (Ginzburg et al., 
1982). Critical abundance can be thought of in terms of specific population densities 
below which adverse effects are known, or suspected to occur.  For example, critical 
densities of puma may exist below which individuals are no longer able to find mates for 
reproduction.  Similarly, critical population sizes of commercially-harvested shellfish 
might be identified (through, say, a cost-benefit analysis) below which harvest is no 
longer economically feasible.  As with probability of extinction, quasi-extinction is best 
analyzed using modeling and simulation techniques.  Maltby et al. (2001) describe a 
method by which the quasi-extinction probability curves that result from such analyses 
could be used to evaluate the ecological significance of estimated risks. 

Minimum viable population - Also related to probability of extinction is the concept of 
minimum viable population (MVP), defined as the smallest population abundance that 
will persist for some specified length of time with a given probability.  Based on the 
expectation of a negative relationship between absolute population abundance and the 
likelihood of extinction (due to the effects of stressors or environmental variability), it, 
like the previous two attributes of persistence, is best quantified using modeling and 
simulation techniques.  Examples of MVP as an attribute are given by Samson et al. 
(1985), Shaffer and Samson (1985), and Goldingay and Possingham (1995). 

Stability - Broadly defined, population stability is the tendency of a population to remain 
at or near its equilibrium abundance when disturbed (Haberman, 1977; see Lewontin 
(1969) and May (1973) for discussions of the various meanings of stability in an 
ecological context).  A stable population is one that “resists” adverse impacts due to 
disturbance, or one that recovers to its equilibrium abundance once disturbed. 
Destabilization of population dynamics can lead to large changes in abundance, thereby 
increasing the probability of extirpation (as well as disruption of community and 
ecosystem structure and function).  Stability (in addition to population abundance itself) 
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also is inversely related to the probability that the population will be driven to local 
extinction as a result of stressor exposure.  Because it reflects the resilience of a 
population following disturbance, stability may be more important to population 
sustainability than is population growth rate.  Unfortunately, stability is very difficult to 
measure directly (Connell and Sousa, 1983), although it can be evaluated using models. 
Because of this, stability as an attribute for population-level ecological risk assessment 
likely is limited. 

Recovery time - When a population is disturbed from its equilibrium or pre-exposed 
abundance, the time it takes to return to that abundance is called its recovery time. 
Recovery time is a highly attractive population-level attribute in that it is readily 
understood and appreciated by regulators, managers, and the public.  In part because of 
this, recovery has been advocated in the consideration of adversity of effect by the 
Agency (U.S. EPA, 1998).  However, several conceptual and methodology issues can 
confound its use in site-specific risk assessments.  Because it may be unrealistic to expect 
a population to return exactly to its predisturbed abundance, criteria must be established 
to define when recovery has occurred (or is sufficient).  These might include aspects of 
absolute population abundance (e.g., 90% of original population size; Sherratt et al., 
1999), natural variability in that abundance (e.g., within two standard deviations of long-
term mean abundance; Weins, 1996), its abundance relative to a reference or control 
population (e.g., 90% of reference population density; Thacker and Jepson, 1993), or 
perhaps its population growth rate relative to that of a reference or control population 
(e.g., 90% of the growth rate of an unaffected population; Kareiva et al., 1996).  

3.5	 Considering Attribute Selection 
Which attributes should be evaluated to characterize population-level effects at Superfund 
and RCRA sites?  Unfortunately, there likely is no one single best answer to this 
question, and, as is the case with defining the assessment population (the “ecological 
entity” element of the operational definition of the assessment endpoint; sensu U.S. EPA, 
1998), selection of the population attribute (the “characteristic of the entity” in definition 
of the assessment endpoint) should depend on the goals of the assessment.  However, 
consideration of several criteria should help guide attribute selection in any given risk 
assessment. Four of these would be: the relevance of the attribute to the assessment 
population, the susceptibility of the attribute to contaminants at the site, its relevance to 
stakeholders and the risk management and communication processes, and the tractability 
(ease) of its measurement.  In most regards, these criteria mirror the general guidance 
provided by U.S. EPA, (1998) and program-specific documentation.  

There are few, if any, broad ecological considerations to help evaluate the importance of 
population attributes to the assessment population generically.  However, some attributes 
may have more meaning than others.  For example, sex ratio has no meaning for species 
displaying obligatory parthenogenesis, whereas other attributes reflecting population 
structure (e.g., genetic diversity) may be critically important.  From an evolutionary point 
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of view (admittedly not a typical view of site-specific risk assessments), attributes 
reflecting population persistence likely have more meaning than those reflecting 
abundance, growth rate, or structure, but have less meaning in the context of shorter-term 
ecological phenomena (e.g., role in community dynamics, nutrient cycling).  Part of the 
difficulty when evaluating this criterion is a lack of understanding and consensus as to the 
definition of a “healthy” population. 

There also are no a priori reasons to suspect certain attributes to be more susceptible to 
chemical stressors than others.  Plausible biological mechanisms exist to link effects on 
any particular attribute to chemical exposure, oft times in interrelated fashion.  For 
example, a chemical linked to differential mortality or reproduction may affect population 
structure as measured by age structure or genetic diversity, which in turn may be reflected 
directly in abundance, directly in growth rate, or indirectly in persistence as a function of 
changing resistence to additional stressors.  Despite this, understanding biological 
mechanisms may help to identify which attributes would respond more quickly or signal 
the effect more strongly. 

From a stakeholder and risk communication perspective, changes in abundance and 
persistence arguably are more understandable and obvious effects than are attributes of 
growth rate or structure.  And certain attributes are more easily measured (e.g., those 
reflecting abundance) than others (e.g., stability).  But in the end, there is no one “best” 
attribute for evaluation in a population-level risk assessment.  As with definition of the 
assessment population (Section 2), selection of the population attribute is situationally­
dependent and specific to the management goal and risk problem being addressed.  Clear 
communication of why any particular attribute is selected will facilitate understanding of 
assessment results and limitations by site managers and stakeholders. 

3.6	 Ecological Significance of Responses 
The ability to measure or quantify population-level effects is only part of the problem in 
site-specific risk assessment – changes in population attributes due to exposure to 
stressors must be interpreted to understand the significance of estimated risks. 
Appreciation of this significance is crucial to developing, executing, and interpreting 
ecological risk assessments.  A question central to this issue is: “What do the magnitude 
and direction of observed attribute response mean from an ecological standpoint?”.  This 
question can be restated simply as: “So what?”.  Answering this question is not 
straightforward, and presents complex challenges that have yet to be overcome by 
science.  The following material is intended only to be an introduction to this issue; 
considerable work remains to advance the theory and practice of population ecology to 
the point where the ecological significance question can be answered satisfactorily. 

Except in extreme situations (e.g., extinction), ecological significance is difficult to 
establish for at least four reasons.  First, all ecological systems, including populations, 
display natural variability: population abundances fluctuate (perhaps around some steady­
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state abundance) due to environmental and demographic stochasticity, age structures 
change as reflections of year-class strengths, sex ratios vary randomly (or otherwise) 
around values of 1:1, and so on.  Such variation has been called process variation. The 
challenge is to distinguish changes caused by anthropogenic stressors against this 
background of natural variability.  Historically, inferential statistics has been used to 
make such distinctions.  This has lead to application in a number of programs of 
seemingly arbitrary “bright lines” that form the basis of regulatory decisions (Chapman et 
al., 2002). Yet, statistical differences (the detection of which are functions of the test and 
sampling designs, natural variation, and the magnitude of “treatment” differences) do not 
necessarily equate with changes that are important ecologically.  Establishing ecological 
significance is also hindered for a second reason: ecological systems typically vary in 
near-continuous fashion, such that in the absence of thresholds or obvious breakpoints, 
the importance of subtle changes is difficult to establish relative to less subtle changes.  A 
third reason confounding interpretation of ecological significance is the existence of 
compensatory mechanisms, such as homeostatic acclimation of individuals, genetic 
adaptation, and density dependence in vital rates and migration, that can ameliorate 
adverse effects over the short or long term.  Finally, there are few (if any) “values” that 
ecological systems place on themselves.  In the absence of such values, ecological change 
is interpreted in the context of societal desires, preferences, needs, and policies. 

In 1994, the U.S. EPA’s RAF published an issue paper on the general topic of ecological 
significance as it pertains to risk assessment (Harwell et al., 1994).  That paper offers a 
definition of ecological significance consisting of components that reflect both ecological 
structure and function, and societal values.  Paraphrased from Harwell et al. (1994), an 
ecologically significant change is one that is important to the structure, function, or health 
of the system, exceeds natural variation, and is of sufficient type, intensity, extent, or 
duration to be important to society.  Although their definition was offered in the context 
of the significance of estimated risk, it also can be applied to the significance of changes 
measured in population attributes themselves.  Harwell et al. (1994) offer a tiered 
ecological significance framework or road map and general criteria for establishing 
ecological significance that include consideration of the nature and variability of the 
attribute, the temporal and spatial scales of effect, the magnitude and reversibility of the 
effect, and other considerations.  They also suggest how issues of ecological significance 
can be used to support decision-making.  Given our current state of understanding of 
population ecology, and in the absence of objective, quantifiable criteria against which 
the importance of observed or predicted change in population-level attributes can be 
judged, establishing ecological significance will continue to rely on sound professional 
judgement reflecting the considerations offered by Harwell et al. (1994) and the work 
cited therein.  General guidance for evaluating ecological significance is given in U.S. 
EPA (1998). 

Although discussed in terms of changes measured or predicted in population-level 
attributes themselves, questions of ecological significance are also cogent from the 
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standpoint of predicting population-level effects from those measured in individuals. 
Methods for linking effects on individuals to population response are described in the 
next section. 
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4.	 Linking Effects on Individuals to Population Response 
Most population-level attributes, including abundance attributes, are determined by the 
vital rates (births, deaths) of individuals within the population, as well as the rates of 
migration into and out of the population.  These four rates - births, deaths, immigration, 
and emigration - are necessary and sufficient to describe changes in population numbers 
through time, although additional information (e.g., individual growth rates, weight-age 
relationships) may be needed for some expressions of abundance (e.g., biomass).  Any 
factors that influence these processes, either directly or indirectly, can have population-
level consequences.  Linkages between effects on vital rates and those on population 
dynamics, or between effects on the biochemical and physiological processes that 
determine vital rates and effects on populations, can either be established empirically by 
correlating responses at different levels of biological organization, or by determining 
causal relationships and constructing mechanistic models (see Maltby et al., 2001 for a 
conceptualization and discussion of these linkages).  Thus, with some degree of 
understanding of how changes in vital rates manifest into population consequences (i.e., 
mechanistic understanding), effects measured at the level of individuals can be 
extrapolated to expected population-level responses.  Extrapolation of this latter type is 
usually accomplished using models that integrate the effects of stressors on survivorship 
and fecundity. 

This section focuses primarily on modeling approaches that can be used to assess risks to 
populations. Its content is derived primarily from Munns (1988) and Maltby et al. (2001). 
Although their description is beyond the intended scope of this white paper, empirical 
approaches (including extrapolation among species as well as among attributes) have 
been developed that can be useful for site-specific risk assessments [see Munns (2002) 
for a general discussion of extrapolation issues in risk assessment]. 

4.1	 About Models 
In his broad discussion of ecological theory and models, Levins (1968) describes a 
triangular scheme for ordinating ecological models that has the attributes of generality, 
realism, and accuracy (originally precision1) as its apices (Figure 2).  In this context, 
general models are those that tend to be simple and apply to a broad range of situations, 
and therefore are appropriate for exploring relationships among model parameters and 
outputs.  Realistic models attempt to account for known relationships and processes in 
ecological systems, and as a result can be relatively complex.  Accurate models are 
constructed with an objective to minimize numerical differences between model outputs 
and actual ecological dynamics.  Their case-specific nature limits their use in broader 
applications. 

1
Use of the terms accuracy and precision in this white paper follows their connotations in the field of 

inferential statistics.  Accuracy refers to how well an estimate matches the true value of a particular parameter or 

value being estimated (in this case, population abundance), and typically is quantified using some measure of bias. 

Precision refers to the amount of variation among multiple estimates made of the parameter, and usually is expressed 

using some measure of scatter. 
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Figure 2.  Ordination scheme for ecological 
models (modified from Levins, 1968). 
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Levins (1968) pointed out that any two of these attributes can be maximized at one time, 
but that it is not possible to maximize all three with a single model.  Typically, models 
developed for use in applied situations (e.g., conservation biology) are intended to give 
realistic, accurate answers; model parameterization depends upon the actual conditions of 
the situation being modeled (e.g., the specific life history and demographic characteristics 
of the species of interest).  Increased generality can be achieved, for example, by 
expanding the range of values assumed for particular model coefficients, or by assuming 
broad functional relationships among parameters, but such actions necessarily reduce the 
accuracy achievable in any particular application.  Model accuracy can be enhanced by 
increasing the specificity of model parameterization relative to a particular species or 
environmental situation. 

With this ordination scheme in mind, ecological models, and specifically population 
models, can be used in site-specific risk assessments for at least three, arguably different 
purposes. The first is to detect (and perhaps diagnose the causes of) previous or ongoing 
adverse effects on population dynamics.  Such uses typically require sufficient high 
quality data to be able to detect changes in population abundance (methods for which are 
described in the next section), and to relate those changes to variation in chemical 
exposure, habitat quality, or other forms of disturbance.  The second purpose is to project 
the consequences of a given set of environmental conditions (or changes in conditions) to 
the dynamics of a population.  Here the intent may be to evaluate the ramifications of 
particular environmental management decisions as determined by trends in population 
numbers or changes in extinction probabilities.  The final purpose is to forecast or predict 
the future behavior of the population based on a understanding of environmental 
variability and the dynamic interactions of density and biological processes (e.g., births 
and deaths).  [The distinction between projection and forecasting used here follows that 
given by Caswell (1986, 2001).]  This last use of population models may produce the 
most accurate results, although the generality of the analysis will suffer.  It requires 
knowledge of how the major environmental and biological determinants of population 
dynamics (including such things as climate, prey availability, etc.) will themselves change 
through time (or, in a probabilistic sense, their future distributions), and sufficiently 
detailed understanding of the mechanisms through which these changes affect the 
population. Also required is understanding of how population density itself influences 
births, deaths, and migration through density dependence of these rates.  Except in rare 
situations, such knowledge and understanding is difficult to obtain. 

Prior to description of specific model formulations, it may be instructive to consider the 
assumptions and potential limitations of different modeling approaches.  As a first cut, 
population models (indeed, almost all mathematical models) can be either deterministic 
or stochastic. Deterministic models treat all internal relationships (processes, 
mechanisms, transfer functions, etc.) as nonrandom; that is, they assume no random 
variation in how one state variable (in its simplest definition, a component or property of 
the system being modeled that, when aggregated with other state variables, determines 
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what the system looks like) relates to another.  This is not to say that one state variable 
cannot be a function of another; rather that even those functions contain no randomness. 
Because of this, the outputs of deterministic models are determined completely by their 
initial starting conditions - no matter how many times the model is run, the output will be 
the same as long as the values of model parameters are not changed by the user. 
Deterministic models sometimes can be solved analytically.  Stochastic models, on the 
other hand, assume that at least some of the internal relationships have a random 
component. Their outputs are only partially dependent on initial starting conditions, and 
the exact values of output generally cannot be predicted in advance (although they might 
be bounded).  Stochastic modeling approaches reflect the randomness inherent in 
biological and environmental processes, and usually assume specific probability 
distributions for the values that state variables can take.  Stochastic models cannot be 
solved analytically except under certain conditions (such as when parameters are 
distributed normally), and Monte Carlo and other simulation techniques have been 
developed to support analysis of these models (see, for example, U.S. EPA, 1996). 

Models (and their variables) can also differ in how they treat time.  Discrete time models 
assume time to be “jumpy”, that is, time is handled as a series of blocks (seconds, days, 
years, etc.), with the values of model variables being updated only once during each block 
or time step.  Discrete time models often are represented by difference equations.  In 
contrast, continuous models assume time to flow continuously, such that model variables 
take on the value appropriate to any instant in time.  Continuous time models can take the 
form of differential equations with respect to time. 

Similar to how they treat time, models can also assume that their variables (and therefore 
the state of the model system itself) are either discrete or continuous.  Discrete state 
models (and their variables) can take on values selected from a finite set of possible 
alternatives only.  That is, parameter and model outputs are characterized by 
discontinuous changes in value; they can be X , X , or X , but not something between X11 2 3

and X .  2 Continuous state models include variables that can take on any value (perhaps 
within some bounded range), and outputs are characterized by smooth changes in value. 

Any particular model can, of course, assume a combination of the three approaches 
above. For example, a modeling approach might assume stochasticity in the values that 
its discrete state variables take on through continuous time.  The approach taken in model 
formulation in part determines it strengths and limitations for use in site-specific risk 
assessments. Together with other considerations, these issues are explored to support of 
model selection in this section. 

4.2	 Extrapolation Models 
A plethora of models useful in describing population dynamics has evolved since the 
early demographic investigations of Malthus (1798) and his contemporaries.  The 
following presentation is intended to provide a cursory overview of the types and classes 
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of population models potentially useful in site-specific risk assessments.  Both general 
constructs, and those developed specifically for analysis of fishery production, are given. 
More detailed reviews of the fishery models are given in Ricker (1975) and Sissenwine et 
al. (1979). Vaughan et al. (1984) discuss the utility of fishery models to assessing the 
effects of stress on fish populations.  The discussion of fishery approaches given here is 
based in part upon the Vaughan et al.’s treatment of such models.  Barnthouse et al. 
(1986) review population models for use in risk assessment, and Barnthouse (1992) 
provides additional information about individual-based models.  Emlen (1989) provides a 
then-state-of-the-art review of use of population models in ecological risk assessment 
focusing on terrestrial species, and Emlen and Pikitch (1989) offer views on how to 
approach structuring population modeling exercises to support risk assessment. 
Barnthouse (1993) describes modeling approaches for evaluating population-level effects 
in the context of ecological risk assessment generally, and Barnthouse (1996) reviews 
population modeling approaches with particular reference to pesticide risk assessments. 
Pastorok et al. (2002) discuss the use of ecological models, including some population 
models, to assess risks of chemicals.  Most recently, Munns et al. (in review) describe 
modeling approaches to population-level risk assessment, offering sidebar examples of 
model applications in a variety of regulatory contexts. 

The general forms taken by models in each class, their equilibrium solutions (where 
appropriate), important assumptions, and data requirements necessary for 
parameterization, are briefly discussed.  Most of the approaches described here do not 
include explicit terms for contaminant effects in the general form of the model.  In these 
cases, impacts important to the dynamics of the population may be modeled through 
variation in rates and coefficients associated with fecundity, mortality, and in the case of 
yield-type models, with individual growth rate.  When treated in this manner, 
contaminants are viewed no differently than other sources of variation in these vital rates. 

General, heuristic models — Several models have been developed which are of heuristic 
value in the general description of population growth.  Two such models are those 
describing simple exponential growth: 

dN/dt = rN Eq. 1 

and logistic growth (Verhulst, 1838): 

dN/dt = rN (1- N/K) Eq. 2 

where N is population size at time t, r is the intrinsic population growth rate [= birth rate 
(b) - death rate (d)], and K is the so-called carrying capacity of the environment. 
Heuristic models typically are of limited value in field settings (except for short periods 
of time following new species introductions), and therefore will not be discussed further. 
However, several classes of models which may be useful in site-specific risk assessments 
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have terms which take on the forms of Eqs. 1or 2.  An investigation of the behavior of 
these models may be found in May (1976). 

Demographic models - Many models used in the analysis of population dynamics 
incorporate age-specific demographic information.  A relatively simple formulation 
which has been popular in the investigation of contaminant effects on population growth 
rate (e.g., Daniels and Allan, 1981; Allan and Daniels, 1982; Gentile et al., 1982, 1983) is 
the stable age equation (Lotka, 1925), or so-called life table approach.  Age-specific 
schedules of fecundity and survivorship are the sole data requirements for this model, 
information that is easily obtained in laboratory experiments or field studies.  The discrete 
version of this model (Leslie, 1948; Michod and Anderson, 1980; Caswell, 2001, p. 197) 
takes the form: 

1 = E8-(x + 1) l m Eq. 3x x 

where 8 is the geometric rate of population increase, lx  is the probability of an individual 

surviving to age x, and mx  is the fecundity of an individual of age x.  8 is solved for either 

in an iterative fashion or through algebraic manipulation of the sum of l m . 8 is relatedx x 

to the more commonly utilized (incorrectly so in these applications; Michod and 
Anderson, 1980) population growth rate (r) by: 

8 = er Eq. 4 

Some important assumptions of this model are that: 1) age-specific schedules of fecundity 
and survivorship are independent of density (i.e., the population grows exponentially); 2) 
fecundity and survivorship do not change with time; and 3) fecundity and survivorship 
are constant within each age class.  With the additional assumption of no net migration 
into or out of the population, 

N  =  8N Eq. 5t t-1 

Thus, while zero population growth occurs when r = 0 in Eq. 1, no growth occurs in Eq. 3 
when 8 = 1. Projected impacts of environmental stressors could be examined using the 

stable age equation through modifications in values of lx and mx. 

A class of models frequently used in both fisheries and nonfisheries applications are the 
so-called Leslie population projection matrix models (Lewis, 1942; Leslie, 1945, 1948). 
As with the stable age equation, these models incorporate age-specific schedules of 
fecundity and survivorship to make projections of population dynamics given specified 
environmental conditions.  Unlike that model, however, discrete time steps are 
incorporated explicitly into projection matrix models, allowing simulation of population 
dynamics through time.  The sizes, n, of m individual age classes at time t are described 
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by a series of difference equations as: 

n =  E(n  f ) 0,t x,t-1 x 

n = n  P1,t 0,t-1 1 

. 

. Eq. 6 

. 
nm-1,t = nm-2,t-1 Pm-1 

where f  is the fecundity of age class x and P  is the probability of survival of females x x

from age class x-1 to class x.  In matrix notation: 

nt = M n t-1 Eq. 7 

where nt and nt-1  are vectors of age class sizes, and M is the Leslie projection matrix 
consisting of fecundities across the top row, survivorship probabilities down the first 
subdiagonal, and zeros elsewhere.  In addition to describing total population size and the 
distribution of individual ages through time, Eq. 7 can be solved directly for its 
characteristic root, 8, the geometric rate of population increase: 

*M - 8I* = 0 Eq. 8 

where I is the identity matrix of M. Some important assumptions associated with the 
basic model are that: 1) schedules of fecundity and survivorship are independent of 
density and time; 2) fecundity and survivorship are constant within each age class; and 3) 
no net migration occurs. With these assumptions, population projection matrix models 
behave similarly to Eq. l: that is, growth is exponential (once a stability in age distribution 
has been reached). The impacts of environmental stressors can be projected in a manner 
similar to that used in the stable age equation: modifications can occur to fecundity and 
survivorship rates in the projection matrix.  Projection matrix models have been 
generalized to stage-specific models, where stages can be defined as developmental 
stages, length classes, weight classes, or any other stage appropriate to a particular species 
(Lefkovitch, 1965).  Changes from one stage to another are accomplished by non-zero 
transition or growth probabilities in M such that individuals can remain in the current 
class through time (i.e., no individual growth), or can move to other classes as dictated by 
individual growth and development rates instead of time alone [see Werner and Caswell 
(1977) and Caswell (1982, 2001) for further discussion of stage-classified matrix 
models].  With this modification, contaminant effects may also be modeled as changes in 
these transition probabilities. 

The use of projection matrix models to characterize the adverse effects of chemical 
stressors on population dynamics has increased over the last decade or so, examples of 
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which can be used to illustrate this approach.  For instance, Pesch et al. (1991) evaluated 
the effects of contaminated dredged material on population growth rates of the marine 
infaunal polychaete, Neanthes arenaceodentata.  They used an experimental design 
consisting of replicate exposures to four sediment treatments to obtain estimates of vital 
rates for each of nine 18-day ages classes.  The resulting schedules of survivorship and 
fecundity were used as input to an age-classified deterministic matrix model to calculate 
treatment-specific estimates of 8, the finite rate of population increase.  Population 
growth rates were found to decrease with increasing concentrations of the contaminated 
sediment, a relationship that compared favorably (albeit qualitatively) with observations 
made at an experimental disposal site (Pesch et al., 1991).  

In an evaluation of potential adverse impacts associated with offshore disposal of 
municipal sewage sludge, Munns et al. (1996) conducted a prospective assessment of risk 
to populations of marine copepod that used an age-classified projection matrix model, the 
results of standard toxicity tests of the sewage sludge, and exposure models developed to 
describe sludge concentrations in the water column around and downstream of the 
disposal site. They simulated passive advection of the population with prevailing 
currents through the sludge exposure field, adjusting vital rates on a daily time step in 
accordance to the concentration of sludge encountered by the population on each day. 
Environmental stochasticity was simulated by allowing concentrations in the exposure 
field to vary lognormally.  Munns et al. (1996) expressed risk estimates as a 3­
dimensional response surface defined by axes of sludge loading rate, environmental 
stochasticity, and population growth rate with the intent of providing regulators with the 
information needed to select acceptable levels of disposal activity.  Similar population-
level assessments were conducted for relatively sedentary tilefish, Lopholatilus 
chamaeleonticeps, and the migratory Atlantic bluefin tuna, Thunnus thynnus (Munns, 
1988). 

Two examples of the use of projection matrix models relate to Superfund sites.  First, 
Munns et al. (1997) developed a stage-classified model to describe the population-level 
effects of exposure to polychlorinated biphenyl (PCB)-contaminated sediment on the 
estuarine fish, Fundulus heteroclitus, residing at the New Bedford Harbor (MA) 
Superfund site. Using data obtained from field-collected fish, they developed exposure-
response curves relating population growth rate to PCB liver burdens.  In that same paper, 
Munns et al. developed a similar relationship for total dioxin body burden for fish fed 
contaminated diets.  In support of an RI/FS at the Portsmouth Naval Shipyard (ME), 
Gleason et al., (2000) modeled the population responses of the purple sea urchin, Arbacia 
punctulata, resulting from exposure to lead, a primary contaminant of concern in the 
estuarine waters surrounding the Shipyard.  They used standard bioassay data collected 
during site investigations to parameterize a stage-classified model designed explicitly to 
reflect the life history stages and vital rates represented by the bioassays.  The population 

28




growth rate exposure-response relationship resulting from this effort was used 
subsequently in a weight-of-evidence characterization of ecological risks at the site (U.S. 
Navy, 2000; Johnston et al., 2002). 

Three recent examples illustrate the development of projection matrix models for the 
expressed use of interpreting the ecological significance of toxicity test results as 
indicators of population-level effects.  Reflecting the empirical approach mentioned 
earlier for extrapolating individual-level attributes to population response, Kuhn et al. 
(2000) used data from life cycle chronic tests to project the effects of some 20 chemicals 
on the mysid shrimp, Americamysis (formerly Mysidopsis) bahia, population dynamics. 
They then compared the concentration-based toxicity test statistics derived from standard 
96-hr acute tests, 7-day rapid chronic tests, and the full life cycle tests for each of these 
chemicals to the chemical concentration projected by the model to represent the threshold 
of adverse population effects (denoted C*) using correlation analyses.  Several strong 
correlations were observed, including (surprisingly) between C* and the acute LC50. 
Kuhn et al. (2001) subsequently demonstrated that the age-classified model, 
parameterized for the chemical nonylphenol using standard toxicity test data, projected 
the dynamics of A. bahia reasonably well in a multigenerational experiment conducted in 
the laboratory.  [As an aside, these data have been used by Maltby et al. (2001) to 
evaluate model formulations other than the original projection matrix model.]  Most 
recently, Kuhn et al. (2002) have developed a projection matrix model to assist in 
understanding the ecological significance of standard toxicity test results for the estuarine 
amphipod, Ampelisca abdita. 

Many other examples of the use of projection matrix models in the fields of 
ecotoxicology, fishery and game management, and conservation management can be 
found in the scientific literature.  Given the ease with which the responses of individuals, 
measured in toxicological studies, can be linked to population-level attributes, and their 
relative flexibility to accommodate a wide variety of populations and environmental 
situations, projection matrix models appear to hold much promise for site-specific risk 
assessment.  Further, analytical methods have been developed to evaluate systematically 
the relative sensitivity of 8 to proportional changes in the transition probabilities 
(demographic rates) of the projection matrix.  Called elasticity analysis (Caswell et al., 
1984; de Kroon et al., 1986), this technique can be used to identify which demographic 
parameters influence population growth rate the most when changed, thereby focusing 
attention on those parameters (say, through targeted toxicity tests) in population-level risk 
assessments. Caswell (2001) describes matrix models in great detail, and discusses other 
forms of structured population models (discrete-state delay-differential equations in 
continuous time, continuous-state integrodifference equations in discrete time, and 
continuous-state partial difference equations in continuous time), the use of which in 
Superfund and RCRA site-specific risk assessments likely is limited at present. 
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Fishery models - This broad class of models, developed primarily for use in fisheries 
management, typically are framed in terms of biomass or numbers yield to the fishery. 
For example, surplus production models incorporate terms of biomass production and 
fishing effort to describe changes in population biomass.  As opposed to the approaches 
described earlier, knowledge of the demographic characteristics of the population is not 
required to make this assessment; time series of catch biomass and fishing effort are the 
sole data requirements. The general form of such models is: 

dB/dt = B R[B] - qfB Eq. 9 

where B is population biomass, q is a coefficient of catchability, f is fishing effort (thus qf 
represents fishing mortality) and R is some regulatory function which is itself a function 
of B. The term B R[B] describes changes in biomass in the absence of fishing mortality. 
R[B] can take any appropriate form, such as that proposed by Graham (1935) and used by 
Schaefer (1954, 1957): 

R[B] = r (1 - B/K) Eq. 10 

where r and K are as described previously, but in units of biomass instead of numbers.  In 
the absence of fishing, the population is self-regulating, and Eq. 9 describes a parabola 
symmetric about ½K.   Integration of Schaefer's surplus production model yields a 
logistic trajectory of biomass through time.  Pella and Tomlinson (1969) generalized 
R[B] to include nonsymmetric biomass yields.  Some important assumptions associated 
with surplus production models are that: 1) catch per unit effort is proportional to total 
population biomass; 2) fishing effort is proportional to fishing mortality, but independent 
of total population biomass; 3) population size is always at equilibrium given constant 
fishing effort; 4) the age structure of the population is stable given constant fishing effort; 
and 5) no net migration occurs.  The effects of environmental stressors could be 
incorporated into surplus production models by modifying the form or values assumed in 
the regulatory function (changes in r or K), in the coefficient of catchability (due to 
modification of individual growth rates or behavioral changes), or as a loss to production 
in addition to fishing mortality. 

Another class of models developed for fishery applications are the yield models. These 
models incorporate age-specific schedules of weight and cohort (groups of similarly-aged 
members of the population) numbers, and are used to estimate the yield of individual 
cohorts following recruitment to the fishery.  They take the general form: 

dY/dx = F N(x) W(x) Eq. 11 

where Y is the biomass yield to the fishery, F is the instantaneous fishing mortality rate, 
N(x) is an expression of population numbers of age x, and W(x) is an expression of the 
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weight of an individual of age x.  N(x) can be described by some appropriate function 
such as that used by Beverton and Holt (1957): 

N(x) = N(x ) exp{-(M + F) (x - x )} Eq. 12c c

where x is the age of recruitment into the fishery (x>x ), N(x ) is the number of recruits c c

into the fishery, and M is the instantaneous natural mortality rate.  Thus, the size of the 
cohort decreases exponentially with time.  Weight at age x can be described by an 
appropriate function, such as the von Bertalanffy (1938) growth equation: 

W(x) = W  {1- exp[-k (x-x )]} 3 Eq. 134 0

where W  is the assumed asymptotic weight of an individual, k is some individual growth 4

rate, and x  is the hypothetical age of an individual of weight zero.  With the substitution 0

of Eqs. 12 and 13 into Eq. 11, integration of Eq. 11 yields: 

Y = F N(x ) W G{(U  exp[-nk(t -t )]) / (F + M + nk)} Eq. 14c 4 n c 0 

where Un are integration constants taking on values of 1, -3, 3, and 1 for n = 0, 1, 2, and 3, 
respectively.  Some important assumptions associated with yield models are that: 1) 
mortality is independent of density with rates remaining constant following recruitment 
into the fishery; 2) the growth function adequately describes individual growth following 
recruitment; 3) all individuals of a cohort recruit at the same instant; and 4) no net 
migration occurs.  The effects of environmental stressors can be incorporated into such 
models through variation in growth rate (k) in Eq. 13, or through changes in mortality 
occurring beyond age xc as characterized by N(x).  Additionally, reproductive effects can 
be incorporated implicitly through reduction in the number of recruits entering the fishery 
at age x . c

Stock recruitment models describe recruitment of numbers into the fishery, rather than 
biomass yield to the fishery subsequent to recruitment.  The data requirements of such 
approaches include estimates of stock size and the subsequent number of recruits over 
time. The general form of such models is similar to the simple exponential growth model 
(Eq. 1): 

dN/dt = -MN Eq. 15 

where M is a parameter involving mortality that may incorporate both density-dependent 
(m ) and density-independent (m ) terms (Ricker, 1954): d 0

M = m  + m N(t ) Eq. 160 d s
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where N(t ) is the stock size at time of spawning, t .  Integration of Eq. 15 with Eq. 16 s s

substituted for M yields the number of recruits, R, )t units of time after spawning: 

tN(t )] )t) N(t ) exp[m )t) = f exp(-m ) + R(ts 0 s d s Eq. 17 

where f is the fecundity of a recruited fish.  Some assumptions of this model include that: 
1) effects of density occur prior to recruitment, with N(t ) being the important density; 2) s

fecundity is unaffected by population density or fish size; and 3) no net migration occurs. 
Contaminant effects could be incorporated into the mortality terms, or in the average 
fecundity of recruited individuals. 

Other models - Classes of models other than the demographic and fisheries approaches 
already discussed may have potential utility in assessing site-specific risks; four are worth 
mentioning briefly here.  The first of these is based upon statistical description of time 
series of population abundance or biomass parameters.  These empirical models attempt 
to describe temporal fluctuations in population size based largely upon the past behavior 
of the population and associated environmental data.  No explicit parameterization of 
demographic processes need be involved.  Instead, regression analysis is used to estimate 
coefficients associated with terms for environmental processes deemed important to the 
temporal fluctuations, as well as with autocorrelative terms.  Thus, population size, N, is 
described as some function, f, of environmental parameters, Qi, and past population size 
with time as: 

N = f(Qi, N, t) Eq. 18 

Typically, these models are built by the parsimonious inclusion of variables in an iterative 
fashion, until the fitted model meets certain criteria (for example, the model reasonably 
describes the behavior of N, and no autocorrelation of regression residuals exists). 
Impacts ascribable to changes in anthropogenic stressors could be detected through use of 
intervention terms (if relatively discrete changes in stressor exposure are known to occur 
at specific times), or through development of transfer functions relating time series of 
stressor loading or concentration to the time series of population size.  Population size 
may also be forecast into the future once a reasonable model is developed (although not 
without a great deal of uncertainty).  One potential drawback inherent in this approach is 
the requirement of long series of uniformly spaced data points; such data sets may not 
exist for the assessment population.  Discussion of this and other problems, and of the 
techniques associated with time series analysis, is given in Box and Jenkins (1976). 
Examples of the application of this approach to investigation of near-shore pollution 
loadings and fishery stocks is given in Polgar et al. (1985) and Summers et al. (1985). 

As a class, individually based models (IBMs) cover an enormous range of specific model 
formulations (de Roos et al., 1991).  The theme common to this class of models is that the 
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basic unit of model formulation is the individual organism, with descriptions of 
population dynamics simply being the summation of simulated stochastic outcomes for 
each individual.  As a result, IBMs can accommodate a great deal of variation and 
complexity in the behavior of individuals and their interactions with biotic and abiotic 
components of the modeled environment, and therefore can reflect a great deal of realism. 
IBM simulations are computationally intensive, and their formulation can be non-trivial. 
Choices must be made between simulating in discrete time (in which case the order of 
biological and environmental “events” within each time step become important), or using 
event-driven accounting methods with time handled as a continuous variable and 
population state being updated with each event.  Effects of environmental stressors can be 
incorporated in IBMs directly, using information derived from toxicity tests, time-to­
death studies, and any number of other information sources that relate stressor exposure 
to physiological and individual-level attributes.  As an example of this approach, Nisbet 
et al. (1989) describes an IBM developed for Daphnia. Grimm (1999) reviews some 50 
IBMs developed for animals. 

Vaughan et al. (1984) discuss one form of IBMs, introduced to fishery management by 
Ursin (1967), which is based upon the bioenergetics of individual organisms within the 
population. Weight-specific rates of important physiological processes are summed to 
describe changes in biomass (B) of individuals within a cohort as: 

(1/B) dB/dt = C - (R + F + U + P) Eq. 19 

where C is consumption rate, R is respiration rate, F is egestion rate, U is excretion rate, 
and P is reproductive loss.  Typically, each of the terms in Eq. 19 is expanded to include 
appropriate influencing processes such as temperature, dissolved oxygen concentration, 
or activity level.  Changes in biomass are summed over individuals within a cohort, and 
some mortality process is introduced.  Although fairly data-intensive in that the 
environmental factors influencing each physiological rate must be quantified, Vaughan et 
al. (1984) indicate a major advantage of this approach over some others: contaminant 
stresses may be modeled at a basic, mechanistic level.  However, because of the 
difficulties associated with quantifying the physiological processes of assessment 
populations, the utility of bioenergetics models, like other data-intensive modeling 
approaches, may be limited in site-specific assessments to “high priority” assessment 
endpoints (e.g., for endangered species). 

All of the above models are, to a large degree, quantitative in nature.  Qualitative 
population models have also been formulated which may be appropriately applied in this 
context.  Among the more promising is loop analysis (Levins, 1975).  This approach can 
be used to examine the behavior of a partially specified system based solely upon the 
signs of the interactions between various components of that system.  In the context of 
population modeling, the components of the system would be identified as different ages 
or developmental stages in a fashion similar to that used in population projection matrix 
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models. The methods employed in loop analysis depend upon the equivalence of 
differential equations near equilibrium, and matrices and life history diagrams (Levins, 
1975). Although loop analysis appears to have limited value in exploring the dynamics of 
populations in isolation, it may be valuable in examining age/stage structure effects 
resulting from contaminant insult.  An advantage of this approach in site-specific risk 
assessments lies in its minimal data requirements. 

4.3	 Extrapolating from Toxicity Test Data 
Use in risk assessment of any of the extrapolation models described above typically 
requires quantitative information about the values that model parameters take under 
different exposure scenarios.  Section 5 of this white paper describes some of the 
techniques that can be used to obtain this information for field populations occupying the 
site (and associated reference areas).  Data to parameterize models can also be obtained 
from laboratory-based toxicity tests and experiments.  In both approaches, the question is 
one of how to link responses measured in individuals to their population-level 
consequences.  Although the material provided here is most relevant to the demographic 
modeling approaches described earlier, it applies to a majority of the other model 
formulations as well. 

Assuming no net migration into or out of the population, the necessary and sufficient 
rates to describe population dynamics are births and deaths within the population (see 
above).  Although the number of offspring produced by an individual female and the 
probability that an individual will die (or survive) at any particular instant are determined 
by any number of environmental, physiological, and historical factors, the effects of 
chemical stressors on these two vital rates can be estimated using toxicity tests and 
laboratory experiments.  Such tests usually are performed in a manner that isolates the 
effects of the chemical stressor(s) from all other environmental influences through 
standardization – all non-chemical variables are held constant (within and across like-
tests) such that the differences in responses observed across exposure conditions are 
attributable almost solely to the chemical(s).  Such standardization supports 
understanding of differences among species in their sensitivities to single chemicals (or 
environmental media in the case of complex mixtures like sediments), and the “potency” 
of different chemicals to a single species, but results in effects information that likely 
underestimates effects expected to occur at the site.  This is because only direct toxic 
effects are measured in standard toxicity tests; effects on vital rates that result from 
changes in species interactions (competition, predation, disease) and the interactions 
among biological and environmental factors (temperature, water availability, etc.) are 
purposely minimized.  Thus, standard toxicity tests isolate the effects of the chemical (or 
environmental medium) from all others. 

Of course, standard toxicity tests have been developed for a number of different species 
and exposure conditions (principally duration).  Excluding for the moment bioassays 
designed primarily to measure physiological attributes (biomarkers and bioindicators; but 
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see Maltby et al., 2001 for a description of extrapolation across multiple levels of 
biological organization), the measurements made in such tests usually include mortality 
(in short-duration or “acute” tests), but also can include reproduction (in longer-duration 
or “chronic” tests), and in some cases, changes in individual growth (as measured by size 
or weight).  These first two attributes can be used to estimate the vital rates required by 
extrapolation models with appropriate consideration of the conditions of toxicity testing 
and the requirements of the model.  

Standard toxicity tests provide information most relevant to the purpose and conditions of 
the test.  Thus, if the test measures acute mortality of neonatal Daphnia over a 96-hr 
exposure period (and assuming all quality assurance requirements have been met), the 
resulting data adequately describe the rate at which newborn Daphnia will survive a 96-hr 
period of exposure to each concentration tested.  It does not, however, directly provide 
survivorship data for older individuals, nor information about what reproductive effects 
might be elicited.  Standard tests rarely measure both survival and reproductive effects 
over the full life span of the test species; this creates some practical difficulties with 
respect to extrapolating test results to population level effects.  Yet, with appropriate 
acknowledgment of their concomitant uncertainties, a number of approaches can be 
employed that can utilize even minimal toxicity data sets to estimate population 
responses.  The value of any of these approaches depends upon the goals of the risk 
assessment with respect to desired level of conservatism (safety) in the risk estimated, 
and the cost and likelihood of obtaining additional data for model parameterization. 

•	 Using data only as measured - Probably the least conservative use of standard 
toxicity data is to model population response as if the chemical (or environmental 
medium) only affected the life stage tested.  For example, the Daphnia test data 
described above might be used to estimate population-level risk if the assumption 
was that the chemical only affected neonates.  Clearly, this analysis approach 
would underestimate risk if the survivorship of other age classes were also 
affected, or reproductive effects could occur. 

•	 Extrapolating effects to other ages or life stages - Although differences in the 
sensitivities of age- and stage-classes may exist, the responses of a tested class can 
be extrapolated to those of untested classes by assuming functional relationships. 
The simplest relationship to assume is equality, that is, the response of class X is 
equal to that of class Y.  With additional information, more complex relationships 
could be assumed.  By extrapolating test data to the responses of all classes, 
(presumably) more realistic estimates of population risk can be made.  However, 
two cautions are appropriate here.  First, without appropriate knowledge of the 
relationships among the responses of different classes, errors can be introduced 
into the analysis which may be difficult to identify and interpret (class X may be 
more, equal, or less sensitive than class Y, and the resulting influence of risk 
estimates would be unrecognized).  The second is related to the axiom that “an 
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individual can’t be killed twice”, meaning that younger individuals that die may 
shift the distribution of individual sensitivities in older age classes to the right 
(less sensitive) in long-term exposures (typical of site-specific risk problems). 
Without recognition of this shift, estimates of risk would be relatively 
conservative. 

•	 Extrapolating effects to other vital rates - Similarly, reproductive effects could be 
extrapolated assuming some relationship between survivorship and fecundity. 
The cautions offered above are relevant here as well.  [As an aside, individual 
growth effects can also be extrapolated to changes in reproduction and 
survivorship when their functional relationships (e.g., smaller individuals produce 
fewer offspring) are known.] 

•	 Extrapolating effects across test exposure durations - As indicated earlier, how 
toxicity test data are used in extrapolation models depends on the requirements of 
the model itself. A model that describes the population as a sequence of year-long 
age-classes requires data couched in terms of annual rates.  The potential 
mismatch between model requirements and toxicity test durations and data is 
obvious, but it can be overcome mathematically (see details in Caswell, 2001, and 
an example in Munns et al., 1997).  Uncertainties associated with using data 
obtained on time scales different from those required by the model include not 
only the propagation error inherent in mathematical manipulations, but also those 
due to differences in the mechanisms of toxicity that may be in operation under 
different combinations of concentration and exposure duration (i.e., acute versus 
chronic).  

A laboratory-based approach for obtaining the data needed to parameterize extrapolation 
models that avoids some of the issues above involves performance of a life table response 
experiment (LTRE).  In ecology, life tables are age- or stage-specific schedules of 
survivorship and reproduction that can be used in demographic extrapolation models to 
estimate population-level effects associated with some environmental situation or 
experimental treatment.  LTREs can be used to generate these schedules for different 
chemical exposure conditions.  Typically, the duration of LTREs correspond with the life 
span (or at least life cycle) of the species involved in the experiment, although partial life-
cycle tests can, in some situations, provide sufficient information (e.g., Daniels and Allan, 
1981).  Use of LTREs to help parameterize population models is described in detail in 
Caswell (2001). Because LTREs evaluate effects on all vital rates for all classes, the need 
to extrapolate limited data is reduced or eliminated.  Unfortunately, “standardized” (in the 
sense of toxicity tests) LTREs typically do not exist, and LTREs generally are more 
expensive to perform than are standard toxicity tests.  

Expanded descriptions of two examples of extrapolation modeling introduced earlier 
illustrate the use of toxicity test data to parameterize population models for use in risk 
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assessment.  The first involves Kuhn et al.’s (2002) development of a projection matrix 
model to assist in extrapolating standard toxicity test results for the estuarine amphipod, 
Ampelisca abdita. Used commonly in a number of regulatory and monitoring programs, 
the standard solid-phase Ampelisca test involves exposing approximately 20-day old 
animals (based on size) for 10 days under static conditions (ASTM, 1993).  Kuhn et al. 
(2002) constructed a model that divided Ampelisca’s life cycle into seven 10-day age 
classes, such that data from the standard test corresponded to survivorship between the 
second and third (juvenile) age classes.  Mean survivorship over the course of a standard 
test (equivalent to the transition probability between classes 2 and 3 in the model) of Cd­
spiked sediment was calculated as the number of individuals in a treatment replicate alive 
at the end of the test divided by the number at the start of the test, averaged across 
replicates.  [As an aside, the variance observed among replicates can be used to quantify 
uncertainty in population effect estimates, or to describe probability distributions in 
probabilistic assessments.] Kuhn et al. (2002) also had conducted a full 70-day 
experiment to provide demographic information to parameterize a “base” model that 
reflected Ampelisca vital rates in the absence of Cd exposure (i.e., using reference 
sediment).  Under various assumptions of how standard 10-day mortality related to 
Ampelisca vital rates, Kuhn et al. (2002) developed empirical extrapolation relationships 
between test results and population effects.  These relationships can be used to interpret 
sediment toxicity test data in the context of population-level risks to amphipods at 
contaminated sediment sites. 

The second example is Kuhn et al.’s (2000) use of data obtained from standard life cycle 
chronic tests to project the effects of some 20 chemicals on mysid shrimp, Americamysis 
(formerly Mysidopsis) bahia, population dynamics.  The life cycle test for A. bahia is in 
most regards comparable to an LTRE, in that mortality and reproduction of test 
populations are followed on a regular (in this case, daily) basis over the course of a long-
term exposure. Survivorship was calculated daily, using the same method as in the 
Ampelisca example, to parameterize a projection matrix model constructed with 24-hr age 
classes. The fecundity of each age class was calculated as the number of female offspring 
produced each 24-hr period, divided by the number of females alive during that period. 
Population models were uniquely parameterized for each treatment level of each 
chemical, and were used to develop chemical-specific exposure-(population growth rate) 
response relationships.  These relationships could then be used to estimate the population-
level effects of any given exposure concentration of each chemical.  As mentioned earlier, 
Kuhn et al. (2001) subsequently demonstrated that the age-classified model, 
parameterized for the chemical nonylphenol using standard toxicity test data, projected 
the dynamics of A. bahia reasonably well in a multigenerational experiment conducted in 
the laboratory, adding confidence to the use of the models for predicting population-level 
risk. [As an aside, Maltby et al. (2001) describe how alternate formulations influence the 
accuracy of population models in predicting the results of the multigenerational 
experiment.] 
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It should be noted that descriptions of the use of toxicity test data in population 
extrapolations models to this point have been restricted to situations in which exposure is 
assumed to be constant.  Except under certain conditions (e.g., benthic organisms in 
contaminated sediment), it is unlikely that the risk scenarios evaluated at Superfund and 
RCRA sites would involve static exposure.  More often, organisms are thought to 
experience variable exposure as they move through the environment, or the environment 
(e.g., water) moves past them.  With appropriate caveats and acknowledgment of 
uncertainties, toxicity test data can also be used in these situations.  One approach for this 
is to use test data to construct treatment-wise exposure-response curves relating either 
vital rates or population-level attributes to exposure concentration.  These relationships 
can be used with dynamic simulations of exposure through time or across space to 
provide more realistic assessments of population risk by dividing time into discrete units, 
each with a potentially unique exposure concentration which is translated into an effect 
through the response curve(s).  This approach is illustrated in Munns et al. (1996) in an 
assessment of population risks associated with aquatic sewage sludge disposal.  As with 
all of the uses described here, this approach comes with limiting assumptions that 
influence interpretation of the analysis. 

The information presented above applies to situations in which the assessment population 
is of the same species as that used in the toxicity test or LTRE.  Although their 
description is beyond the scope of this white paper, approaches exist for extrapolating 
effects across species when needed.  Such extrapolations can be made either at the level 
of the test data themselves (e.g., mortality of species X extrapolated to mortality of 
species Y, followed by use of the extrapolated data to model a population of species Y), 
or at the population level (e.g., mortality of species X used to model a population of 
species X, followed by extrapolation to a population of species Y).  A general description 
of cross-species extrapolation issues can be found in Munns (2002); more detailed 
accounts are given in Mayer et al. (1987), Suter (1993) and references cited therein. 

4.4	 Considering Spatial Scale 
The extrapolation modeling approaches considered above typically assume the 
environment, and how individuals react to it, to be spatially homogeneous.  Moreover, 
considerations of the geographical boundaries chosen when defining the assessment 
population are conceptually irrelevant to application of the models.  However, natural 
populations exist in landscapes (or waterscapes) that consist of mosaics of habitat type 
and stressor concentration.  The vital rates of individuals residing primarily in one patch 
(defined in terms of habitat quality and stressor concentration) likely differ from those 
living in other patches.  The dynamics of these local groups, in aggregate, determine the 
dynamics of the overall population.  Furthermore, refugia in the landscape (patches with 
low concentrations of anthropogenic stressors) can act as population sources for 
movement of individuals into areas impacted by stressors, potentially ameliorating the 
effects of those stressors on the local scale.  Conversely, impacted areas can act as sinks 
into which individuals from unimpacted areas move, depressing overall population 
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abundance (see Landis, 2002 for a demonstration of these effects, and Landis, in review 
for a discussion of the implications of patch dynamics to understanding population-level 
effects).  

Historically, population models incorporating a spatial context have been applied to 
questions of conservation biology, pest dispersal and invasion, and other population 
management issues.  Their use to address population-level effects of chemical stressors is 
relatively new, although examples exist in the literature (e.g., Thomas et al., 1990; 
Sherratt and Jepson, 1993; Pulliam, 1994; Jepson and Sherratt, 1996; see chapters in 
Barnthouse et al., in review for convenient summaries).  Valuable discussions of 
modeling population dynamics in a spatial context are given by Okubo (1980), Hanski 
(1991, 1996, 1997, 1999), Hanski and Gilpin (1991), Dunning et al. (1995), and Tilman 
and Kareiva (1997).  Specific model formulations accounting for spatial heterogeneity fall 
into two broad classes, as described below.  Table 2 identifies particular models and their 
assumptions. 

Metapopulation models divide the overall population into subpopulations that 
communicate with one another through immigration and emigration.  Conceptually, 
subpopulations are treated almost as individuals, with extinction and recolonization 
driving local dynamics.  Such models do not necessarily incorporate habitat quality and 
stressors explicitly; rather, the environment can be described mathematically as a series of 
more-or-less identical patches.  Metapopulation models can be used to explore the 
influence of: 1) the size, spacing, and density of patches, 2) rates and forms of movement 
among patches, and 3) rates of extinction within patches on population persistence and 
spatial distribution. See Levins (1969) for early considerations of the metapopulation 
modeling approach. 

Spatially-explicit models increase ecological realism by incorporating landscape structure 
and habitat quality explicitly.  These models differ primarily from metapopulation models 
in that the spatial context of patches is important not only to migration among patches, 
but also to the internal dynamics of subpopulations within patches.  Internal 
subpopulation dynamics can be modeled by relating aspects of habitat quality to average 
vital rates, or even by allowing environmental parameters to affect individual 
physiological and behavioural responses using an individual based modeling approach. 
Variation in habitat quality can be incorporated using spatially-referenced data sets of 
land use patterns, landscape characteristics, and stressor distributions.  For example, 
Akçakaya and Atwood (1997) developed a spatially-explicit model of threatened 
California gnatcatcher (Polioptila californica californica) dynamics to support protection 
of this subspecies and its habitat from land development in southern California, USA. 
The habitat requirements of P. c. californica were determined by relating habitat 
characteristics to patterns of habitat use.  These relationships were used to develop habitat 
suitability functions, which in turn were used to score the quality of grid cells modeled in 
the landscape based on geographic information system (GIS) data on land cover and 
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topography.  A two-stage stochastic projection matrix model with density dependence 
was used to model gnatcatcher dynamics within patches.  Population-wide vital rates in 
this model were estimated from existing data sets, independent of habitat suitability, and 
were allowed to vary randomly to reflect environmental and demographic stochasticity. 
Akçakaya and Atwood (1997) used their model to relate probabilities of population 
decline (quasi-extinction) to a variety of environmental and demographic parameters, 
with an intent of supporting evaluation of various resource management options.  More 
recently, Schumaker (1998) developed a spatially-explicit modeling platform that permits 
incorporation of GIS-referenced habitat data, specification of functional relationships 
between habitat quality and demographic response, and specification of rules to describe 
movement of individuals among patches.  Schumaker’s model, PATCH, is being updated 
to include the effects of chemical stressors on vital rates (N. Schumaker, ORD NHEERL, 
personal communication). 

The ability to model populations in a spatially-explicit manner offers the opportunity to 
address some aspects of the question raised earlier about the scales appropriate for 
defining the assessment population.  When clear boundaries that delimit the population 
cannot be established, if issues remain relative to the adverse effects of local hazardous 
waste sites on populations inhabiting large geographic ranges, or uncertainty exists about 
the extent to which local effects might be ameliorated by immigration from surrounding 
areas, a modeling analysis that varies the spatial boundaries in the definition of the 
population may provide some answers.  One objective of this type of analysis might be to 
define the relationship between expected population-level effect and the spatial scale used 
to delimit the population.  This relationship might take the form of a “scale-response” 
curve (conceptually analogous to a stressor-response curve) that could be used to help 
understand the ecological significance of site risks.  The analysis could provide insights 
to the severity and extent of adverse effects, as well as the potential for population 
recovery as local effects are “diluted” by migration into the site from surrounding areas. 
When weighed against the regulatory requirements, policy considerations, and 
stakeholder interests driving problem formulation of the assessment, the results of this 
type of analysis could provide significant support to the decision-making process. 

4.5	 Considering Model Selection 
Given the range of options for linking individual-effects to population response, which 
model should be used?  That choice is situationally-dependent, and should reflect a 
number of considerations, including the assessment endpoint and how risk estimates will 
be used in the decision process, the model’s intended use, the biology of the assessment 
population, the availability of information and data describing that biology, the resources 
available for performing the assessment, and so on.  Additionally, the informational 
requirements of the selected model must be satisfied. 

40




TABLE 2 

Population Modeling Approaches Incorporating Spatial Context 
(modified from Maltby et al., 2001) 

M odel Assumptions Comments 

References/ 

Applications 

Levins’ model 

(and variants) 

continuous time, 

discrete space 

breaks habitat into an infinite 

number of distinct sites; assumes 

global random dispersal of 

recruits 

Levins (1969) 

Hanksi (1991, 1996, 1997) 

Lamberson et al. (1992) 

incidence function 

model 

continuous time, 

discrete space 

breaks habitat into a finite 

number of distinct sites of 

differing size; assumes localized 

dispersal of recruits 

Hanski (1994) 

reaction-diffusion 

models 

continuous time, 

continuous space 

local populations grow 

(“reaction”) and spread through 

space (“diffusion”) 

reviewed in Okubo (1980) 

cellular-

automaton-like 

models 

discrete time, 

discrete space 

divides habitat into contiguous 

sites (“cells”); assumes dispersal 

among adjacent sites 

Akçakaya and Atwood (1997) 

Schumaker (1998) 

The data requirements of models deserve special consideration in selecting the 
appropriate model for assessment purposes.  The degree to which these requirements can 
be satisfied determines, at least in part, which models may be successfully employed.  In 
this regard, some of the modeling techniques discussed earlier (e.g. time series analysis) 
require only that the total abundances of the population or specific life stages be known. 
However, such approaches do not easily permit incorporation of mechanistic information 
regarding toxicity or population control, and therefore are of limited use in examining 
scenarios involving short-term temporal variation in exposure, incremental effects of 
multiple stressors, or the ramifications of various remediation options.  At the other end 
of the spectrum are formulations such as IBMs which require detailed knowledge of 
physiological and metabolic processes and how these influence the vital rates of fecundity 
and survivorship.  The realism of these approaches is further enhanced through 
incorporation of density influences on or stochastic variation in these processes.  Such 
data are difficult to obtain, yet their inclusion into appropriate models permits the most 
detailed assessments.  Recent useful discussions of density dependence relevant to 
ecological risk assessment can be found in Sabo et al. (2004) and Moe (in review). 

Consideration of the ease with which assessment population-specific information can be 
obtained is important. Does valuable information exist regarding temporal and spatial 
patterns of abundance?  Perhaps the most cost-effective source of such data is historic 
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data bases obtained for other purposes.  Can the life history characteristics of critical life 
stages be determined from field collections or from the literature?  Can sensitivity and the 
modes of toxicity be examined in the laboratory?  Such determinations, if they can be 
made, are usually performed at increased cost.  Thus, the availability of information 
regarding the life history of the species and the dynamics of individual growth and 
development is crucial to determining model selection.  Further, difficulties in obtaining 
information about populations at hazardous waste sites may affect the ability to evaluate 
the veracity of estimates of risk.  

The model formulation used to examine effects must also permit isolation of the 
population attribute of interest (as defined by the assessment endpoint) for detailed 
analysis.  Models which do not incorporate parameterization of specific vital rates offer 
little in the way of examining subtle effects on those rates.  It also may be desirable to be 
able to parameterize aspects of the measured or expected exposure regime experienced as 
a result of disposal and site conditions, and further, to incorporate the functional form 
(e.g. linear, threshold) of the response displayed by target attributes.  Dynamic computer 
simulations incorporating both exposure conditions and the resulting population-level 
effects can go a long way towards satisfying these requisites.  Finally, the model selected 
for application should permit incorporation of the detail of species-specific information 
available, because such models arguably yield the most realistic assessments of risk. 
Additional discussion of model selection and the factors to be considered is given in 
Munns et al. (in review). 

4.6	 Considering Uncertainty In Extrapolation 
Extrapolation and the use of models introduces uncertainty and potential error into risk 
assessment.  Knowledge about the nature and sources of uncertainty associated with 
extrapolation can improve assessment planning and inform risk managers about how 
assessment results can be used in decision making.  As summarized by Munns (2002), a 
useful way to think about uncertainty is to partition its sources among three distinct 
components (Suter, 1993; see Seiler and Alvarez, 1995 for other terminology and 
definitions): variability, also called heterogeneity or stochasticity, ignorance or lack of 
knowledge, and error. Variability is a component of all ecological systems, and 
represents actual differences in the value of a parameter or attribute among units in a 
(statistical) population.  For example, organisms display variability in their susceptibility 
to chemical stressors, such that some individuals die at lower exposure concentrations 
than do others, a fact described by the classic exposure (dose)-response relationship. 
Variability cannot be reduced by taking additional measurements of a parameter, although 
it can be quantified more accurately using larger sample sizes.  Ignorance represents a 
lack of knowledge about the true value of a parameter that can result from inadequate or 
imperfect measurement.  It can, however, be reduced with the collection of additional 
data and information.  Continuing the toxicity example, there is a true value at any point 
in time for the mean susceptibility of individuals in the population, and our estimate of 
that value improves as a function of the number of toxicity tests we run to estimate it. 
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The final source of uncertainty in risk assessment, error, results from the use of the wrong 
methods, models, and data in assessment activities.  Error can be corrected or minimized 
by understanding the uses and limitations of various methods and models to answer 
specific risk questions, and by rigorous attention to assessment quality. 

Extrapolation of population response from effects measured in individuals introduces 
uncertainty primarily through ignorance.  This uncertainty arises from a lack of 
understanding of the processes and mechanisms that determine how populations operate, 
how they respond to environmental stressors, and how best to model them.  For example, 
substantial evidence exists, and it is general knowledge that, population abundance is 
influenced by processes that are affected by density.  However, the exact mechanisms by 
which density dependence operates, how best to model those mechanisms, and the values 
that should be assigned to model parameters involved in the density effect(s) generally are 
unknown (except in isolated instances).  Incorporation of density-dependence into models 
without this knowledge introduces uncertainty that may not be compensated by supposed 
increase in realism achieved by that incorporation (see below).  Additionally, inferences 
of population response based on observations made at lower levels of biological 
organization can err if emergent properties (Harré, 1972; Salt, 1979) control population 
dynamics.  Qualitative changes in the causes and mechanisms of response at different 
levels of biological organization, also called transmutation (O’Neill, 1979), produce 
nonlinearities that can confound our ability to predict the nature and magnitude of risks. 
The existence of nonlinearities and emergent properties potentially limits the usefulness 
of extrapolation models to assess risk (see, for example, Bella, 2002). 

Uncertainty arising from ignorance can be addressed in at least four ways.  One is to 
perform a meta-analysis (Arnqvist and Wooster, 1995) of the type that compares the 
outputs of two or more models constructed using different assumptions about how 
population-controlling processes operate.  For example, two or more fishery models 
might be used to make projections, and their resulting outputs used to bound the range of 
possible effects.  Differences in output could also suggest closer examination of model 
assumptions and approaches, leading to the selection or rejection of specific formulations. 
Such meta-analyses clearly increase the costs of the assessment, but that added burden 
might be warranted if the costs associated with making a wrong management decision are 
high. 

An arguably less costly approach to addressing ignorance is to perform sensitivity 
analyses of model performance and output in which parameter values are varied 
systematically.  In this manner, the influences of particular assumptions and modeled 
relationships on model output can be evaluated.  Attention to those parameters and 
relationships that most influence model output, say by improving data quality or by 
conducting additional research to enhance understanding of how biological processes 
operate, should reduce uncertainties with the model and thereby improve the estimates of 
risk. 
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A third approach for reducing ignorance is to strive for enhanced realism in the modeling 
effort.  This can be accomplished in a number of ways.  For example, the demographic 
and fishery approaches described above are deterministic in their general formulation. 
Introduction of stochastic variation in mechanistic processes or vital rates permits, for 
example, description of the distribution of population numbers under steady state 
(Costantino and Desharnais, 1981; Dennis and Costantino, 1988) or impacted conditions, 
as opposed to single point estimation.  With such, different realizations of model outputs 
are assigned probabilities, offering a means to bound the range of possible outcomes and 
to identify those that are more likely.  [As an aside, characterization of  steady state 
distributions for unimpacted populations would permit estimation of the magnitude of 
population change needed to detect contaminant impact using inferential statistics.]  Of 
course, introduction of stochasticity in model parameters also addresses the first source of 
uncertainty mentioned above, that is, variability.  

Realism can also be enhanced by incorporating homeostatic and genetic compensatory 
mechanisms explicitly into the model formulation.  An implicit assumption of the 
population models described above is that individuals are genetically identical to one 
another.  That is, the dynamics of the population are treated as being independent of 
genetic variation and allele frequency.  However, the impact that a given concentration of 
contaminants will have on a population is related to the fitness of individuals relative to 
such exposure. Populations displaying allele frequencies near those which accrue 
maximum fitness under conditions of contaminant insult will show minimum impact 
relative to native populations.  Although long a goal in population biology, marriage of 
population dynamics theory with population genetics into single models has taken place 
only relatively recently (e.g., Desharnais and Costantino, 1983).  Despite their increased 
realism, and except for selected applications developed in conservation biology that 
include effects of inbreeding as population size decreases (e.g., Lacy, 1993), such models 
are not sufficiently developed to be of much use in the context of site-specific risk 
assessments. However, genetic adaptation to contaminant insult is an important 
consideration in Superfund and RCRA assessments that should be explored more fully 
(Nacci et al., 2002). 

With the exception of metapopulation and spatially-explicit formulations, all of the 
mechanistic models discussed here assume no net migration.  Clearly, realistic and 
precise characterization of population dynamics requires quantification of the rates of 
both immigration and emigration.  In closed populations, such as those bounded by 
geographical or environmental constraints, these rates are sufficiently low to be treated as 
zero. However, migration into and out of many populations associated with hazardous 
waste sites may not be so constrained.  In these situations it may be appropriate to 
parameterize migration as a time or population density-dependent process. 

As suggested earlier, model realism can be enhanced by incorporation of density-
dependence in fecundity, survivorship, individual growth, and migration rates into those 
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formulations where no such dependency exists.  Instances in nature where demographic 
processes are unaffected by such influences probably are rare (Slobodkin, 1987).  Further, 
introduction of time lags in the realization of density (Marchesseault et al., 1976) as well 
as other effects arguably result in more realistic models (May, 1973).  Levin and 
Goodyear (1980) explore the behavior of a population projection matrix model with 
density dependence added.  Parameterization of density-dependence (termed 
compensation in fishery science) is problematic in the formulation of population 
dynamics models.  An overview of the difficulties associated with measurement and 
parameterization of such affects in fisheries management are given by Goodyear (1980). 

One last modification affecting model realism is incorporation of species interactions 
(e.g., competition, predation).  Populations don’t exist in isolation; they interact with 
other populations in the community in ways that can have as profound impacts on their 
dynamics as do anthropogenic stressors.  Yet, many of the formulations described above 
treat populations as if they were isolated from such interactions.  Exceptions to this 
include those that include fishing or harvesting pressure (where humans are a predator), 
and IBM formulations that include interspecific competition and predation.  Numerous 
approaches for modeling species interactions and community dynamics exist, description 
of which is beyond the scope of this white paper.  However, the extent to which such 
approaches improve risk assessment of populations remains to be determined. 

The most obvious way to reduce uncertainty arising from both ignorance and error, is to 
test model outputs against known results.  Generally, questions of uncertainty relative to 
the use of models in risk assessment often devolve to ones of model verification and 
validation.  These terms have been used inconsistently (and sometimes interchangeably) 
in the ecological literature, leading to considerable confusion and, we suggest, 
obfuscation of the important underlying question: “Does the model work as intended?” 
(Mitro, 2001). Rather than adding to assessment uncertainties by questioning model 
verification/validation, we recommend that RPMs and site managers seek to understand 
how models were tested and evaluated in a manner that facilitates understanding of their 
uses and potential limitations in site-specific risk assessments.  The goal of model 
evaluation is to characterize the relationships between predictions or projections 
generated from available data and modeling constructs, and the actual population-level 
responses observed at the site.  Field evaluation of the modeling and assessment 
procedures, and monitoring in general, are complex subjects which cannot be addressed 
adequately here.  However, three points mentioned below are worth considering, as they 
potentially affect the feasibility of population-level assessments.  More detailed 
discussions of problems associated with monitoring and model evaluation are provided in 
Cairns et al. (1984) and others. [One of us (MM) currently is conducting an evaluation of 
the degree to which population models have been tested, and how they performed against 
their intended use, based on a review of existing literature.] 
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Biological systems are often characterized by considerable temporal and spatial variation, 
the degree of which changes across scales of measurement.  For instance, local densities 
of zooplankton vary in response to variation in water circulation processes, such as 
Langmuir cell formation, but also change in absolute abundance as a result of intrinsic 
and external regulatory processes.  This variation should be adequately addressed through 
timely application of appropriately designed sampling programs so that changes in 
population attributes can be ascribed to either contaminant impact or other causes. 
Inadequate replication in sampling designs may hinder detection of change, let alone 
proper quantification of that change. 

Successful evaluation methods should also incorporate examination of exposure 
conditions to avoid drawing incorrect conclusions concerning the correspondence 
between model projections or predictions and responses observed in the field.  Potentially 
confounding effects of multiple stressors should be identified and factored into a 
reevaluation of expected population-level change.  Problems of scale are also cogent here. 
Evaluation of models used to predict or describe exposure regimes is therefore extremely 
important to successful evaluation of population modeling assessments. 

As a final consideration relative to model testing, such evaluations may only be relevant 
for those cases in which actual forecasts (as defined earlier) of population responses are 
made.  Risk assessments based upon projections of response, at least at some level, 
require constancy in environmental conditions.  Constancy in natural biological systems 
is rare indeed.  This is not to say that models that project population change cannot be 
used in dynamic simulation.  However, only qualitative correspondence between 
simulation results and the actual behavior of the population in the field might be expected 
in those cases. 
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5.	 Measuring Population Attributes and Parameters in the Field 
Data collected through field measurements can be used to parameterize population 
models described in the previous section, to evaluate the outputs of those models, or, 
independent of models, to assess the effects of toxic chemicals at a site directly.  In all 
these cases, there are inherent difficulties in measuring characteristics of natural 
populations in the field as compared to laboratory settings.  The opportunity exists in 
laboratory studies to have almost complete knowledge of the population: exactly how 
many individuals are in the population, its age structure, the rate at which individuals are 
added to or removed from the population (through the processes of birth, death, and 
migration), and the rate at which population abundance changes.  Such complete 
knowledge is nearly impossible of natural populations, especially animal populations. 
Statistical sampling is almost always necessary to estimate model parameters, evaluate 
model outputs, or characterize the status and dynamics of populations in response to 
chemical exposure.  This section describes some techniques for field sampling and data 
analysis to support estimation of population-level attributes and the parameters used to 
calculate them, and is organized around the major categories of attributes described in 
Section 3 (additional information can be found in Suter et al., 2000).  It does not, 
however, provide a step-by-step procedure for conducting field-based assessments of 
population risk from chemicals at Superfund and RCRA sites. 

5.1	 Measuring Population Abundance and Density 
Estimation of population abundance and population density are two separate yet 
interrelated problems.  If population abundance and the total area or range of distribution 
are known, then density can be estimated simply by their ratio.  However, techniques 
exist to estimate population abundance without precise knowledge of the area over which 
the population is distributed.  Alternatively, area can be fixed and the density of the 
animal population in that area can be estimated. 

If every individual in a population (or in a defined area) can be detected or captured (i.e., 
the probability of detection or capture, p, equals 1.0), then a census of the population can 
be taken to determine its abundance or density.  For many plants, larger birds (common 
loon, trumpeter swan), and mammals (elk, bison) that are highly visible, p often can be 
assumed to be 1, and a census performed.  However, if p is actually less than 1, the 
census will be biased negatively (i.e., abundance or density will be underestimated). 
Aquatic animals such as fish, and many birds and mammals are not readily detectable or 
amenable to capture.  For these populations, information from individuals that are seen 
can be used to make inferences about population size.  Two techniques that can be used 
in this regard are capture-recapture and distance sampling; capture-recapture studies 
focus on the estimation of abundance (among other parameters), while distance sampling 
studies focus on the estimation of density.  Because a large and well-developed literature 
exists on capture-recapture and distance sampling techniques for animals (Otis et 
al., 1978; White et al., 1982; Seber, 1982, 1986, 1992; Buckland et al., 1993; Schwartz 
and Seber, 1999), these methods are described here only generally. 
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Capture-recapture - Capture-recapture techniques are used to estimate abundance.  In 
capture-recapture sampling, individuals are captured and are in some way marked, 
tagged, or banded (Neilsen, 1992; Murray and Fuller, 2000), such that these individuals 
can be identified on subsequent recapture occasions.  Marks may be unique to the animal 
or unique to the capture occasion such that capture histories can be identified.  This 
information is used to construct a capture history matrix that comprises a coded list of 
unique capture histories for two or more sampling occasions and identifies how many 
individuals have each capture history.  For example, if a population of fish were captured 
and marked on five days and 57 fish were captured on days 2 and 5 (but not on days 1, 3, 
and 4), then 57 fish would have the unique capture history “01001".  A set of capture 
histories can be analyzed using a suite of models to estimate abundance. 

The assumption of population closure is important to consider when using capture-
recapture to estimate abundance.  A population is considered closed if no births, deaths, 
or migration occur during the sampling period.  Different estimators of abundance are 
used for closed versus open populations.  Other important assumptions for capture-
recapture studies include: 1) every animal in the population on the jth sampling occasion 
has the same probability, pj, of capture (i.e., equal catchability); 2) marks, tags, or bands 
are neither lost nor overlooked over the course of the study; and 3) all samples are 
effectively instantaneous relative to the period between samples, and captured individuals 
are released immediately after sampling.  Violations of these assumptions can result in 
biased or imprecise estimates of abundance. 

Violations of the closure assumption can be minimized by sampling over a restricted time 
period during which births, deaths, and migration do not occur or are minimal.  Closure 
with regards to migration can be ensured for some populations by physically isolating 
them. For example, blocking nets can be used in small streams to prevent fish from 
moving into or out of a sample reach.  Physically isolating a population is often not 
feasible, but for short sampling periods, physically open populations can sometimes be 
treated as closed (Pollock, 1982).  For example, sampling for a bird population might be 
restricted to a time period just prior to nesting, when individuals are not migrating and 
natural mortality is minimal.  If evidence of biological closure is desired for a physically 
open population, then a multistrata sampling and modeling approach can be used to 
quantify any losses from the population attributable to death or migration (Hestbeck et al., 
1991; Brownie et al., 1993; Mitro and Zale, 2002).  Multistrata model can be 
implemented in the computer program MARK (White and Burnham, 1997). 

The goal of capture-recapture techniques is to develop estimators of abundance. If the 
closure assumption is satisfied, a set of closed-population abundance estimators can be 
developed from the capture histories.  Estimators based on multiple capture occasions can 
be calculated using the computer program CAPTURE (Otis et al., 1978; White et al., 
1982; Rexstad and Burnham, 1991).  Included are estimators that are robust to departures 
from the equal catchability assumption: behavioral response to capture, temporal 
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variability in capture probabilities, and heterogeneity among individuals to capture. 
These estimators typically require three or more capture occasions; the Lincoln-Petersen 
estimator (Ricker, 1975) can be used for two capture occasions and is robust to temporal 
variability in capture probabilities. 

An estimator for abundance used when behavioral response to capture is of concern is the 
removal estimator developed by Zippin (1956).  In removal sampling, animals are 
numerically depleted from the closed population by physical removal or marking on 
successive capture occasions, such that catch per unit effort decreases proportionately to 
the number of animals remaining.  Animals are not subject to recapture (or marked 
animals are ignored on subsequent capture occasions), thus avoiding behavioral responses 
to first capture which may increase or decrease the probability of recapture.  Three or 
more removal occasions are typically required to estimate abundance.  A single removal 
occasion can be used in conjunction with a calibrated model to estimate abundance in a 
large area by sampling many smaller areas (Mitro and Zale, 2000a).  This approach 
supports a more rapid assessment of population abundance compared to the multiple 
removal occasions techniques. 

If the closure assumption cannot be satisfied, the Jolly-Seber estimator for open 
populations can be used to estimate population abundance from capture-recapture data 
(Jolly, 1965; Seber, 1965).  The Jolly-Seber estimator parameterizes the processes of birth 
and death, thereby allowing additions to or losses from the population during the 
sampling period.  The Jolly-Seber abundance estimator can be calculated using the 
computer program POPAN (Arnason et al., 1998). 

Sampling effort, probability of capture, and population size all influence the precision of 
abundance estimates.  Estimator precision increases with increasing sampling effort and 
capture probability.  Greater sampling effort translates into higher capture probabilities; 
as more individuals in a population are captured, more marked individuals are recaptured, 
providing additional information upon which to base an estimate of abundance. 
Sampling effort can be increased by sampling an area more intensively or by sampling on 
more occasions.  However, as population size increases, precision decreases because a 
relatively smaller portion of a population is marked and recaptured for a given amount of 
effort. 

The number of parameters in an estimator also influences abundance estimate precision, 
as well as bias.  The goal is to select an estimator that minimizes both bias and precision, 
and the most appropriate estimator will depend on the nature of the capture-recapture data 
available.  If the data indicate a violation of the equal catchability assumption, such as 
temporal variability in capture probabilities, then an estimator parameterized for 
temporally varying capture probabilities will minimize both bias and precision.  Selecting 
an estimator with fewer parameters will improve precision but introduce bias; an 
estimator with more parameters will be unbiased but imprecise.  Estimator selection can 
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be aided by using information theoretic criteria, likelihood ratio tests, goodness of fit 
tests, and simulation (Burnham and Anderson, 1998; Mitro and Zale, 2002) 

Distance sampling - Distance sampling is used to estimate density, and has been used for 
populations of birds, mammals (terrestrial and marine), and fish (Buckland et al., 1993). 
Distance sampling is equally applicable to estimating the density of inanimate objects 
related to animals, such as bird nests or fish spawning redds (Buckland et al., 1993; Mitro 
and Zale, 2000b).  This technique involves only the sighting of objects (animals, plants, 
other) along a line transect or around a point transect.  In line transect distance sampling, 
an observer moves along a line transect of a study area and records the location, relative 
to the line, of each object detected within some distance either side of the line.  In point 
transect sampling, an observer stands at a fixed point in the study area and records the 
location, relative to the point, of each object detected within some distance around the 
point. 

There are three assumptions necessary for reliable density estimation from line or point 
transect sampling (Buckland et al., 1993): 1) objects on a transect are detected with 
certainty; 2) objects are detected at their initial location before any movement in response 
to the observer; and 3) distances between objects and the transect are measured 
accurately.  Minimizing deviations from these assumptions will minimize bias in density 
estimates. That said, objects can remain undetected without undermining the validity of 
the density estimate.  Distance sampling theory accommodates decreases in the 
detectability of objects as their distance from the line or point transect increases 
(Buckland et al., 1993).  Perpendicular distances from a line transect (or distances from a 
point transect) are “sampled”, and the distances are modeled so that detectability can be 
estimated.  As distance from the line or point transect increases, detectability decreases, 
allowing estimation of the effective area sampled and hence density. 

In addition to the assumptions above, the position of individual objects in the study area 
ideally should be random relative to the line or point transect.  If this condition is met, 
there is no requirement about how transects are positioned – that is, transects may follow 
a random or systematic pattern.  If individuals are not randomly distributed, the transects 
should be selected randomly (or systematically from a random starting point).  Transect 
surveys should be designed to avoid sampling effects that are systematic, such as when 
transects are placed along streams, roads, or some other physical feature that may 
influence the distribution of objects. 

Models for estimating density from line or point transect data are provided in the 
computer program DISTANCE (Laake et al., 1994).  This program uses sample data to 
parameterize a detection function, which is used to estimate density.  The detection 
function describes the distribution of animal locations relative to the line or point 
transect, and is selected from a series of models comprising a key function and a series 
expansion, the latter which is used to optimize the key function to fit the sample data 
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(Buckland et al., 1993).  The key function and series expansion that fit the data best can 
be selected using a combination of Akaike’s information criterion (AIC) (Akaike, 1973), 
likelihood ratio tests, and goodness of fit tests.  Density estimate precision depends on 
sample size: the larger the sample size, the more information available to describe the 
detection function.  Buckland et al. (1993) suggest a minimum sample size of 60-80 
detected individuals; smaller sample sizes will yield less precise but valid density 
estimates. 

5.2	 Measuring Population Growth 
Population growth rate is a quantification of the rate at which population abundance 
changes and can be expressed as an intrinsic rate, r, or a finite rate, 8 (see Section 3).  If 
the rate of change is constant over some time period t, then (as the solution to Eq. 1): 

N  = N0 e
rt	 Eq. 20t

and solving for r: 

Eq. 21 

Similarly, 

t t-1N  =  8N Eq. 5 

and solving for 8: 

Eq. 22 

Because both r and 8 can be calculated from ratios of population abundance (Eqs. 22 and 
23), direct estimates of the growth rate of field populations can be made using time series 
of population abundances estimated using the methods described above.  Additionally, 
because population growth rate integrates reproduction and survivorship into a scalar 
multiplier that defines how a population changes over some time period, it can be 
calculated for natural populations using estimates of fecundity and survivorship from 
field data and the demographic extrapolation models described in Section 4.  Techniques 
for both approaches are described below, together with an approach that uses capture-
recapture data. 

Estimates from time series analysis - A time series of abundance is simply a sequence of 
population sizes through (preferably equally spaced) time.  And over a finite length of 
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time, population growth rate can be estimated simply as the ratio of the final abundance 
to the initial abundance.  As with most field-oriented endeavors, however, estimation of 
population growth from field data is not as simple as it sounds.  Time series analysis for 
estimating population growth rate is a method dealing with complexities of field data. 

Time series analysis uses the complete sequence of population abundances.  In terms of 
bias and precision of the resulting estimate of growth rate, it performs best if abundances 
are obtained by census or complete enumeration of the population at each time point in 
the series; observation error is introduced if abundances are estimated.  Additionally, 
process error is introduced if stochastic demographic or environmental forces are 
operating and reflected in the time series.  When observation error predominates, r or 8 
can be estimated from the slope of a linear regression of the natural log of population 
size, ln(N), versus time (McCallum, 2000).  When process error predominates, 
abundances may be autocorrelated such that random variations in time periods influence 
population size in successive time periods (i.e., errors are associated with successive data 
points) and the estimate of standard error will be an underestimate of the true standard 
error.  If autocorrelation is detected, r or 8 can be estimated from the mean in the change 
in ln(N) between sequential censuses (McCallum, 2000).  The Durbin-Watson test can be 
used to detect autocorrelation (Sen and Srivastava, 1990). 

The approach for addressing autocorrelation in time series is to use differences between 
successive observations as the variable for analysis (McCallum, 2000).  For population 
abundance observations N , N , . . ., N , mean population growth rate can be estimated as: 0 1 n

which can be rearranged as: 

Eq. 23 

Eq. 24 

Note that only the first and last values of abundance in a time series are used to estimate 
, and the intermediate values do not contribute, which is not a problem if N  and N  are0 n

true counts.  However, intermediate values will contribute to the estimate of the standard 
error of mean growth rate.  If only N  and N  are used to estimate r, then any error in their 0 n 

estimation can greatly affect the estimate of r. 

The average growth rate of the population, , is converted to the growth rate of the 

average population  by the equation: 
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Eq. 25 

where: 

Eq. 26 

and the estimated standard error of  is: 

Eq. 27 

where tn  is the number of observations in the time series. 

Estimates from demographic matrix population models - The population growth rate 8 is 
equal to the maximum eigenvalue of a projection or transition matrix (Section 4), which 
can be parameterized with age- or stage-specific estimates of fertility and survival derived 
from field data.  The challenge here is to estimate age- or stage-specific fecundity and 
survival from field data.  If fecundity and survival are constant over time, then the matrix 
population model is deterministic.  If temporal variation in fecundity or survival is 
observed in the field and estimates of that variation can be derived, then fecundity and 
survival parameters in the matrix population model can be functions of time and the 
model is termed stochastic.  Population growth rate of a stochastic matrix model is 
calculated as the average of the maximum eigenvalues for each realization of the 
projection matrix. 

Fertility is a quantification of the per-capita reproductive output by age or stage, or the 
number of surviving offspring produced per individual per projection interval.  The value 
of fertility used in the projection matrix is a product of: 1) survival of the breeding adult 
from the beginning of the time interval to reproduction; 2) the reproductive output of an 
individual; and 3) survival of the offspring from reproduction to the end of the time 
interval: 

Eq. 28 

where F is fertility, S is survival, and m is reproductive output at age i, and p is the 
fraction of the time interval after reproduction.  If a population is censussed or sampled 
immediately after reproduction (postbreeding) then p�0. If a population is censussed 
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immediately before reproduction (prebreeding) then p�1.  Field studies are commonly 
conducted such that p is effectively 0 or 1 and one of the survival terms drops out of the 
equation for fertility. 

Information on reproductive output is a relatively easy demographic parameter to measure 
and can be obtained by direct observation of a random sample of individuals in each age-
or stage-class.  Estimates of clutch or litter size from observations of captive-bred animals 
can also be applied to wild populations (McCallum, 2000), although care must be taken 
to ensure that holding or culture conditions do not unintentionally influence the estimates. 
For example, female fish in a gravid state can be sampled to determine the number of 
eggs produced by age or size class.  Many birds have clutch sizes that rarely vary in size. 
In a prebreeding census, these numbers are then multiplied by the survival rate through 
the remainder of the first year to obtain an estimate of the number of surviving offspring 
produced.  For example, the clutch size for a bird can be multiplied by rates of hatching 
success, survival from hatch to fledging, and survival from fledging through the 
remainder of the first year.  In wild populations, an estimate of breeding propensity, or the 
percentage of females of reproductive age that are breeding, is also required and should 
be included in the fertility equation, unless it can be assumed that all individuals of 
reproductive age breed in a given year. 

Estimation of survival of individuals in a field population is a more difficult problem than 
the estimation of fertility.  Whereas the fate of every individual can be followed in a 
laboratory population, such information may only be available for some fraction of a wild 
population, and this information must be used to make inferences about the population as 
a whole. There are a number of methods of estimating survival that depend on various 
assumptions of detectability of previously identified individuals.  If individuals can be 
marked and followed with certainty, methods of analysis for known fate data can be used. 
Data for individuals that are marked but that may or may not be observed again can be 
analyzed using live-recapture or dead-recovery type models.  If animals cannot be 
marked and later identified, age structure and population size can be used under 
restrictive assumptions to estimate survival (McCallum, 2000).  The three methods 
involving data from marked animals (known fate, live recaptures and dead recovery) are 
further discussed below. 

Known fate - Animals may be individually tagged with radio transmitters such that the 
fate of individuals can be known with certainty through the study period.  Survival can be 
estimated without the confounding problem of nuisance parameters such as capture 
probability, because radio-tagged animals are detected with certainty over time.  The data 
for each time interval of a known fate study are simply the number of tagged animals 
alive and the number dead.  For age-specific survival estimates it is necessary to follow 
animals tagged at a known age.  Known fate data can be analyzed using models in the 
computer program MARK (White and Burnham, 1997). 
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Live recaptures - The survival of animals that are marked and released and only 
reencountered when recaptured alive on subsequent sampling occasions can be estimated 
using open population models of the Cormack-Jolly-Seber type (Cormack, 1964; Jolly, 
1965; Seber, 1965; Lebreton et al., 1992).  Open population models parameterize the 
process of survival.  Survival rate estimates from live recapture data are actually estimates 
of apparent survival: the probability that an animal is alive and has remained in the study 
area such that it is available for recapture (i.e., survival times site fidelity).  The 
assumptions of no tags lost or overlooked, and effectively instantaneous samples relative 
to periods between samples (see abundance estimation procedures above), still apply to 
open population models for survival estimation.  The assumption of equal catchability of 
individuals in the population is not as important for survival estimation as it is for 
abundance estimation because survival is estimated only for marked individuals.  It is 
necessary, however, to assume that the survival of marked and unmarked individuals is 
the same. 

The data for live recaptures is similar to the capture histories described for estimating 
abundance.  These data can be analyzed using models in the computer program MARK 
(White and Burnham, 1997).  Open population models for survival analysis require 
estimation of survival probabilities and recapture probabilities.  These models are flexible 
in allowing estimation of time and group effects on survival and recapture probability.  In 
other words, these parameters can be allowed to vary or be held constant over any or all 
time periods or groups.  [However, for time-specific models, the estimates of survival and 
recapture probability for the final time period are confounded.]  Groups may be 
identified, for example, by age, sex, geographic location, or treatment.  Two-parameter 
models can also be used to identify linear trends in a parameter over time, such as a 
declining survival rate over the time period of the mark-recapture study.  Modeling of 
individual covariate effects is also permitted (e.g., individuals identified by size, 
condition, body burden). 

The approach for analyzing live recapture data should begin with the identification of 
biologically plausible models, and may include a global model in which all parameters 
are allowed to vary (Burnham and Anderson, 1998).  Akaike’s information criterion 
(AIC) can be used to identify the model or models most strongly supported by the data. 
The AIC is a combination of a likelihood value, which measures the discrepancy between 
the model and the data, and a penalty term based on the number of parameters in the 
model (Burnham and Anderson, 1998; McCallum, 2000).  As parameters are added to a 
model, the likelihood value will not increase and may decrease, but the penalty term 
increases.  The model with the lowest AIC has the strongest support from the data and 
best describes the survival and recapture rates during the study period given the data. 
Model averaging can be used to obtain unconditional parameter estimates; that is, 
parameter estimates that are not conditional on one chosen model.  In model averaging, 
parameters are obtained from all tested models weighted by their AIC. 
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Further statistical tests can be performed to obtain a deeper understanding of the data 
(Anderson et al., 1995).  For example, say AIC is used to select a model and the model 
incorporates a linear trend in survival over time.  Likelihood ratio tests can be used to 
determine whether or not there is significant time-specificity in survival rates, that the 
linear trend is significant, and how many parameters should be used to let survival vary 
by time.  A test can also be conducted to determine the significance of the slope in the 
linear trend.  Goodness-of-fit tests can be used to test how well a particular model fits the 
data. 

Dead recoveries - The survival of animals that are marked and released and only 
reencountered when recovered dead can be estimated using dead recovery models.  Dead 
recovery models estimate survival and either reporting probability (the probability an 
animal is reported given it has died; White and Burnham, 1997) or recovery probability (a 
function of both survival and reporting probability; Brownie et al., 1985).  In the Brownie 
et al. (1985) model, which uses recovery probabilities, there is no confounding of 
parameters for time-specific models.  However, modeling a covariate for recovery 
probabilities (e.g., recovery as a function of animal size) is not always clear given that 
recovery is a function of both survival and reporting probabilities. 

In dead recovery studies (also referred to as band-recovery studies), individuals are 
banded and recovered at different times, individuals are recovered only one time, and data 
may be collected by different people.  Band-recovery studies are typically used to 
quantify survival for populations subject to harvest, but can be used in any situation in 
which individuals are found dead and reported.  There can be many more recovery 
periods than banding periods in band-recovery studies, as compared to capture-recapture 
studies which require an equal number of marking and recapture periods.  The 
assumptions for band-recovery studies are similar to those for capture-recapture studies: 
no band or tag loss, no band effect on survival or recovery, and all banded individuals in 
the same cohort have the same survival and recovery rates. 

Dead recovery models can be parameterized for study time or group effects and 
individual covariate effects as described above for live recapture models.  The analysis 
procedure of identifying biologically plausible models a priori and testing models using 
AIC, likelihood ratio tests, and goodness of fit tests also applies for dead recovery 
models. 

Direct estimation of 8 from capture-recapture data - The population growth rate 
parameter 8 can also be estimated directly from capture-recapture data using a model by 
Pradel (1996).  This model is available in the computer program MARK (White and 
Burnham, 1997).  Capture histories of the live recaptures are required for this model. 
Population growth rate 8 is estimated from a likelihood equation that simultaneously uses 
recruitment parameters and apparent survival parameters.  As in the models described 
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earlier for live recaptures and dead recoveries, the Pradel model for population growth 
rate can be parameterized for study time, group, and individual covariate effects. 

5.3	 Measuring Population Structure 
The structure of a population may be defined in terms of the distribution by size or age of 
individuals in a population. A temporally consistent age distribution is a characteristic of 
a stable population, or a population at equilibrium.  Such populations tend to have a 
larger number of smaller or younger individuals and progressively fewer larger or older 
individuals. Changes in age distributions over time can indicate instances of excessive 
mortality (although they can also indicate episodic recruitment events or particularly 
strong recruitment of year classes).  If a population is stressed, say by exposure to a toxic 
contaminant, the structure of the population may be disrupted.  For example, a 
contaminant that adversely affects reproduction and recruitment may result in a 
population dominated by larger or older individuals.  A contaminant that adversely affects 
longevity may result in a population dominated by smaller or younger individuals, to a 
greater extent than in a stable population. 

Knowledge of the age or size structure of a population may show how a population has 
been stressed in the past, but may also show how a population can respond in the short-
term if released from the stressor.  The short-term or transient dynamics of a population 
are heavily influenced by the structure of the population (Caswell, 2001).  Transient 
dynamics show what changes can be expected in the short run, such as during a recovery 
period, whereas asymptotic dynamics of a population show how the population can be 
expected to change in the long run. 

A representative sample of individuals is necessary for characterizing the age or size 
structure of field population.  Many species of fish can be accurately aged by counting 
annual increments formed in scales, otoliths, or other hard body parts.  Such increments 
are discernable because of seasonal differences in growth rates.  Alternatively to direct 
aging procedures, a length-frequency analysis can be performed to assign ages to length 
modes.  Determining the age of bird or mammal species is more problematic, and usually 
requires marking individuals at birth (i.e., a known age) and following them over time. 
However, most species can be easily grouped into stages such as juvenile, sub-adult, and 
adult stages based on size or other physical characteristics. 

5.4	 Measuring Population Persistence 
Population persistence attributes provide information on the viability of a population, or 
the likelihood that a population will persist through some period of time.  There are a 
number of different persistence attributes (see Section 3), not all of which are easily 
estimated for wild populations.  However, population viability analysis (PVA) is the 
method for estimating the probability that a population of a certain size will persist for a 
certain length of time (see Lacy, 1993, 1994). White (2000) describes the data 
requirements and techniques for PVAs.  These include construction of a realistic 
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population model (such as the matrix population model described in Section 4) that 
includes fertility and survival components that contribute to population dynamics over 
time.  Techniques for estimating these parameters are described above.  The model should 
also include a regulation mechanism, such as density dependence, because persistence 
will be overestimated for populations allowed to grow indefinitely.  Realistic descriptions 
of regulating mechanisms, and accurate field data to parameterize them, are usually 
difficult to obtain. 

A PVA should also include information about demographic and temporal variation. 
Demographic variation is important to consider for small populations.  When survival and 
births between time steps are treated as random events, then the number of individuals 
moving from one stage to the next or entering the population via birth is a random 
number. Consider a population with an individual survival rate of 0.5.  About 50% of the 
individuals in the population will survive to the next time step on average, but 
randomness inherent in applying a probability to a finite number of individuals in a 
population may preclude exactly 50% surviving.  Variation in the number surviving can 
be quite large for small populations, and a series of time steps in which less than 50% 
actually survive can lead to extinction in small populations versus large populations. 

Temporal variation occurs when fertility and survival are random variables that can 
change over time in response to environmental condition (White, 2000).  For example, 
years with harsh weather conditions can result in lower fertility and survival rates 
compared to years with mild weather conditions.  It can be difficult to obtain field 
estimates of temporal variance in demographic parameters; long-term studies are typically 
necessary.  However, it is acceptable to borrow information from other studies as they 
relate to the assessment population, or even from a related species for which long-term 
data are available.  Data from other studies may be used to construct rules relating 
temporal variance in a population parameter to an environmental variable.  Note that it is 
acceptable to borrow information on the temporal and spatial variance of demographic 
parameters but not the parameters themselves.  Fertility and survival rate estimates from 
stable or increasing populations are inappropriate for use in models for declining 
populations. 

If a population has a wide geographic distribution (as in Cases 2 and 3 described in 
Section 2), then the inclusion of spatial variation in the PVA may be necessary (White, 
2000). Spatial variation in fertility and survival rates can occur if there is spatial variation 
in the quality of habitat across a landscape.  If movement rates are high, then local 
populations can become depleted as a result of emigration or replenished as a result of 
immigration (Stacy and Taper, 1992).  High movement rates may therefore result in high 
persistence.  The failure to include such variation in a PVA may result in an 
underestimate of population persistence. 
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Individual heterogeneity or variation in fertility or survival rates may also be included in 
PVAs.  This type of variation is typically the most difficult to estimate, especially 
individual heterogeneity in survival rates.  Individual heterogeneity can be quantified 
using live recapture data that includes individual covariates, such as some measure of 
body condition associated with each marked individual.  Rules can then be constructed 
relating individual variation in a population parameter to some characteristic of the 
individual. With appropriate caveats, estimates of individual heterogeneity may be 
borrowed from other studies or related species.  If individual heterogeneity is not included 
in a PVA then viability may be underestimated. 

The major obstacle to PVA is obtaining the data to drive the model (Ruggiero et al., 
1994; White, 2000).  Population persistence is a stochastic phenomenon (White, 2000), 
requiring complex models that include demographic, temporal, spatial, or individual 
variation.  A lack of data may suggest that a simpler model should be used, but White 
(2000) notes that a lack of data means a lack of information – no valid estimate of 
population persistence is possible without adequate information and there is no reason to 
believe that an unstudied field population (i.e., lack of information) is any simpler 
compared to well-studied populations.  The predictive accuracy of several PVA 
approaches as used in conservation biology is evaluated by Brook et al. (2000). 

5.5	 Considering Scalar Issues 
As acknowledged earlier, an issue central to assessment of site-specific risks to 
populations is the scale or scales at which a population should be evaluated.  There is no 
single natural scale for ecological studies (Levin, 1992).  We may investigate the 
characteristics of what can be termed an assessment population (Text Box 1), but an 
assessment population is a dynamic concept that needs to be defined in each application. 
The question then is what spatial and temporal scales define an assessment population. 
Although relevant both to modeling and field-based assessments, the material below 
considers scalar issues from the field-based perspective. 

The spatial scale at which an assessment population is investigated can be defined based 
on biological characteristics of the species and the physical characteristics of the 
landscape in which the assessment population occurs.  Some populations may be 
physically isolated, such as fish in a pond.  Some populations may be connected to other 
populations in a homogenous or fragmented landscape, such as song birds using forest 
habitat.  Quantifying the connectedness of populations over a broad spatial scale is 
particularly important for estimating population persistence.  If immigration and 
emigration are negligible, then spatial variation in the landscape or habitat may divide a 
population into smaller subpopulations, which may be more vulnerable to local 
demographic extinction. 

The temporal scale at which an assessment population is investigated is important 
because different species have different life histories.  Sampling design with regard to 
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temporal scale concerns the time increment between samples and the length of the study 
(or number of time increments sampled).  The time increment between samples or 
observations of a population should not be so great such that important dynamics are 
unobserved.  Time increments should certainly not be longer than the reproductive cycle 
of a species but may be shorter if survival is related to ontogenetic changes in an 
individual. The length of an assessment may be limited because of decision-making 
requirements.  However, longevities and the reproductive strategy of the assessment 
population should be taken into consideration when interpreting study results and in 
making a decision to borrow information from other long-term investigates.  For a short-
lived species, multiple generations may be observed in an assessment; for long-lived 
species, only a fraction of a generation may be observed.  Population-level effects on 
long-lived species may therefore be more difficult to detect in assessments of insufficient 
duration. Population models may be particularly useful for projecting long-term 
responses of long-lived species to stressors. 

The field methods described earlier for estimating population attributes and demographic 
parameters, such as abundance, fertility, and survival, can be used at most any scale 
provided sufficient sampling effort is expended.  These methods may also be used at 
smaller scales and the results extrapolated over larger scales.  For example, abundance 
may be estimated in a random selection of small patches of habitat and extrapolated to 
areas not sampled (Mitro and Zale, 2000a).  Relations between fertility and size or age 
may be used to estimate fertility for a population. 

5.6	 Considering Uncertainty in Field Measurements 
The identification and quantification of uncertainty is critical to risk assessment.  As 
described throughout this section, uncertainty in the estimation of population attributes 
and demographic parameters can arise from a number of sources.  Variability is also a 
characteristic of populations themselves, which respond stochastically to demographics 
and environmental conditions.  Variability in population attributes cannot be reduced, but 
can be estimated.  Ignorance in parameter estimates often can be estimated and reduced 
by increasing sampling effort and therefore the information available to describe those 
parameters. 

The methods described earlier for quantifying population attributes and demographic 
parameters such as abundance and survival are firmly grounded in statistical theory; 
estimation of uncertainty in parameter estimates (also called sampling variance) is 
therefore a straight-forward task.  The computer programs CAPTURE, MARK, POPAN, 
and DISTANCE include estimation of parameter uncertainty.  Program MARK also 
includes a model averaging capability that quantifies a measure of uncertainty in model 
selection, which results in unconditional parameter estimates (i.e., parameter estimates 
that are not conditional on one particular model). 
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If parameter estimates are extrapolated over larger scales, then additional sources of 
uncertainty have to be considered in addition to the uncertainty in the parameter 
estimates. A total estimate of uncertainty should include the variation within each 
parameter estimate, the variation among parameter estimates, and an extrapolation error 
term for making predictions for areas not sampled (Mitro and Zale, 2000a, 2002). 

Estimating the uncertainty or stochasticity of the dynamics of a population requires a time 
series of estimates for the parameter of interest.  If such data are not available for the 
assessment population, an estimate of variance can be borrowed from another study of the 
species or from investigations of related species.  Estimation of temporal or spatial 
variation (also called process variation) requires removing the sampling variance from the 
series of parameter estimates.  Burnham et al. (1987) and White (2000) describe a 
procedure for removing sampling variance from a series of estimates to estimate the 
underlying process variation. 

The uncertainty of parameter estimates can also be incorporated into estimates of 
population attributes such as persistence (White, 2000).  Models to estimate persistence 
have multiple parameters, each with an associated variance; nonzero covariances may 
also be present for parameters estimated from the same data (e.g., age-specific survival 
rates).  The variance of a function of parameters can be estimated using the delta method 
or the parametric bootstrap (Efron and Tibshirani, 1993; White, 2000). 
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6.	 Outstanding Research Issues for Superfund and RCRA 
In a general sense, the concepts, theories, and methods of population ecology are 
sufficiently developed to conduct many kinds of site-specific risk assessment.  Despite 
this, key uncertainties remain with respect to population-level risk assessment at 
Superfund and RCRA sites.  Many of these uncertainties have been captured as research 
needs identified and communicated by the Superfund program in December 2000. 
Similar research needs have been identified through interactions with other Agency 
offices and programs.  These can be summarized as: 

•	 Develop predictive population models to support site-specific risk assessment for 
particular species 

•	 Develop methods that allow extrapolation of effects on individuals, as measured 
in toxicity tests, to populations 

•	 Develop methods that support cross-species extrapolations of effect 

•	 Develop methods and models to estimate effects on populations from exposure to 
multiple stressors 

•	 Develop methods and models that support diagnosis of causes of adverse effects 
on populations, and that can be used to understand the relative risks of multiple 
stressors 

•	 Develop approaches to incorporate spatial and temporal variability in stressor 
concentrations and distribution in assessment of risks to populations, and to 
delimit the spatial scales at which such assessments should be performed 

•	 Develop and describe approaches for defining ecological significance, both of 
effects on populations and of indicators of those effects measured at lower levels 
of biological organization. 

In response to many of these research needs, ORD has developed a draft strategic plan to 
guide its population-level risk assessment research.  The goal of NHEERL’s Wildlife 
Research Strategy (U.S. EPA, 2004) is to develop scientifically valid approaches for 
assessing risks to wildlife and other populations from multiple stressors.  Through a 
series of EPA's Science Advisory Board reviews and consultations, other EPA peer-
reviews, and discussions with Program Offices that reflect the needs listed above, four 
key areas of research have been identified where advances in the science would be 
instrumental in improving population-level risk assessment techniques and criteria 
methodology.  These areas include: 
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1.	 Extrapolation research that improves the basis for predicting toxicological responses 
among wildlife and other species and exposure scenarios of concern 

2.	 Coordinated population biology and toxicology research to improve predictions of 
population dynamics in spatially-explicit habitats 

3.	 Research to advance techniques for assessing the relative risk of chemical and non-
chemical stressors on wildlife and other populations 

4.	 Research to define appropriate geographical regions/spatial scales for population-level 
risk assessments. 

Reflecting a conceptual approach to population-level risk assessment that combines 
aspects of toxicology, population biology, and landscape ecology, the NHEERL strategy 
is focused on three major research objectives: 

1.	 Develop mechanistically-based approaches for extrapolating toxicological data across 
species, media, and individual-level response endpoints 

2.	 Develop approaches for predicting population-level responses to stressors.  Identify 
the responses at the individual level that have the greatest influence on population-
level responses 

3.	 Develop approaches for evaluating the relative risks from chemical and non-chemical 
stressors on spatially structured populations across large areas or regions. 

The activities communicated in the NHEERL draft research strategy to meet these 
objectives are designed to produce methods, models, and findings that will provide 
scientifically-credible approaches to EPA Program and Regional Offices, and States and 
Tribes for conducting  population-level risk assessments and to develop associated 
criteria.  

In addition to ORD’s efforts, the need for improved methods for population-level risk 
assessment has been acknowledged by the broader scientific community.  SETAC has 
taken a lead role in facilitating advancement of the underlying science by organizing an 
international workshop (Barnthouse et al., in review) to explore the management context 
and goals for protecting populations, key scientific issues relevant to describing 
population response to environmental stressors, and the empirical and modeling 
approaches that can be used to characterize population-level effects.  It also developed 
broad guidance for conducting population-level risk assessment in the context of the 
Agency’s ecological risk assessment guidelines.  Working through its Ecological Risk 
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Assessment Advisory Group, SETAC continues to pursue related projects, including 
collation of examples of population-level risks assessments conducted at hazardous waste 
sites. Updates on these projects can be found at 
http://www.setac.org/eraag/era_pop_index.htm. 
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APPENDIX


ECOLOGICAL RISK ASSESSMENT SUPPORT CENTER REQUEST FORM


Request #0006: How do we make the connection between individual measurements and population 
effects; what do we measure? 

Requestor:  Clarence A. Callahan, Region 9 

Problem Statement: How do we make the connection between individual measurements and population 
effects; what do we measure?  For example, if we measure mortality, what can we say about the ultimate 
effect on the population?  What can we say about the effect on a population of  amphipods if we perform a 
laboratory test using amphipods and measure mortality?  How do we make the connection between mortality 
on the individual and an impact on the population?  Can this relationship be shown in both theory and 
practice?  Of course, the question relates to invertebrates (tending to R-strategy), other animals (tending to K-
strategy) as well as plants. 

Background:  For several years the general assumption was that toxicity endpoints, even acute effects, e.g. 
mortality, were representative of population effects.  This is especially true for invertebrate receptors and 
assumed for receptors in general.  Over the last 10 to 15 years, there seems to have been a leap of faith that 
what is true about invertebrates is also true with larger animals.  The relationship between measurements at 
the individual level and effects at the population level is not generally provided in any ERAs that I have read. 
There is generally a statement that "population effects will be addressed" and then a presentation of acute and 
sometime chronic testing in single species laboratory tests.  In other words, toxicity measures using single 
species tests  are assumed to be indicative of population effects although the measurement was mortality of 
individuals in a laboratory test.  This was assumed to be true even when the laboratory test species was not 
the same or sometimes even close to the receptor population assumed to be "represented" in the assessment. 

If we truly are assessing population level effects, how do we make the connection between individual 
measurements and population effects?   If we measure mortality, what can we say about the ultimate effect 
on the population?  What exactly will be the effect on a population of  amphipods if we perform a laboratory 
test using amphipods and measure mortality?  How do we make the connection between mortality on the 
individual and the impact on the population?  This, I believe has to be shown in both theory and practice if 
we continue to maintain this position. 

For larger animals, I don't believe that we are capable of doing justice to anything called an ecological risk 
assessment at a population level.  Then what do we do for sites where larger animals are potentially 
impacted?  What kinds of studies do we perform?  Do we measure individual effects and make that work 
somehow, or do we continue to assume that these individual measures relate to population effects? 

Expected Outcome: Some text to explain the connection between laboratory testing and field results. 
Further explanations about the relationship between the measurement of mortality and the impact to 
populations.  A list of measurements for laboratory tests that can be related to population effects. 
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