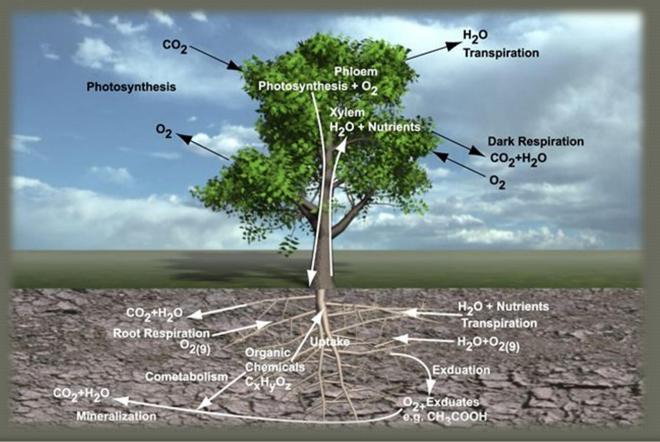
The State of Scientific Knowledge and Research Needs

September 21, 2010

Steve Rock
US EPA
5995 Center Hill Ave.
Cincinnati, OH 45224
513-569-7149
rock.steven@epa.gov

Dr. Kirk Scheckel
US EPA
5995 Center Hill Ave.
Cincinnati, OH 45224
513-487-2865
scheckel.kirk@epa.gov



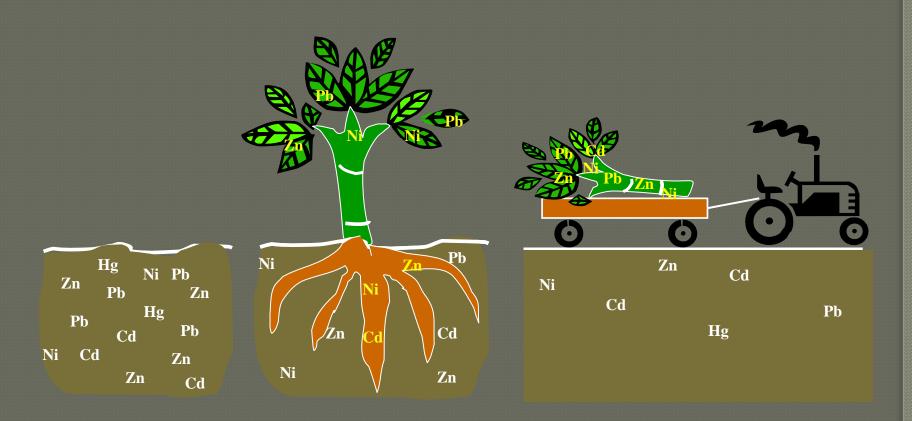
Narrowing the focus

- 1. Plants, Soil, and Contaminants
- 2. Phyto Applications for Urban Soil
 - Metals
 - Chlorinated Solvents
 - Pesticides

Plant Relationships

 Plants influence and are influenced by air, water, and soil in complicated ways.

Plants and Urban Soil


Two mechanisms:

- Phytoremediation
 - Plants help break down organic material including organic contaminants
- Phytoextraction
 - Very rarely plants bioaccumulate metals in above-ground tissue than in soil

Phytoextraction

- Most Urban soils have metal
- Metals cannot be degraded
- Metals do not move easily in soil
- Metals do not move easily into plants
- Metals can shift to more or less bioavailable forms

Phytoextraction of metals from contaminated soil

Lead

- Several well known studies suggest that lead may be cleaned from soil by sunflowers or mustard plantsthese studies are not field verified
- Natural Hyperaccumulators not been found
- Chemical enhancement is needed to mobilize – expensive and unreliable

Cadmium and Zinc

- Cd extraction is prohibitively slow,
 except perhaps with low concentrations
- Zn is phytotoxic in high concentrations and extraction is slow
- Cr lacks a hyperaccumulator, low extraction potential due to insolubility

Chemical enhanced

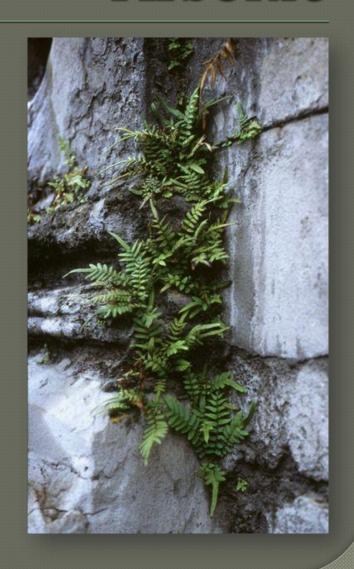
- Can mobilize and solubilize Pb, Cd, Cu,
 Ni, and Zn
- Chelators: EDTA, citric acid, HEDTA,
 EGTA, DTPA, E
- Environmentally risky may mobilize metals into ground and surface water
- Poor performance in field studies
- Expensive

Nickel - the case for natural extraction

- Of the 400 natural metalhyperaccumulating plants discovered, 318 hyperaccumulate nickel
- Sebertia acuminata
 produces a latex
 containing 11.2% Ni

Nickel

- Moderate
 concentrations of Ni
 could be
 remediated in 2
 crops



Mercury

- Plants and planting may volatilize mercury
- EPA does not endorse media switching in most cases

Arsenic

- Pteris vittata quickly accumulates 10-30 times more As than in soil and grows fast
- Easy to propagate, versatile, hardy
- Grows best in warm and humid climates

Solvents

- Most common groundwater contaminant on NPL, can be found in urban industrial soils including TCE, PCE, vinyl chloride, from drycleaners and industrial processes
- Degradation in wetlands, soil and groundwater
- Accumulation in a very few plants

Pesticides

- Field studies show uptake of chlordane, DDT, PCBs by some squash varieties
- Mostly in roots
- Contaminated dust may accumulate on waxy leaves and skins

Using Plants: what works

- Plant cover keeps dust down
- Stabilization in place proper pH, proper phosphate levels controls metal mobility
- Phytoextraction: Ni and As (not lead)
- Phytodegradation: Oil, Solvents TCE,
 PCE, VC, DCE, and some pesticides

Q & A

• Contact information:

Dr. Kirk Scheckel
US EPA
5995 Center Hill Ave.
Cincinnati, OH 45224
513-487-2865

scheckel.kirk@epa.gov