SIEMENS

Residual life concepts applied to HV SF₆-gas insulated switchgear considering tightness

EPA's 2009 Workshop on SF_6 -emission reduction strategies Phoenix, Arizona; February 4-5, 2009

Copyright[®] Siemens AG Energy Sector – Power Transmission High Voltage Substations

SIEMENS

Content

- Introduction
- Determinant factors for SF₆-tightness in the past and today
- Aged equipment and residual life-time
- SF₆-monitoring
- Characteristics of SF₆-leaks
- Maintenance strategies
- Maintenance activities
- User experience
- SF₆-GIS concepts regarding tightness
- Conclusion

Introduction More than 40 years of operational life-time experience

Since more than 40 years in service Berlin, UW Wittenau, Vattenfall Europe, 123 kV, 31.5 kA

State-of-the-art 145 kV, 40kA GIS

The equipment is gastight

Copyright[©] Siemens AG

SIEMENS

Page 3

Peter Glaubitz

Determinant factors for SF₆-gas tightness and **SIEMENS** therefore a major factor for residual life of electric power equipment

- Design
- Material
- Type testing
- Production and installation/commissioning
- Operation, maintenance, service
- International standards

.....and trained people for the development of following generation of new equipment as well as experienced people, because of the expected long life-time of the electric power equipment

> Copyright[©] Siemens AG Energy Sector - Power Transmission High Voltage Substations

Equipment design – material SF₆-Tightness of aluminium vessels

SIEMENS

- State-of-the-art production
- Process optimization
- Reliable partner

- Best quality
- Decade-long tightness

Beside requirements on SF₆-tightness, pressure vessel regulations apply as well

Copyright[©] Siemens AG

Energy Sector - Power Transmission High Voltage Substations

Equipment SF₆-tightness Routine testing of vessels

SIEMENS

Automatic integral gas tightness routine test of complete switchgear vessels with Helium (instead of SF₆) guarantees the highest tightness

Page 6

Peter Glaubitz

Sealing systems Design and material

O-ring O-ring Sealing- / groove surface Flange surface

- → Material
- \rightarrow Level of filling / pressing
- \rightarrow High quality of the surface
- \rightarrow Corrosion protection

Sealing systems like this assure the tightness of the GIS for decades. However, especially for outdoor equipment this must be supported by an effective corrosion protection

Page 7

Sealing systems Design and material

- 2 Bearing
- 3 Radial sealing packages

Radial sealing packages are an import factor for SF₆-tightness of the GIS

Copyright[©] Siemens AG

Energy Sector - Power Transmission High Voltage Substations

Page 8

High voltage GIS Type testing on SF₆-tightness

Tightness tests of complete GIS and also components according to IEC are part of the quality assurance process (closed pressure systems)

The tightness of SF₆-GIS can be confirmed nowadays during type testing (integral measuring process with state-of-the-art measurement devices) in the range of <0,01%/year/gas compartment compared with the required <0,5%/year/gas compartment in the relevant standards

Page 9

Copyright[©] Siemens AG Energy Sector - Power Transmission High Voltage Substations

Component design development Cast-Resin partitions

SIEMENS

Beside "external" SF₆-tightness "internal" SF₆-tightness (between 2 gas compartments) has to be assured as well

Production and testing in the factory (including gas permissible partitions and other insulating parts)

Copyright[©] Siemens AG

Energy Sector - Power Transmission High Voltage Substations

Page 10

Production, installation & commissioning SF₆-Leakage detection

In the factory

- All assembled connections
- Assured leakage rate of <0,5%/a/gas compartment

On site

- All made connections
- Assured leakage rate of <0,5%/a/gas compartment

Special care has to be taken during transportation from the factory to the site

Copyright[©] Siemens AG

Page 11 Peter

Peter Glaubitz

SF₆-Tightness – special requirement Seismic qualification

SIEMENS

Peter Glaubitz

Even under severe conditions like earth quakes the SF₆-tightness has to be assured for functional and environmental reasons

8DQ1-550kV-63kA-5000A-50/60Hz

Test lab CESI, Bergamo/Italy

Copyright[©] Siemens AG

SF₆/N₂ Tightness – special requirement Gas Insulated Lines

SIEMENS

Copyright[®] Siemens AG Energy Sector - Power Transmission High Voltage Substations

Page 13

Aged equipment SF₆-Tightness and residual life-time of equipment

*) Usually transportation issues and handling irregularities on site

Today all installed equipment is still gas tight

Copyright[©] Siemens AG

SIEMENS

Energy Sector - Power Transmission High Voltage Substations

Page 14

SIEMENS

SF₆-Monitoring

- The alarm values are based on the electrical functionality of the equipment and used for SF₆-leakage indications as well
- A SF₆-gas monitoring system can be used for early leakage detection and trend analysis of leakage size

Page 15 Peter Glaubitz

SF₆-Gas monitoring system Density, trend curves, trend forecast

Stations Control Unit HMI **Control Unit Coupling Elements** -0000 0000 **Analogue Input** Elements Example: Analogue inputs 4...20mA for 366 gas compartments

Hardware-structure (example)

(Optional: density calculation of pressure and temperature)

HMI+ trend curves (example)

Copyright[©] Siemens AG

Characteristics of SF₆-leaks (appear seldom)

- Processing usually very slow (individual cases like wrong mounted O-ring, cast aluminium vessel)
 - \rightarrow Enough time to react before 1st stage or 2nd stage alarm appears
- Processing very fast (individual case) as component failure, ambient circumstances, malicious damage
 Pressure inside gas compartment drops to ambient pressure level
- Due to corrosion in case of insufficient protective measures during installation (outdoor)
 - → Can process as a little or big leak
- Due to "ageing"
 - → At this moment in time not reached

Regardless the type of SF₆-leak, it has to be repaired as soon as possible after detection

SIEMENS

Maintenance strategies in general for SF₆-HV switch gear

SIEMENS

Aim of all maintenance activities: maintenance costs should be minimized, the intervals between maintenance enlarged, the availability of the equipment increased, environmental issues considered \rightarrow SF₆

Maintenance steps:

- Inspection: determining and assessing the actual condition
- Servicing: preserving the desired condition
- Repair: restoring the desired condition
- Replacement: replacing equipment or systems which are no longer usable

Several maintenance strategies are used in electrical systems:

- Corrective
- Time-based
- Condition-based
- Reliability-centered

Peter Glaubitz

Risk-based

Copyright[©] Siemens AG Energy Sector - Power Transmission High Voltage Substations

B 8 -

SIEMENS

CM Corrective Maintenance

- In a <u>Corrective Maintenance (CM)</u> strategy, replacement or repair is performed only if a failure occurred
- In case where equipment investment costs are low and a fault will have only a minor effect, this procedure may result in the lowest overall costs
- This strategy will be mainly used in systems with lower voltages
- Only severe failure on certain type of equipment will influence the procedure

Not recommended for maintaining of SF₆-tightness

Copyright[®] Siemens AG Energy Sector - Power Transmission High Voltage Substations

Page 19

SIEMENS

CM Corrective Maintenance

TBM Time Based Maintenance

- A <u>Time Based Maintenance (TBM)</u> strategy featuring predefined intervals rooted in empirical feedback, where components are replaced after a specified period of use, has been practiced as the usual maintenance strategy in electrical power systems for many years
- This approach generally produces satisfactory results
- It will not, however, be the most cost-effective option in all cases, since the components will usually not remain in operation up to the end of the life-time which is possible

Partly recommended for maintaining of SF₆-tightness

Copyright[®] Siemens AG Energy Sector - Power Transmission High Voltage Substations

Page 20

SIEMENS

CM Corrective Maintenance

TBM Time Based Maintenance

CBM Condition Based Maintenance

- Since some years, however, there has been a developing shift away from TBM and towards <u>Condition Based Maintenance (CBM)</u>
- CBM is driven by the technical condition of the components
- Under this approach, all major parameters are considered in order to determine the technical condition with maximized accuracy
- For this reason detailed information via diagnostic methods or monitoring systems should be available

Recommended for maintaining of SF₆-tightness

Copyright[®] Siemens AG Energy Sector - Power Transmission High Voltage Substations

Page 21

SIEMENS

CM Corrective Maintenance

TBM Time Based Maintenance

CBM Condition Based Maintenance

RCM Reliability-Centered Maintenance

- A fourth strategy, which additionally include a reliability-based component, is in use
- The aim of this approach is to include the influence on the importance of the equipment in the network and the actual condition of the equipment
- A maintenance strategy is referred to as <u>Reliability-Centered</u> <u>Maintenance (RCM)</u> and it has to be noticed that this RCMmethod is different considering other RCM applications which consider equipment only

Partly recommended for maintaining of SF₆-tightness

Copyright[®] Siemens AG Energy Sector - Power Transmission High Voltage Substations

Page 22

CM Corrective Maintenance TBM Time Based Maintenance CBM Condition Based Maintenance RCM Reliability-Centered Maintenance

RCM is based on experiences and consequences of failures

- failure causes and failure modes for each component have to be identified and than to be subjected to a failure mode effective analyses (FMEA)
- advantage of this method is expected to have cost savings in preventive maintenance and that the costs of implementation will provide a pay back within one year (according EPRI)
- method depends on the correct judgment of failures with FMEA

Partly recommended for maintaining of SF₆-tightness

Copyright[®] Siemens AG Energy Sector - Power Transmission High Voltage Substations

Page 23

CM Corrective Maintenance TBM Time Based Maintenance CBM Condition Based Maintenance RCM Reliability-Centered Maintenance RBM Risk Based Maintenance

- Motto: "operate until it breaks"
- Measure for this method is the Life Cycle Cost LCC
- LCC = Acquisition Cost + Ownership Cost + Disposal Cost
- Saving money for maintenance

Peter Glaubitz

- Saving money for diagnosis/monitoring
- However... risk of failure, risk of cost for unplanned unavailability, outage cost and risk of SF₆-emission

Not recommended for maintaining of SF₆-tightness

Copyright[®] Siemens AG Energy Sector - Power Transmission High Voltage Substations

Maintenance strategy to assure SF₆-tightness and to extend the life-time of the equipment

SIEMENS

Implementation of maintenance strategy for the equipment -in general- and tightness in particular → Gives guidance to end of life decision and has a significant impact on the life cycle cost of the assets

Page 25

SIEMENS

Maintenance activities to assure SF₆-tightness

- To be checked <u>quantitatively</u>: SF₆-pressure gauge, SF₆-dew point, SF₆-acidity, SF₆-density/pressure switch settings, SF₆-trend analysis monitoring
- To be checked <u>visually</u>: bursting disks, any type of SF₆-gas piping, corrosion at bolted flange enclosure joints and other SF₆-related components, particularly on outdoor equipment, damaged or degraded seals, adherence of dust or other foreign material to seals, porosity in enclosure castings or welds, painting
- Avoid openings, take care when opening measuring connections or gas compartments (e.g. for filter material change)
- Use original spare parts only

Peter Glaubitz

Contact OEM for further information/clarification

Copyright[©] Siemens AG Energy Sector - Power Transmission High Voltage Substations

User experience

SIEMENS

The continuous life-time extension of GIS equipment regarding SF₆-tightness and a very low SF₆-emission was and can be reached by:

- Identifying of small SF₆-leaks and immediate repair (any type of monitoring)
- Fingerprint of equipment (can be done together with OEM)
- Improvement of maintenance strategy (less openings)
- continuous training of staff
- using state-of-the-art equipment and measuring devices (observing permanently the market)

Copyright[®] Siemens AG Energy Sector - Power Transmission High Voltage Substations

SF₆-GIS-concepts for life-time extension regarding **SIEMENS** tightness and low SF₆-emission

In the past	State-of-the-art GIS technology
Large gas compartments	Optimized gas compartments
Short maintenance intervals (frequent opening of gas compartments)	2 openings during expected life-time: once after 25 years of service, once during end-of-life procedure after approximately 50 years
Limited SF ₆ -handling instruction	Detailed explained SF ₆ -handling instruction and regulations
SF ₆ -maintenance units with a minimum SF ₆ -recovering pressure of 50-100 mbar	High power SF ₆ -maintenance units with SF ₆ -recovering pressure till 1 mbar
Insensitive SF ₆ -leakage detectors	Sensitive SF ₆ -leakage detectors to find smallest leaks
SF ₆ -measuring instruments without collecting the used gas	SF ₆ -measuring instruments collecting the gas are now offered
Fundamental tests and implementation of new production processes	Using Helium for leakage detection where possible (e.g. housing leakage test)

Since the implementation of the GIS-technology almost 5 decades ago, manufactures have supported the extension of the life time of installed equipment and continuously improve the design of the GIS

Page 28

SIEMENS

Conclusion

- Implementation of adequate maintenance strategy for aged equipment
- Evaluation of each SF₆-leakage for systematical or individual failure
- Gas tight equipment and low SF₆-emission reduce life-cycle costs
- Residual Life of equipment goes in line with low SF₆-emission
- For end-of-life procedures, SF₆ has to be kept in a closed cycle

Thank you for your attention!

SIEMENS

Peter Glaubitz Tel. +49 9131 7 35010 eMail peter.glaubitz@siemens.com

