Estimating and Tracking SF₆ Nameplate Capacity for Electric Power Systems

Paul Stewart ICF International

EPA's SF₆ Emission Reduction Partnership for Electric Power Systems Partner Meeting

> May 13-14, 2010 Energy Plaza Dallas, Texas

Overview

- Nameplate Capacity and SF₆ Emissions Reporting/Why a Presentation on SF₆ Nameplate Capacity?
- How Much Gas is in a Piece of Equipment
- Total System-wide Nameplate Capacity
- Challenges

Nameplate Capacity and SF₆ Emissions Reporting

• Ways to think of NPC:

- NPC of an individual piece of equipment
- System-wide NPC
- Year-to-year changes in system-wide NPC

Why a Presentation on Nameplate Capacity?

- Huge effect on the overall emission rate, which is key relative performance indicator
 - Values that influence emission rate:
 - Total NPC of new equipment (D10)
 - Total NPC of retiring equipment (D11)
 - Total NPC in system

- optional for Partnership reporting

 In proposed Mandatory Reporting Rule, reporting threshold is based on system-wide NPC

Why a Presentation on Nameplate Capacity? (cont.)

- Large Partners have found that system-wide NPC estimates were off up to 40%
- Varying levels of estimation and tracking methods among Partners
 - Some not fully aware of system-wide NPC (optional reporting parameter)
 - Some have been inventorying for years with assistance of asset management software
- So, very good opportunity for information sharing among Partners!

Options for Tracking Equipment Inventory

- Excel spreadsheet
- Computerized Maintenance Management System (CMMS)/Enterprise Asset Management (EIA)
 - e.g., Maximo
- Cost Accounting Management Software
 - e.g., Cascade
- The more tracking systems in place at one time
 the better → enables cross-checks.

How Much is in a Piece of Equipment?

- Capacity of SF₆ in lbs is affixed to equipment or provided in specs
- Measuring SF₆ charged into equipment
 - Mass flow meters
 - weighing cylinders before and after filling equipment
 - Temperature, pressure, and internal volume

• Westinghouse			· 🐨 💿	
Sulfur Hexa Type	afluoride Cir	cuit	Break	er
Rated Max. Volts 72.6 Kv	Rated Voltage Range Factor	K)	Withstand 360	Kv
Rated Continuous Current	Rated Short Circuit Current	Rated Ir	iterrupting Time	Cycles
Frequency 60 Cycles	Normal Operating Pressure A	t 70°F	78-PSI	
Wt. Of Breaker With Gas 2950 Lbs.	Minimum Operating Pressure &	+ 70°E	I29 ESI	
Weight Of SF6 Gas	mannum operating ressure A		60 10	
Instruction Book 33-870-8M=1	Seria - 5.0 -6711292	Date Of	Mfr. 1982	15
Westinghouse Electri	ic Corporation 400P157	HO1 MA	DE IN U.S.A	.0

Total System-wide Nameplate Capacity

- All SF₆-containing equipment should be included in total, including sealed-pressure

 In current proposed rule it is not excluded
- Be careful about assuming all makes and models have same NPC
 - Different vintages can have different capacities

Year-to-Year System-wide Nameplate Capacity

Tracking year-to-year NPC:

-Most practical method:

- Current year NPC = previous year NPC + new nameplate – retiring nameplate
- -Most rigorous method:
 - Bottom-up assessment of equipment at each substation

Year-to-Year System-wide Nameplate Capacity (cont.) Best balance of practicality and rigor?

- Will vary with system. Relatively new systems will typically require less attention.
- Asset Management Software will help squeeze out errors over time, making audits less necessary.
- Have any particular errors been found that could indicate more widespread problem?
- Measure amount of gas inside equipment when opportunities arise.

Year-to-Year System-wide Nameplate Capacity (cont.)

And the worst method is...

doing bottom-up assessment in first year of tracking and then adding/subtracting nameplate capacity changes indefinitely without ever auditing again.

Why?

- Small discrepancies each year can add up
- Original assessment could have been wrong

Challenges

- 1. Equipment has been delivered but will not be commissioned immediately
- For mass-balance to work properly:
 - the equipment must not be accounted for as new nameplate until it is energized.
 - gas inside equipment must be considered as storage inventory until equipment is energized
- Just think of the equipment not yet commissioned as a storage container

Challenges (cont.)

2. How much SF6 is in sealed-pressure equipment?

 Not always provided with equipment

On the smaller equipment, OEMs may not even know

- Crucial to communicate with OEMs

Challenges (cont.)

- 3. How much SF6 does old equipment contain?
 - Labeling can be imprecise, hard to read, or non-existent. Specs might not be on-hand.
 - Talk to OEMs. At a minimum, they can make calculations based on internal volumes, temperature, and pressure.

Challenges (cont.)

- 4. Internal structure of the equipment is altered through refurbishment or upgrade.
 - Change in NPC should be accounted for
 - Change in internal volume can be used to calculate new NPC, and OEMs should provide new NPC if performing job
 - Or, new amount of SF₆ that equipment holds could be weighed (more reliable, equipment needs to be refilled from scratch anyway)

Questions or Comments?

Thank you for your attention

Paul Stewart ICF International 1-202-862-1135 pstewart@icfi.com

