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Abstract 
 

This study conducts a meta-analysis of the value of water quality in the Chesapeake Bay derived 

from separate hedonic property value estimates in 14 Maryland counties. The meta-analysis 

allows us to: 1) investigate heterogeneity of estimates of the value of water clarity across 

counties based on socioeconomic and ecological factors, 2) understand the implication of 

econometric specification choices made in the original hedonic equations for benefit estimates, 

and 3) transfer the benefits out-of-sample to Bayfront counties in Washington, DC, Delaware, 

Virginia, and four additional counties in Maryland. We also investigate the in-sample and out-of-

sample predictive power of different transfer strategies and find that a simpler unit value transfer 

can outperform more complex function transfers. The results illustrate both the usefulness of 

meta-analysis and the challenges of benefit transfer even when estimates being transferred 

represent a common geographic area, environmental attribute, and policy instrument.  
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Explaining Variation in the Value of Chesapeake Bay Water Quality Using Internal Meta-

analysis 

 

Estuaries provide essential habitat for coastal and marine species globally. Many of the 

world’s largest cities are located adjacent to estuaries, which makes these transition zones 

particularly vulnerable to degradation from human activities. At the same time, this proximity 

provides local residents with a host of ecosystem services, from food production to recreational 

opportunities to aesthetic values.  Waterfront and near-waterfront residents are well-positioned to 

benefit from these ecosystem services, as reflected in property price premiums for homes located 

near estuaries (Knight Frank 2014). Hedonic property value analysis thus offers a useful tool for 

researchers looking to quantify the value of estuary cleanup efforts.  

The Chesapeake Bay is one of the largest estuaries worldwide and is adjacent to 

population centers in three US states—Maryland, Virginia, and Delaware—and the District of 

Columbia (DC). Urban and suburban development and agricultural runoff in the Bay watershed, 

along with fish and shellfish disease and over-harvesting in the Bay waters, degraded water 

quality in the Bay and its tidal tributaries during much of the 20th century.  Since the 1980s, the 

Chesapeake Bay has been the focus of numerous state and national restoration efforts. Due to 

limited progress, President Obama issued a 2009 Executive Order calling for coordinated federal 

leadership to advance Bay restoration. In 2010, the U.S. Environmental Protection Agency 

(EPA) and all Bay watershed states agreed to a Total Maximum Daily Load (TMDL), or 

“pollution diet,” to meet target reductions in nitrogen, phosphorus, and sediment by 2025 (EPA 

2013a).  

Walsh et al. (2015) used hedonic property value analysis to estimate the value of water 

clarity improvements in the Chesapeake Bay from reduced nutrient pollution. They focused on 

property transactions in 14 Bayfront counties in Maryland; data limitations precluded developing 



original hedonic estimates in the remaining jurisdictions surrounding the Bay. However, 

quantifying only the benefits to Maryland residents of improvements in Bay water quality would 

underestimate the value of cleanup efforts, given that Maryland encompasses only about half of 

the total property value located near the Bay.  

This study conducts a meta-analysis of the value of water quality derived from hedonic 

estimates in the 14 Maryland counties and a benefit transfer of these values to Bayfront counties 

in DC, Delaware, Virginia, and four additional counties in Maryland (Figure 1).  Meta-analysis 

involves synthesizing multiple estimates, typically across several studies. In this case, we 

synthesize the results from the different study areas (i.e., counties) in the Walsh et al. analysis, 

undertaking an “internal meta-analysis” (Banzhaf and Smith 2007; Kuminoff, Zhang and Rudi 

2010). Since the hedonic estimates are derived from similar datasets, using the same methods, it 

should be easier to isolate the determinants of variation than when the estimates come from 

different studies. 

The meta-analysis allows us to: 1) explain heterogeneity of estimates across counties, 2) 

understand the implication of econometric specification choices made in the original hedonic 

equations for benefit estimates, and 3) transfer the benefits out-of-sample. We also investigate 

the in-sample and out-of-sample predictive power of simpler versus more complex transfer 

strategies. The results illustrate both the usefulness of meta-analysis and the challenges of benefit 

transfer even when estimates being transferred represent a common valuation measure, 

geographic area, environmental attribute, and policy instrument.  

The meta-analysis, benefit transfer, and calculation of total property value impacts from 

improvements in water clarity involve several steps, covered in the sections below. First, we 

briefly discuss the use of meta-analysis for benefit transfer in the environmental economics 



literature. We summarize the methods and results from the Walsh et al. hedonic property value 

study, which provides the primary estimates used in this analysis. We then use meta-analysis to 

derive appropriate summary statistics for the elasticity of house prices with respect to light 

attenuation (KD) from the hedonic regressions in 14 Maryland counties. These summary statistics 

provide a relatively simple estimate of how the elasticities change by distance buffer, give 

insight into how far beyond the waterfront to calculate benefits from improvements in water 

clarity, and provide point estimates for use in a unit value benefit transfer approach.  

Next, we estimate a series of meta-regressions to explain the heterogeneity in property 

value impacts across counties. The parameter estimates from the meta-regressions allow us to 

conduct a benefit function transfer, which is a more complex transfer approach that accounts for 

variation in socioeconomic and environmental conditions throughout the Chesapeake Bay.1 We 

also use the meta-regressions to examine the effect of econometric specification choices on the 

hedonic estimates. We then discuss the meta-regression results and calculate measures of transfer 

error. Finally, we sum the property value impacts from the 14 Maryland hedonic counties 

together with the benefit transfer results from Virginia, Delaware, DC, and the four additional 

Maryland counties to estimate the total appreciation in home values expected to result from 

improvements in water quality due to reduced pollution runoff. We find that the aggregate 

increase in home values for near-waterfront properties from a ten percent improvement in Bay 

clarity varies from about $410 million to $750 million, depending on the specification choice and 

benefit transfer approach.  

Previous Meta-Analysis and Benefit Transfer Applications  

 

                                                           
1 For additional information on the differences between unit value transfer and benefit function transfer, see EPA 

(2010a). 



There have been numerous meta-analyses conducted in the environmental economic 

literature, including applications to air pollution, water quality, endangered species and 

biodiversity, recreational values, land contamination, and mortality risks. Nelson and Kennedy 

(2009) analyzed 140 meta-analyses in environmental and resource economics, over half of which 

have been published since 2004. Most previous meta-analyses of the value of surface water 

quality have focused on estimates derived from stated preference and recreation demand studies 

(Johnston et al. 2003, 2005; Van Houtven et al. 2007; US EPA 2006, 2009, 2010b, 2013b). 

However, a recent working paper included estimates from hedonic property value, travel cost, 

and stated preference studies (Ge et al. 2013). Several meta-analyses have also used hedonic 

estimates in the context of other environmental commodities (Smith and Huang 1993, 1995; 

Nelson 2004; Messer et al. 2006; Debrezion et al. 2007; Kiel and Williams 2007; and Mazzotta 

et al. 2014).   

Despite the extensive use of meta-analytic methods in the environmental economics 

literature, Nelson and Kennedy note several common issues plaguing studies, including sample 

collection, data and treatment heterogeneity, and dependence among observations (multiple 

estimates) from the same primary study. Nelson and Kennedy (2009), Stapler and Johnston 

(2009), Borenstein et al. (2010), Boyle et al. (2013) and Nelson (2013) provide guidance for best 

practices when conducting meta-analysis and benefit transfer.  

A major issue with any benefit transfer exercise is the need for consistency between the 

original studies and the new policy context. Important areas for consistency include the type of 

environmental amenity and metric used to quantify it, baseline conditions and expected 

magnitude of the environmental change, and socioeconomic characteristics of the populations 

(EPA 2010a). If multiple original studies are used to develop the estimates, as is often the case 



with meta-analyses, consistency among the studies is also important. Ideally, the studies should 

use common outcome variables (usually measures of willingness to pay) and valuation methods, 

though analysts can adjust estimates ex post to account for conceptual and methodological 

heterogeneity (Smith and Pattanayak 2002, Bergstrom and Taylor 2006).  

The meta-analysis and benefit transfer conducted here avoids many of these issues. In our 

study, the original empirical estimates and the target area for benefit transfer focus on the same 

environmental amenity, region, and policy change—the improvement in water clarity in the 

Chesapeake Bay resulting from pollution reduction efforts, such as the TMDL. The states 

directly bordering the Chesapeake and tidal tributaries all fall within the mid-Atlantic region of 

the US and share similar socioeconomic and locational characteristics. The analyses also employ 

the same data sources and methods. This methodological homogeneity ensures consistency in the 

welfare measure derived from the estimated change in property values, which is grounded in the 

hedonic property model (Rosen 1974).2   

Property Value Impacts from Chesapeake Bay Cleanup in Maryland  

Primary estimates for this meta-analysis come from an original property value study of 

water clarity in Maryland (Walsh et al. 2015). The authors estimated separate hedonic price 

functions for fourteen Maryland counties bordering the Chesapeake Bay and its tidal tributaries, 

using a dataset of over 200,000 residential property transactions and water quality from 1996 to 

2008.  The authors used an expansive set of controls to represent home, neighborhood, 

socioeconomic, and other factors that influence a home’s value.  

                                                           
2 The measure of interest in this study is the price elasticity with respect to water clarity. Such capitalization effects 

may not necessarily be interpreted as formal welfare measures unless several conditions are met. See Kuminoff and 

Pope (2014) for details.    



Water quality was represented in the regressions by a measure of water clarity: the water-

column light attenuation coefficient, or KD, which is essentially the inverse of water clarity (i.e., 

higher light attenuation is equivalent to cloudier water). These data were provided by EPA’s 

Chesapeake Bay Program, which collects monitoring data twice a month and interpolates the 

data to produce a spatial grid of cells with a maximum size of 1 km2 that covers the entire Bay 

and tidal tributaries. The authors matched each home sale to average KD over the two nearest 

grid cells during the most recent spring and summer (termed “one-year average KD”), when algae 

blooms are most common and clarity is poor. They also used a measure that averaged spring and 

summer KD over the most recent three years as a longer-term indicator of water clarity (termed 

“three-year average KD”).  

The hedonic property value equation posits that the price of a home is a function of its 

individual attributes, including characteristics of the home and parcel (Hit), as well as its location 

and neighborhood (Lit). Distance to the Chesapeake Bay tidal waters (Dit) and local Bay water 

quality levels (WQit), represented by KD, are of particular interest. Di is a vector of dummy 

variables denoting different distance buffers to the waterfront, namely whether a home is on the 

waterfront or is non-waterfront and within 0 to 500; 500 to 1,000; 1,000 to 1,500; or 1,500 to 

2,000 meters from the Bay. Interacting these terms with ln(WQit) allows for estimation of 

separate water clarity coefficients for each distance buffer. The price (pit) of home i sold in 

period t was estimated as: 

0 1 2 3 4ln( ) ln( )it it it t i i it itp WQ       H β L β Tβ Dβ D γ    (1) 

where Tt is a vector of year and quarter indicator variables to control for broader trends and 

seasonal cycles in the housing market. The dependent variable ln(pit) is the natural log of the 

price of home i sold in period t, and εit is an error term. A general spatial model with spatial error 



and autoregressive terms was used to account for spatial dependence among the prices of nearby 

properties (Lesage and Pace, 2009). Hedonic models were estimated separately by county to 

approximate separate real estate markets.  

The coefficients estimated were β0, β1, β2, β3, β4, and of particular interest, γ. In this 

specification, γ can be interpreted as the elasticity of house prices with respect to one-year 

average KD. The authors also considered three other specifications for the water clarity term: the 

log of three-year average KD mentioned above, as well as one-year and three-year average KD 

entered linearly in a semi-log hedonic functional form.  

Figure 2 displays the pattern of the regression results across counties for the waterfront, 

0-500m, and 500-1000m buffers for one illustrative specification—the log of one-year average 

KD. Panel a shows that the coefficients for the waterfront buffer are negative in ten of the 14 

counties; of those, seven are statistically significant with a p-value less than 0.10. Since KD is 

inversely related to water clarity, a negative coefficient is expected and indicates that house 

prices decline as light attenuation increases. None of the positive waterfront coefficients are 

significant. Among the seven counties with significant coefficients, the estimates range from       

-0.033 to -0.156. In this model, the coefficients can be interpreted as elasticities, so a ten percent 

decrease in one-year average KD (an improvement in clarity) yields a 0.33 to 1.56 percent 

increase in waterfront home values across these counties. For non-waterfront homes within 0 to 

500 meters of the Bay, increases in KD have a negative and statistically significant impact on 

property prices in three counties, and seven additional counties have a negative but statistically 

insignificant effect (panel b). The estimates are positive but insignificant in four counties. The 

magnitude of the coefficient estimates is smaller in absolute value than those in the waterfront 

buffer, with significant coefficients ranging from -0.023 to -0.06. Results are mixed in the 500-



1000 meter buffer; four counties have negative and significant coefficients, and two counties 

have small positive and significant coefficients (panel c).  

These results demonstrate that the impact of water clarity on home prices varies from 

county to county, sometimes extending beyond waterfront homes. In general, the magnitude of 

the price impact declines at farther distances from the Bay. Mixed results are also found in the 

remaining distance buffers. This is not necessarily surprising since landscape features and the 

density of homes varies across counties. The results for the other three specifications of water 

quality are qualitatively similar.   

Meta-analytic Summary Statistics  

 

For each county included in the hedonic analysis, we have estimates of the property value 

impact of water clarity at five different distances from the Bay: waterfront, and non-waterfront 

within 500 meters (m), 500 to 1000m, 1000 to 1500m, and 1500 to 2000m of the shore. We 

synthesize the hedonic results across counties by calculating the unweighted and weighted means 

of the elasticities of KD for each distance buffer. These elasticity measures represent the percent 

change in home value from a one percent change in light attenuation.  

Table 1 presents these summary statistics using the Walsh et al. (2015) coefficient 

estimates for four alternate measures of water clarity: logged and linear one-year average KD and 

logged and linear three-year average KD. Column (1) gives the unweighted arithmetic mean 

elasticities for each distance buffer across all 14 counties, or 

14

1

14

i

i
unweighted


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

, where i  



represents the elasticity estimate from the ith county.3 The significance levels are calculated using 

the average variance across the elasticity estimates. 

As discussed by Nelson and Kennedy (2009), Borenstein et al. (2009), and Nelson 

(2013), a more appropriate approach to estimating the mean effect size across multiple estimates 

is to weight each estimate by its inverse variance in order to give more weight to more precise 

estimates. However, the exact calculation of these weights depends on what we believe the 

variation in the primary estimates represents. If the elasticity estimates across the different 

counties reflect a single common elasticity of KD across all study areas, then the true unobserved 

elasticity is the same in all counties, and the variation in the primary estimates would simply be 

due to the random draw from that common distribution. This would indicate the use of a Fixed 

Effect-Size (FES) model reflecting the within-study variance of each estimate. Alternatively, 

different regions surrounding the Bay, with different features and local housing markets, may 

have different underlying price elasticities. In this case, variation in the primary estimates would 

reflect differences in the true underlying price elasticities. This would point to the need for a 

Random Effect-Size (RES) model, reflecting both within-study and between-study variance.4  

For the FES model, mean elasticity estimates for each distance buffer presented in Table 

1 are calculated as
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3 The coefficient estimate from the hedonic regression represents an elasticity when KD is entered in log form; when 

KD is entered linearly, unique elasticities are calculated for each property transaction by multiplying the coefficient 

estimate by KD and dividing by the sale price. We then average these unique elasticities for each county and distance 

buffer.  
4 The Fixed Effect-Size (FES) model is also commonly called a fixed effect model or common-effect model.  

Similarly, the Random Effect-Size (RES) model is often called a mixed effect or random effect model. However, 

these models are conceptually different from the random effects and fixed effects panel data models commonly used 

in other branches of the econometrics literature.  We adopt the FES and RES terminology used by Nelson and 

Kennedy (2009) and Nelson (2013) in order to avoid confusion.   



the 14 observations in any distance buffer is weighted by the inverse variance of the estimate. 

The variance of this mean FES elasticity is calculated as
14

,1

1
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FES ii

V
W
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


.  In the FES setting, 

the weighted mean only accounts for within-study variance, which is appropriate if all estimates 

are drawn from the same distribution. The FES mean is interpreted as an estimate of the single 

true elasticity, assumed to be the same across all counties.   

On the other hand, the RES meta-analysis model is built on the assumption that the true 

elasticity varies across counties.  Such variation could be due to differences in preferences and 

income of local populations, the local housing markets, and the nature of the Bay and its features 

in a county. The RES weighted means presented in Table 1 are calculated as:  
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This is an estimate of the mean elasticity weighted by two sources of variance, a within-study 

variance, Vi, and a between-study variance, T2.  The between-study variance is estimated with 

the DerSimonian and Laird method (DerSimonian and Laird 1986, Borenstein et al. 2010) using 

the inverse variance weights, WFES,i, and the FES mean elasticity estimate, 
FES . The RES 

model is preferred if the elasticities from each county are from different distributions (Harris et 

al. 2008, Borenstein et al. 2010, Nelson 2013). In this framework the weighted mean is 

interpreted as an estimate of the mean of the true effects, which are allowed to vary across 

counties. All three types of means and associated standard errors were calculated using the metan 

command in Stata (Harris et al. 2008).  



Across both unweighted and weighted means, it is apparent from the results in Table 1 

that water clarity is most important to buyers of properties located closer to the Bay. Recall that a 

negative elasticity implies a positive premium for water clarity. For waterfront properties, a ten 

percent improvement in one-year light attenuation leads to a statistically significant appreciation 

of about 0.6 percent, and the effect size is roughly doubled when the three-year clarity measure is 

used. The price gradient also appears to extend beyond waterfront properties, with home price 

increases of roughly 0.1 percent for a ten percent improvement in one-year or three-year light 

attenuation for non-bayfront homes extending out to 500 meters. (A ten percent improvement in 

light attenuation translates to approximately a two to four inch increase in water clarity on 

average, depending on the county.) There is no consistently statistically significant effect on 

home prices beyond 500 meters in the FES and RES weighted means, and no statistically 

significant effect beyond 1000 meters in the unweighted means for either the one-year or three-

year clarity measures. Recent hedonic property value literature has found some home price 

appreciation from increases in water quality extending out beyond the waterfront to a similar 

distance (Walsh, Milon et al. 2011). 

While all three sets of summary statistics produce consistent results out to 500 meters, 

variation in the preferences of local populations, features of the housing market, and other 

socioeconomic and geographic differences across Bay counties could lead to plausible variation 

in the true underlying elasticity of KD. We test the hypothesis of homogeneity of estimates across 

the 14 counties jointly using a chi-squared test (Nelson 2013) and reject the null of no 

heterogeneity across county-level elasticities (p = 0.000 for all specifications and distance 

buffers out to 1500 m, beyond which elasticities across almost all counties are equal to zero). 



This result implies that the elasticities are not drawn from a single distribution, making the RES 

model means the most appropriate summary of the data. 

The RES mean elasticities could be used as point estimates in a benefit transfer using a 

unit value transfer approach. Another approach to benefit transfer would involve examining and 

accounting for factors that contribute to the variation in the elasticities of KD across counties. 

This latter approach is known as a function transfer and is often considered superior to a simpler 

unit value transfer. We estimate the function that we would transfer in the next section using 

meta-regression and then contrast it with a unit value transfer later in the paper.  

Meta-Regression Approach 

 

Statistically significant heterogeneity among the county-level estimates from the initial 

hedonic regressions suggests that property value impacts might vary across counties in the 

Chesapeake Bay region based on socioeconomic characteristics, Bay ecology and associated 

amenities, and perhaps other unobserved sources of heterogeneity. We estimate a meta-

regression model to try to identify such sources of heterogeneity across counties. This model is 

used as the basis for a subsequent benefit function transfer. The meta-regression allows us to 

evaluate the source of the variation among the elasticity estimates, and the function transfer 

accounts for this variation when transferring the estimates to out-of-sample counties in the 

Chesapeake Bay region.  

The meta-regression equation can be written as 

0 1 2 3ids i d s idsL D D                 (6) 

Here γids represents the estimated elasticity of light attenuation in county i at distance d from the 

waterfront estimated using specification s = 1,…, S. Li is a vector of locational variables 

representing socioeconomic and ecological attributes of each county; Dd is a vector of dummy 



variables denoting the five Bay distance buffers; α0, α1, and α2 are vectors of coefficients to be 

estimated; and εid is a normally distributed error term.  

The meta-regression approach also allows us to evaluate the implications of the different 

econometric specifications used in the hedonic analysis. The use of meta-regression to assess and 

compare multiple estimates from the same study is termed “internal meta-analysis” (Banzhaf and 

Smith 2007; Kuminoff, Zhang and Rudi 2010). In particular, we examine the effect of a semi-log 

versus double-log functional form and using a one-year versus three-year average water quality. 

In equation (6), each county i at distance d has S = 4 elasticity estimates, each derived from a 

different specification of the hedonic model. Ds is a vector of dummy variables representing 

these different specifications. 

 We use the RES meta-regression model to estimate (6) (Harbord and Higgins 2008). This 

estimator uses the RES weighting scheme described above to account for both within- and 

between-county variance of the elasticities derived from the initial hedonic regressions. This 

approach gives more weight to more precise estimates and addresses heteroskedasticity, while 

accounting for the fact that there could still be significant unexplained heterogeneity among 

elasticities even after controlling for several covariates (Nelson and Kennedy 2009, Nelson 

2013).5 

                                                           
5 The use of multiple elasticity estimates per county based on different econometric specifications and distances 

from the Bay creates a panel structure in the data. Because estimates within each county are derived using the same 

data, they are not independent. As an alternative to the RES meta-regression, we also estimate a random effects 

panel data model with a county-specific error component to address the correlation among elasticity estimates within 

each county. Nelson and Kennedy (2009) recommend this model to address correlation among estimates when 

multiple estimates per study are included. We use a weighted random effects model with clustered robust standard 

errors, again weighting each elasticity using the RES meta-analytic weighting scheme to address heteroskedasticity. 

These results are presented in the Appendix Table AM-2. The results are extremely similar across the RES and panel 

data estimators. 

 



Previous meta-analyses of the value of water quality have included demographic 

characteristics like income, attributes of the amenity (waterbody type, water quality), and an 

indication of whether participants in stated preference studies are users of the resource (Johnston 

et al. 2005, Van Houtven et al. 2007, Johnston and Thomassin 2010, Ge et al. 2013). Meta-

analyses including estimates from hedonic property models typically include some measure of 

proximity to the resource, and sometimes include median or mean home value instead of income 

as a demographic covariate (Debrezion et al. 2007, Nelson 2004, Kiel and Williams 2007, 

Mazzotta et al. 2014). In order to be useful for benefit transfer, all variables included in the meta-

regression must be available for both the primary study and benefit transfer areas.     

Table 2 shows summary statistics of socioeconomic characteristics in the hedonic and 

benefit transfer study areas, including median income and home value, population density, the 

proportion of housing units that are second homes, and boat ownership per household. Such 

factors could reflect heterogeneity in preferences for water clarity and determine the shape of the 

hedonic price function. We also present GIS-derived environmental variables, which may reflect 

differences in the amenities provided by different portions of the Bay. These variables include 

the percent of the county’s Chesapeake shoreline that borders a tidal tributary (as opposed to the 

Bay main stem), less saline waters (represented by the tidal fresh and oligohaline salinity 

categories), waters at least 1.5 meters deep, and mean spring-summer KD during the study 

period.  

We rely on the 2000 US Census for data on housing values and other socioeconomic 

characteristics.6 The Census block group is the finest level of disaggregation for which data are 

                                                           
6 Data on housing values at the individual parcel level from Virginia, Delaware, and DC were either unavailable, 

incomplete, or cost prohibitive. We do have data on individual property assessed values for Baltimore City, Caroline 

County, Montgomery County, and Worcester County in Maryland, which we use in the benefit transfer for these 

counties. 



available. The 2000 Census is appropriate because (i) it falls within the time span of the hedonic 

analysis (1996 – 2008), and (ii) more recent American Community Survey data only provide 

total and median housing value at the more aggregate Census tract level. Relatively fine spatial 

resolution is important given the localized nature of the property value impacts from Bay water 

clarity. For each county we aggregate the Census data for all block groups falling at least 

partially within 500 meters of the Chesapeake Bay, which are used to approximate the spatial 

extent of the study area. 

As in the original hedonic analysis by Walsh et al. (2015), we use historic data on the 

light attenuation coefficient (KD) provided by the EPA’s Chesapeake Bay Program.  Figure 3 

shows average spring-summer KD over 1996-2008, illustrating how water clarity varies over 

space. Within counties, there is substantial variation in light attenuation between Bay segments. 

Meta-Regression Results 

 

Table 3 presents the results of the RES meta-regressions. Models (1) through (6) include 

different sets of explanatory variables in the meta-regression. The models increase in complexity 

moving from left to right, with more socioeconomic and ecological covariates. Models (2), (4), 

and (6) include interaction terms between the socioeconomic/ecological covariates and a dummy 

variable representing the non-waterfront distance buffers. The non-waterfront interaction terms 

allow us to evaluate whether any of the socioeconomic or ecological variables have different 

effects on the elasticity of KD for properties farther from the shore.  As shown in the lower 

portion of the tables, all models include dummy variables denoting the econometric specification 

of the hedonic equation, as well as non-waterfront interaction terms with these variables. The 

adjusted R-squared statistics show that the explanatory power of the model generally increases as 

more covariates are added, rising from 0.39 in Model (1) to 0.68 in Model (6).     



Model (1) is the most parsimonious model, including only the distance buffer dummy 

variables, median home value, and percent of the county’s shoreline adjacent to waters more than 

1.5 meters deep. The positive coefficients on the distance buffer dummy variables illustrate how 

the property value impact declines with distance from the shore. (Since a negative elasticity of 

KD indicates a positive premium for water clarity, coefficients with a positive sign suggest a 

lower premium for water clarity.) The water depth coefficient is positive and significant, 

indicating that water clarity is more important to homebuyers for properties adjacent to shallower 

water. This result makes sense if residents are more likely to dock boats at properties with deeper 

water, allowing them to travel easily to other parts of the Bay for recreation. The negative and 

significant coefficient on median home value indicates that water clarity is more important to 

homebuyers in wealthier areas. (Median household income was excluded from all of the 

regressions due to collinearity with median home value, but yielded similar results when used as 

an alternative to median home values.)  

Model (2) uses these same covariates but also includes the non-waterfront interaction 

terms. The results of this model suggest that the effect of the water depth variable is no different 

for waterfront versus non-waterfront homes. However, the effect of median home value does 

vary; the total effect is negative and statistically significant in both locations, but for waterfront 

homes the effect is roughly double what it is for non-waterfront homes. (The net impact of a 

variable on non-waterfront homes is obtained by summing the non-interacted with the interacted 

coefficient estimates.)  

Model (3) is similar to Model (1), but it includes population density and the percent of 

the coastline that borders a tidal tributary rather than the main stem of the Bay as additional 

covariates. The results indicate that water clarity is more important for properties located along 



the tributaries and in areas with lower population density. Model (4), which includes non-

waterfront interaction terms, suggests that these effects vary significantly depending on whether 

the property is located at the waterfront. 

Model (5) adds several more covariates, including the percent of housing units that are 

second homes, boat ownership per household, percent of the coastline bordering water of tidal 

fresh and oligohaline salinity, and mean KD. Only the water depth and median home value 

variables remain statistically significant in this model, and the adjusted R-squared is no higher 

than that for Model (3), suggesting that the additional covariates do not help explain variation in 

the elasticity of KD. This is at least in part due to collinearity with the covariates in Model (3).7 

However, when the non-waterfront interaction terms for these variables are included in Model 

(6), the explanatory power of the model jumps considerably. Model (6) indicates that water 

clarity is more important in areas with more second homes and with lower boat ownership, but 

that these effects only hold for waterfront properties. 

Turning now to the coefficient estimates for the econometric specification variables, 

results across all six models indicate that the use of the double-log rather than the semi-log 

model has no significant effect on the elasticity of KD for either waterfront or non-waterfront 

homes. Measuring water clarity using three-year average water quality yields a significantly 

larger effect on home values than the one-year average water quality measure and almost doubles 

the elasticity of KD, though this relationship holds for waterfront homes only. This result 

suggests that waterfront homebuyers may be more aware of and concerned about longer term 

trends in water quality rather than short-term fluctuations.  Alternatively, it could be that the 

three-year measure is more susceptible to biases from other unobserved local trends in housing 

                                                           
7 These five covariates all had variance inflation factors greater than ten, justifying their exclusion from Models (1) 

through (4).  



markets. It also contrasts with the results of a hedonic property analysis of Maine lakes, which 

found no significant difference between the price premiums for water clarity measured using 

current year, previous year, or 10-year average data, although the different point estimates could 

lead to different policy implications (Michael, Boyle, and Bouchard 2000).   

Next we calculate measures of internal and external validity to determine which meta-

regression model(s) might be most appropriate for transferring benefits outside of the 14 

Maryland hedonic counties, following an approach similar to Stapler and Johnston (2009), 

Lindhjem and Navrud (2008), and Bateman et al. (2011). We compare the six meta-regression 

models presented in Error! Reference source not found., as well as the RES mean elasticities 

from Table 1, which provide point estimates for a unit value transfer of the waterfront and non-

waterfront elasticities of KD. As a measure of internal (within-sample) transfer error, we examine 

the absolue value of the difference between each county’s elasticity estimate from the hedonic 

models and the predicted value from the RES mean or meta-regression models, averaged over all 

14 counties.8 As a measure of external (out-of-sample) transfer error, we calculate a similar 

measure for each model by re-estimating the meta-regression models, but leaving out all 

elasticity estimates from one county at a time, getting the predicted value for the excluded 

county, and taking the absolute value of the difference between the excluded county’s elasticity 

and its predicted value. We then average this measure across all counties. Both types of transfer 

error are calculated for the double log one-year and three-year average water quality elasticities 

for both the waterfront and 0-500m (non-waterfront) distance buffers. (We do not examine 

                                                           
8 We use the absolute difference (rather than percent difference) as the measure of transfer error here because it 

allows for symmetric treatment of elasticities regardless of whether they are above or below the predicted values. 

The percent difference yields substantially larger transfer errors when the actual elasticity is close to zero than when 

the elasticity is larger in absolute value than the predicted value, even if the differences are equal in absolute terms. 



transfer error for the semi-log models because the meta-regression results were not statistically 

different from the double log model results.)  

The results in Table 4 show that the three-year average water quality measure always 

yields a higher absolute transfer error compared to the one-year measure (when comparing 

within a model and distance buffer).  This holds across all models, for both in-sample and out-of-

sample transfer errors, and for both waterfront and non-waterfront homes. While a longer-run 

average may better reflect steady-state changes in water quality likely to occur in response to 

long-term policies, this finding suggests that measures spanning broader temporal windows 

could potentially be picking up other unobserved local trends.  

Table 1 also shows that the use of a meta-regression model incorporating socioeconomic 

and ecological covariates can improve in-sample forecasting performance. When using one-year 

average clarity, Models (1), (2), and (4) generate lower transfer errors than the RES mean when 

predicting the waterfront elasticity of KD. However, Models (3), (5), and (6), which are among 

the more complex meta-regressions, yield comparable or higher transfer errors for the waterfront 

elasticity than the RES mean value transfer. All regression models using one-year average KD 

perform poorly compared to the RES mean for the non-waterfront 0-500 m distance buffer 

elasticity. When using three-year average KD, the meta-regression predicted values outperform 

the RES means across all models and both distance buffers. 

When considering the out-of-sample transfer errors, the meta-regression results look 

considerably worse. Transfer errors for both measures of clarity at the waterfront and 0-500m 

distance buffers increase substantially with more complex regression models. In fact, only Model 

(1) outperforms the RES mean in predicting the waterfront elasticity for counties out of sample 

using both the one-year and three-year clarity measures. None of the meta-regression models 



outperform the RES mean for the one-year average KD non-waterfront elasticity, although 

Models (1)-(4) yield lower transfer errors when using three-year average KD. The contrast 

between the internal and external transfer errors may initially seem surprising, but it suggests 

that meta-regression models that control for many socioeconomic and ecological covariates may 

not be generalizable, even to locations with similar characteristics. Given the relatively small 

number of counties in the dataset, the models with more covariates may even be overfitting the 

data rather than describing true underlying relationships among variables.  

These results run counter to a near-consensus that benefit function transfer is preferable 

to unit value transfer (Johnston and Rosenberger 2010).  However, a small but growing number 

of studies support the contention that “simplicity can beat complexity when forecasting” (Nelson 

2013). Such studies have highlighted cases in which unit value transfers outperformed function 

transfers and socioeconomic controls heightened rather than reduced transfer error (Johnston and 

Duke 2010, Lindhjem and Navrud 2008, Barton 2002, Bateman et al. 2011, Nelson 2013). Our 

results echo the finding that simple benefit transfer models—even unit value transfers—can 

outperform complex function transfers including numerous covariates.  They are also consistent 

with Bateman et al.’s (2011) hypothesis that mean value transfers dominate value function 

transfers when the policy site has similar characteristics to the study site.       

Calculation of Benefits 

 

In this section, we estimate the projected property value impacts of a ten percent 

improvement in water clarity in both the 14 Maryland hedonic counties and the remaining 

counties adjacent to the Chesapeake Bay and its tidal tributaries. For the 14 Maryland hedonic 

counties, we apply the estimated elasticities from the hedonic analyses to all residential 

properties within 500 meters of the waterfront in these counties. We focus on calculating 



changes in home values within 500 meters of the Bay because all three approaches for 

calculating mean elasticities suggest that there are increases in home values up to, but not 

beyond, this distance. We then use the meta-analysis results to transfer benefits to properties in 

waterfront counties in Virginia, Delaware, the District of Columbia, and four Maryland counties 

that were excluded from the original hedonic analysis due to data limitations. Using the light 

attenuation coefficients from the hedonic equations is appropriate for this application because a 

ten percent change in mean water quality (corresponding to a two to four inch increase in water 

clarity) is well within the range of variation in the historic data.   

In the calculations that follow, we conduct the benefit transfer to out-of-sample counties 

using two approaches: a unit value transfer using the RES means as point estimates for the 

elasticity of KD at the waterfront and 0-500m, and a benefit function transfer using the meta-

regression results to predict unique elasticities of KD for each out-of-sample county and distance 

buffer. We use the double log one-year and three-year average water quality specifications to 

calculate the value of improved water clarity to property owners. As already noted, the meta-

regression model shows that the choice of a semi-log versus a double log specification has no 

significant effect on the results. 

First we calculate in-sample benefits in the 14 Maryland hedonic counties. We match 

each residential property within 500 meters of the Bay with a light attenuation elasticity based on 

its county and distance from the Bay. We write this expression as: 

 *% *icd cd i icdV WQ V            (7) 

where Vicd is the assessed value of property i in county c at distance d. The change in value at the 

property is denoted as 
icdV , % iWQ  is the percent change in water clarity closest to property i, 



and γcd is the light attenuation elasticity estimate corresponding to county c in distance buffer d.9 

The data on assessed property values, which were available for the year 2009, were adjusted to 

2010 values using the Federal Housing Finance Agency’s Housing Price Index (HPI), which 

accounts for regional differences in appreciation in home prices over time.10 

Table 2 shows that homes within 500 meters of the Bay are estimated to increase by 

$1397, on average, in response to a ten percent improvement in one-year water clarity. As 

expected, a much larger increase in value is expected at waterfront homes, amounting to an 

average of $6098 per home; non-waterfront homes within 500 meters of the water appreciate by 

$389. This difference occurs because waterfront homes both have larger light attenuation 

elasticities (in absolute value) and higher assessed values. (The HPI-adjusted average assessed 

value of waterfront homes in the dataset is $645,194, compared to the adjusted average assessed 

value of non-waterfront homes within the 500-meter buffer of $ 234,684.)  When the three-year 

water clarity measure is used, the results are roughly double: a $12,709 average increase for 

waterfront homes, and a $520 increase for non-waterfront homes within 500 meters of the water. 

To calculate total benefits across these 14 counties, we sum the estimated house-specific 

price increases across all homes within the 500 meter and waterfront buffers. Table 7 presents 

these aggregated property value increases and 95 percent confidence intervals, based on both the 

one-year and three-year water clarity models. The aggregate increase in home values among 

these properties is $238 million using the one-year measure and is $456 million using the three-

                                                           
9 We apply the estimated elastiticites (and corresponding 95 percent confidence intervals) in the calculation of net 

benefits for all counties and distance buffers regardless of the statistical significance and sign of the estimated 

elasticity of KD; in some cases these elasticities are positive, though not significantly different from zero.  
10 Federal Housing Finance Agency (FHFA), http://www.fhfa.gov/Default.aspx?Page=81, accessed January 13, 

2013. 

http://www.fhfa.gov/Default.aspx?Page=81


year measure. More than three-quarters of the increase accrues to waterfront properties, even 

though they make up only 18 percent of homes within 500 meters of the Bay.  

A similar approach is used to calculate benefits in Virginia, Delaware, the District of 

Columbia, and the four additional counties in Maryland. Similar to expression (7) above, we 

calculate  

  ˆ * % *
N N

icd cd i icd
i i
V WQ V           (8) 

Here N

icdi
V  represents total housing stock value of all N homes within 500 meters of the Bay 

in county c, 
iWQ  is still the change in water clarity experienced by home i, and ˆ

cd  is the 

predicted value of the elasticity of light attenuation for homes in county c and distance buffer d.11  

 For Baltimore City, Caroline County, Montgomery County, and Worcester County, we 

calculate total housing value by simply summing the assessed values of all properties within each 

Bay distance buffer and adjusting from 2009 to 2010 values using the HPI. Calculating housing 

stock value within each distance buffer for block groups in Virginia, Delaware, and DC is more 

complicated because we do not have parcel-level data. We use block-group level housing data 

from the 2000 Census, updated for appreciation in home values from the year 2000 to 2010 using 

the HPI. According to the HPI, depending on the metropolitan area home prices increased 

between 57 and 91 percent in the counties surrounding the Chesapeake Bay between 2000 and 

2010.12 We also make additional adjustments to the data because (i) the Census only provides 

data on the value of owner-occupied housing but not rental or vacant properties, (ii) the number 

                                                           
11 Block groups in Virginia, Delaware, and DC, were matched to the single nearest grid cell to determine the change 

in water clarity rather than the two nearest grid cells. 
12 The HPI is not available for a few areas surrounding the Chesapeake Bay that are outside of a Metropolitan 

Statistical Area (MSA) or Metropolitan Statistical Area Division (MSAD). For these areas, we impute the change in 

housing prices by taking the HPI from the nearest MSA or MSAD on the same side of the Bay as the corresponding 

block group. 



of households in each county changed from 2000 to 2010 and (iii) Census block groups do not 

fall neatly within the Bay distance buffers used in our analysis. The Appendix provides more 

detail on these adjustments.  

We use two approaches to estimate ˆ
cd . The first corresponds to the unit value transfer 

approach and uses the RES mean elasticity for each distance buffer as the estimate of the value 

of improved water clarity in each out-of-sample distance buffer (reported in Table 1). The 

second approach uses a function transfer to estimate ˆ
cd for benefit transfer counties. Specifically, 

we use the coefficient estimates from the meta-regression models shown in Table 3 and then 

plug into the right-hand side the covariate values specific to each individual county and bay 

distance buffer. This yields predicted values for the individual elasticities corresponding to each 

county and distance buffer.  

Table 6 compares the elasticities generated by the unit value approach, which are the 

same for all counties, with the mean elasticities yielded by the six meta-regression models for 

each state in the benefit transfer region using the one-year average KD measure. It is apparent 

that the results are more variable across states and are larger in absolute value (seeming at times 

implausible) when the more complex meta-regression model results are used.  When using the 

less complex models, the average results for DC, Delaware, and Virginia are roughly similar in 

magnitude to the RES means. The four Maryland benefit transfer counties pose an exception in 

that the meta-regression results for the 0-500m buffer across all six meta-regression models are 

counterintuitive in sign. These results are dominated by Baltimore City, which is bordered 

entirely by deep water (recall that the deep water dummy variable is associated with a smaller 

premium for water clarity). For the subsequent benefit transfer calculations, we use the results 

from Model (1) because it has the lowest out-of-sample transfer error. 



Table 7 presents the benefit transfer results using the unit value and function transfer 

approaches from 10 percent improvements in one-year and three-year average KD. The results 

show that the majority of property value increases in the benefit transfer areas occur in Virginia, 

regardless of the transfer approach.  The unit value and function transfer approaches yield similar 

results for Delaware. However, the function transfer, which projects the elasticity of KD based on 

median property values and water depth, generates substantially larger benefits for DC than the 

unit value approach because of DC’s relatively high property values. In the four Maryland 

benefit transfer counties, the function transfer yields negative benefits (i.e., projected 

depreciation in home values) consistent with the predicted elasticities discussed above, again 

because Baltimore City, where a much larger proportion of the shoreline borders relatively deep 

water than in any of the 14 Maryland hedonic counties comprises most of the property value in 

the area.   

Summing the results from the hedonic and benefit transfer areas yields a total net present 

value increase in property values of $411 to $749 million, depending on the benefit transfer 

approach and the temporal duration of the water clarity measure. The 95 percent confidence 

intervals around these point estimates are overlapping but are also fairly wide: $121 to $759 

million and $210 to $1286 million, respectively. In particular, while the three-year average 

clarity values are considerably larger than the one-year clarity values, they also have a wider 

confidence interval, indicating that they are less robust.  

The result that benefits nearly double when the benefit transfer results are added to the 

property value increases from the 14 Maryland hedonic counties is sensible given the distribution 

of total owner-occupied housing value across the different areas (Table 2). The 14 Maryland 

hedonic counties comprise 46 percent of owner-occupied property value in Census block groups 



within 500 meters of the waterfront along the Chesapeake Bay. Property value increases in the 

14 Maryland hedonic counties are somewhat larger as a percent of total benefits, representing 

roughly 60 percent of the property value increase.   

Conclusions  

 This study conducts an internal meta-analysis of results from the largest hedonic property 

value study of water quality conducted to date, which focused on Maryland counties bordering 

the Chesapeake Bay. Our approach allows us to examine the sources of variation in the estimated 

value of water quality across Maryland counties and to transfer those values to other states and 

counties bordering the Chesapeake tidal waters.  The results can be useful to analysts, 

policymakers, and members of the public interested in evaluating the benefits to near-waterfront 

property owners of Bay pollution cleanup efforts such as the TMDL.  

 The results also provide some insights about methods for estimating the property value 

impacts of water quality and for benefit transfer. The meta-regression results suggest that the 

value of water clarity is greater in areas with shallower water and higher property values. 

Including additional socioeconomic and ecological variables in the regression worsens its out-of-

sample predictive power. Indeed, a simple benefit transfer approach using the RES mean of the 

water clarity elasticities as a point estimate for the value of water clarity outperforms most of the 

meta-regression based function transfers that we evaluate.   

 The comparison across water quality specifications shows that the functional form (semi-

log versus double log) has negligible impacts on estimates of the value of water clarity. 

However, the duration of the water quality measure has impacts that are significant both 

statistically and economically: the estimated value of three-year average water clarity is roughly 

double the estimated value of one-year average water clarity for waterfront properties, which 



could indicate that residents are more aware of or concerned about longer term trends in water 

quality rather than annual variations. The three-year average results have a larger confidence 

interval and transfer error, however, suggesting that there is greater uncertainty about these 

estimates.  

These results highlight the questions that remain about the best approaches for estimating 

the value of water quality improvements in policy contexts where analysts rely on benefit 

transfer.  Adjusting property value estimates to account for local socioeconomic and ecological 

variation is intuitively appealing, but our analysis does not provide empirical support for doing 

so, at least not in the context of relatively homogenous environmental commodities and housing 

markets.  Mean values may perform somewhat better, but we urge caution when considering the 

transfer of values estimated here far-afield of the study region given the iconic nature of the 

Chesapeake Bay. Further meta-analyses incorporating cross-regional estimates of the value of 

water quality using the hedonic property value approach would shed light on these issues.  
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Figure 1: Hedonic and Benefit Transfer Counties 

 



Figure 2a - c: KD Elasticity Values and Statistical Significance by County  
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Figure 3: Chesapeake Bay Spring-Summer Average Light Attenuation (KD), 1996-2008 
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Table 1. Mean KD Elasticities for Properties within 2,000 m of the Bay across 14 Maryland 

Counties  

Distance 
from Bay 

Specification Unweighted 
mean elasticity 

RES mean 
elasticity  

FES mean 
elasticity  

Waterfront Semilog, 1 yr -0.051*** -0.056*** -0.057*** 
 Double log, 1 yr -0.060*** -0.063*** -0.067*** 
 Semilog, 3 yr -0.112*** -0.114*** -0.090*** 
 Double log, 3 yr -0.129*** -0.123*** -0.027*** 
0-500m Semilog, 1 yr -0.016*** -0.014** -0.009*** 
 Double log, 1 yr -0.016** -0.012* -0.008** 
 Semilog, 3 yr -0.001 -0.010 -0.015*** 
 Double log, 3 yr -0.005 -0.009 -0.013** 
500-1000m Semilog, 1 yr -0.019*** -0.013 -0.004 
 Double log, 1 yr -0.023*** -0.013 -0.003 
 Semilog, 3 yr -0.011 -0.008 -0.011** 
 Double log, 3 yr -0.017 -0.008 -0.010* 
1000-1500m Semilog, 1 yr -0.008 0.002 0.008** 
 Double log, 1 yr -0.013 0.001 0.012*** 
 Semilog, 3 yr -0.009 0.003 0.003 
 Double log, 3 yr -0.015 0.002 0.010 
1500-2000m Semilog, 1 yr 0.004 0.001 0.001 
 Double log, 1 yr 0.007 0.003 0.004 
 Semilog, 3 yr 0.014 0.004 -0.001 
 Double log, 3 yr 0.018 0.011 0.006 

Note: The inverse variances of the elasticity estimates are used as weights in the RES and FES means.  

*** p<0.01, ** p<0.05, * p<0.1  

Standard errors calculated using Stata metan command (Harris et al. 2008) 
 

  



Table 2: Chesapeake Bay Region Characteristics by State: Benefit Transfer and Hedonic 

Study Areas  

  Benefit transfer area  Primary 
study area 

 Delaware District of 
Columbia 

Virginia Maryland  Maryland  

Socioeconomic characteristics*      

Total owner-occupied housing value 
(billion 2000$) 

1.7 2.8 46.6 2.4 44.8 

Median owner-occupied housing value 
(2000$) 

134,372 174,974 122,809 172,600 135,340 

Median income (2000$) 56,567 45,285 46,459 59,538 50,465 

Population density (people per m2) 0.0003 0.004 0.0007 0.001 0.0007 

Second homes (% housing units) 0.5% 1.7% 4.4% 1.0% 4.1% 

Number of registered boats per household 0.012 0.005 0.014 0.006 0.021 

GIS-derived ecological variables      

% shoreline on a tidal tributary 100% 100% 86% 100% 78% 

% shoreline along tidal fresh water 50% 100% 40% 45% 15% 

% shoreline along oligohaline water 50% 0% 14% 11% 27% 

% shoreline bordering water at least 1.5 m 
deep 

33% 29% 39% 35% 30% 

Mean KD 1996-2008 (m-1)  3.3 2.9 2.4 3.0 2.7 

Number of counties 2 1 44 4 14 
*All socioeconomic characteristics are derived from the 2000 U.S. Census except for the number of boats per 
county. Information on the number of boats registered in each county by the U.S. Coast Guard in 2011 was 
downloaded from www.boatinfoworld.com (accessed Nov. 15, 2012); we then normalize boat registration by 
Census data on the number of households per county. We use Census data on the number of vacant homes for 
seasonal, recreational, or occasional use as a proxy for the number of second homes. Census-derived 
socioeconomic characteristics for each county are calculated using data on block groups within 500 meters of the 
waterfront. Total owner-occupied housing value is calculated by summing across counties; all other summary 
statistics are calculated as simple averages across counties.   

http://www.boatinfoworld.com/


Table 3: Meta-regression Results (dependent variable: elasticity of KD from Walsh et al. 

(2015) spatial hedonic regressions)  
  (1) (2) (3) (4) (5) (6) 

 Socioeconomic & ecological covariates  
Non-waterfront distance 
buffer 0.041** -0.063 0.041** -0.0022 0.041** -0.098 

 (0.018) (0.046) (0.018) (0.066) (0.018) (0.12) 

≥ 500 m distance buffer 0.0088 0.0087 0.0079 0.0075 0.0079 0.0085 

 (0.0095) (0.0094) (0.0092) (0.0086) (0.0092) (0.0079) 

% coastline water depth ≥        
1.5 m 

0.13*** 0.18*** 0.19*** 0.12** 0.23*** 0.28*** 

(0.020) (0.048) (0.024) (0.053) (0.042) (0.087) 

Median home value  -5.7e-7*** -1.3e-6*** -7.1e-7*** -1.3e-6*** -1.1e-6*** -2.2e-6*** 

 (1.3e-7) (3.0e-7) (1.37e-7) (3.1e-7) (3.1e-7) (6.2e-7) 

% coastline along tributary   -0.086*** 0.050 -0.052 0.099 

   (0.022) (0.054) (0.049) (0.11) 

Population density   15.8*** -31.8*** 4.6 -97.6*** 

   (5.2) (11.6) (12.8) (27.6) 

% second homes     -0.81 -4.0*** 

     (0.65) (1.3) 

Boats per household     1.1 4.1* 

     (1.2) (2.3) 

% tidal fresh salinity     0.031 -0.0086 

     (0.050) (0.10) 

% oligohaline salinity     0.022 0.11 

     (0.058) (0.12) 

Mean KD (1996-2008)     -0.011 0.008 

     (0.019) (0.039) 

Covariates interacted with non-waterfront dummy variable 

Water depth ≥ 1.5 m  -0.057  0.078  -0.083 

    * non-waterfront  (0.053)  (0.059)  (0.096) 

Median home value  8.5e-7**  7.1e-7**  1.5e-6** 

    * non-waterfront  (3.4e-7)  (3.4e-7)  (6.9e-7) 

% coastline along tributary    -0.16***  -0.19* 

    * non-waterfront    (0.058)  (0.12) 

Population density    57.5***  123*** 

    * non-waterfront    (12.8)  (30.3) 

% second homes      3.9*** 

    * non-waterfront      (1.5) 

Boats per household      -4.0 

    * non-waterfront m      (2.6) 

% tidal fresh salinity      0.033 

    * non-waterfront      (0.11) 

% oligohaline salinity      -0.11 

    * non-waterfront      (0.13) 

Mean KD (1996-2008)      -0.017 

    * non-waterfront      (0.044) 

Specification variables 

3-year average water quality  -0.046** -0.047** -0.046*** -0.041** -0.047*** -0.043*** 

 (0.018) (0.018) (0.018) (0.017) (0.018) (0.016) 

Double log model -0.0010 -0.0032 -0.00083 -0.0012 -0.0016 -0.008 



 (0.0181) (0.018) (0.018) (0.017) (0.018) (0.016) 

3-year average water quality 0.056*** 0.056*** 0.053*** 0.047** 0.055*** 0.048*** 

    * non-waterfront (0.020) (0.020) (0.019) (0.018) (0.020) (0.018) 

Double log model 0.0015 0.0039 0.0012 0.0018 0.0019 0.0089 

    * non-waterfront (0.020) (0.020) (0.019) (0.018) (0.019) (0.017) 

Constant -0.018 0.067 0.039 0.071 0.087* 0.19* 

 (0.023) (0.041) (0.029) (0.061) (0.051) (0.11) 

Adjusted R-squared 0.39 0.40 0.44 0.55 0.44 0.68 

Observations 280 280 280 280 280 280 

Standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1 

 

Table 1: Internal and External Absolute Transfer Error across Meta-Analysis Models of 14 

Maryland Counties 

 RES 
mean 

Meta-regression model 
 (1) (2) (3) (4) (5) (6) 

1-year average log KD       
In-sample transfer error       
     Waterfront  0.051 0.046 0.047 0.053 0.046 0.051 0.053 
     0-500m (non-waterfront)  0.018 0.024 0.023 0.021 0.021 0.025 0.022 
Out-of-sample transfer error       
     Waterfront  0.055 0.053 0.069 0.067 0.084 0.129 0.304 
     0-500m (non-waterfront)  0.019 0.026 0.027 0.028 0.026 0.106 0.080 
3-year average log KD        
In-sample transfer error        
     Waterfront  0.125 0.116 0.110 0.121 0.111 0.120 0.100 
     0-500m (non-waterfront)  0.052 0.036 0.039 0.037 0.041 0.039 0.042 
Out-of-sample transfer error        
     Waterfront  0.135 0.127 0.136 0.137 0.155 0.179 0.348 
     0-500m (non-waterfront)  0.056 0.040 0.043 0.046 0.048 0.115 0.087 

 
 

Table 2: Net Present Value Mean Home Price Increases for Near-waterfront Residential 

Properties in 14 Maryland Hedonic Counties from 10 Percent Water Clarity Improvement 

Distance from Bay Mean home price 
increase (2010$) -  
1-year KD 

Mean home price 
increase (2010$) – 
3-year KD 

Number of 
properties 

Waterfront $6,098 $12,709 30,113 
0-500m (non-waterfront) $389 $520 140,332 

All homes within 500m $1,397 $2,674 170,445 

  



Table 6: Weighted mean predicted elasticities in benefit transfer counties, by state* (1-year 

KD) 
  RES 

mean 
(1) (2) (3) (4) (5) (6) 

Delaware Waterfront -0.06 -0.05 -0.05 -0.07 -0.03 -0.03 0.20 

 0-500m -0.01 -0.01 -0.01 -0.03 -0.05 0.01 -0.04 

DC Waterfront -0.06 -0.08 -0.11 -0.05 -0.21 -0.08 -0.49 
 0-500m -0.01 -0.04 -0.03 -0.00 0.03 -0.03 0.05 
Virginia Waterfront -0.06 -0.06 -0.07 -0.06 -0.08 -0.06 -0.16 
 0-500m -0.01 -0.02 -0.02 -0.01 -0.00 -0.01 0.01 
Maryland (4 counties) Waterfront -0.06 -0.07 -0.09 -0.07 -0.12 -0.07 -0.16 
 0-500m -0.01 0.08 0.07 0.16 0.19 0.17 0.20 

*Predicted elasticities are weighted by the value of the housing stock in each county and distance buffer. 

 
 

Table 7: Property Value Increases from Ten Percent Water Clarity Improvement  

 Aggregate home price increase,   
1-year KD (million 2010$)  

(95% confidence interval*) 

Aggregate home price increase,   
3-year KD (million 2010$)  

(95% confidence interval*) 

Hedonic study area   

Maryland (14 counties) $238  
($58-419) 

$456 
($203-708) 

Benefit transfer area Unit value transfer Function transfer Unit value transfer Function transfer 
Delaware $3 

($1 - $4) 
$2 

($1 - $4) 
$5 

($1 - $8) 
$3 

($1 – 5) 
DC $9 

($3 - $16) 
$18 

($9 - $27) 
$15 

(-$1 - $31) 
$20 

($11 - $29) 
Virginia $157 

($57 - $258) 
$181 

($42 - $320) 
$269 

($12 - $526) 
$246 

($105 - $386) 
Maryland (4 counties) $4 

($2 - $8) 
-$24 

(-$37 - -$11) 
$4 

(-$5 - $13) 
-$26 

(-$40 - -$13) 

Total $411 
($121 - $705) 

$415 
($73 - $759) 

$749 
($210 - $1,286) 

$699 
($280 - $1,115) 

*Note: The confidence interval only accounts for uncertainty in the predicted elasticity of KD. It does not account for 

uncertainty in baseline property values. 

 
 

 



Appendix: Census housing value data adjustments for benefit transfer 

 

Housing value data from the Census have several limitations that we address through a 

series of adjustments.  As already noted, we use data from the 2000 Census because housing 

value is available at the relatively spatially refined block group level.  However, use of data from 

2000 could lead to a misrepresentation of property value impacts in 2010 (the reference year 

chosen for the analysis) because both the number of housing units and the average value of 

housing units changed over time.  We use the HPI to adjust for region-specific changes in house 

prices over time, and we use county-level Census data on the change in the number of 

households from 2000 to 2010 to adjust for population growth. (Because Census block group and 

tract boundaries change over time, it was only feasible to determine the change in the number of 

households at the county level.)  In addition, the Census only provides data on housing values for 

owner-occupied houses.  Rental and vacant properties (including second homes) comprise a 

substantial proportion of the housing stock in counties bordering the Chesapeake Bay —from 15 

percent (in Delaware) to 60 percent (in DC).   

We use a regression-based approach to make these adjustments, relying on the fact that 

we have a more complete dataset of property values for the Maryland counties in our analysis 

from MDPV that includes the assessed values of all residential properties (owner-occupied and 

otherwise) in 2009.  We use an ordinary least squares regression to estimate the relationship 

between MPDV data on total assessed property values, which we aggregate up from individual 

home assessed values to the Census block group level, and Census data on owner-estimated 

housing values, also at the block group level.  Specifically, we estimate the following 

relationship:     
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  is the sum of the value of all n1 owner-occupied and n2 non-

owner-occupied properties in the Census block group, calculated using MDPV data updated to 

2010 values with the HPI. 
1
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n

iV is the sum of the value of only the n1 owner-occupied 

properties in the block group, taken from the 2000 Census data and updated to 2010 values. 2010v

is the average value of owner-occupied properties in each Census block group, again updated to 

2010 values, which is multiplied by n2 to obtain a proxy for the total value of non-owner 

occupied properties. 1  and 2  are coefficients to be estimated, and b  is a normally distributed 

error term. 1  will be equal to one if total owner-reported home values documented by the 

Census are roughly equal to the total of the assessed home values used by Maryland counties for 

tax assessments.  2 will be equal to one if both owner-reported values are equal to county 

assessed values and if rental and vacant properties have home values equal to owner-occupied 

properties. The model is estimated without a constant term.   

 Table A-1 reports the estimates of the relationship between total MDPV assessed home 

values and Census home values in Maryland block groups.  The R-squared of 0.85 indicates that 

the Census data are highly correlated with the MDPV data.  Both coefficients are significantly 

greater than zero. 1  is 0.87, suggesting that home values reported by owners to the Census are 

somewhat higher than those recorded by county assessors.  2 is much smaller, at 0.12, which 

indicates that rental and vacant properties have a much lower average value than owner-occupied 

properties.  Assuming these relationships estimated from the Maryland data also hold in DC, 



Delaware, and Virginia, we predict the total value of the housing stock in each block group in 

2010 in these other states to for non-owner-occupied properties and the change in population 

over 2000 to 2010. 

Next we adjust the data to account for the fact that Census block groups do not neatly 

correspond to the Bay distance buffers over which the estimated price impact of water clarity 

varies.  We again rely on the MDPV data on the assessed values of residential properties to 

calculate the fraction of the housing stock value in each block group in Maryland that lies either 

along the waterfront or within 500 meters of the Bay.  We regress the percent of block group 

housing stock in each of the two distance buffers on several geographic variables in two separate 

equations.  Independent variables include the percent land area in each block group within 50 

meters (as a proxy for waterfront area) and 500 meters of the waterfront, and the distance of the 

block group to the Bay (all calculated using GIS tools).  We also include the median housing 

value, percent of housing units that are second homes, and population density to control for the 

fact that population and housing values may not be evenly distributed over space and could be 

correlated with these socioeconomic characteristics.  We estimate each equation using a two-

parameter beta distribution model that yields predicted values bounded by zero and one (Buis et 

al., 2003).   

Table A-2 reports the results from the regressions explaining the percent of block-group 

housing stock within each distance buffer.  As expected, the percent of the block group’s land 

area contained within the relevant distance buffer is positive and highly significant in predicting 

the percent of housing stock across both equations. Block groups located farther from the water 

also have less property value in the two distance buffers.  Holding geographic variables constant, 

the results show that block groups with more property value along the waterfront and within 500 



meters of the water have higher housing values and more second homes. Block groups with 

lower population density have more waterfront homes, while those with higher population 

density have more homes within 500 meters of the water.   

We apply the results from these regressions to DC, Delaware and Virginia to predict the 

proportion of each block group’s housing stock value that falls within each distance buffer, again 

making the assumption that relationships estimated using the Maryland data are applicable to 

these nearby states. In addition, we set the predicted percent housing stock in a particular 

distance buffer equal to zero if the block group contains no land within that distance buffer and 

alternately, set the percent housing stock equal to one hundred if the entirety of the land area falls 

within the distance buffer. 



Table A-1: Total assessed housing value in Maryland block groups (MDPV), OLS 

regression  

  

Total assessed housing 

value (MDPV) 

Total owner-occupied housing value (U.S. Census)  0.87*** 

 (0.014) 

Average owner-occupied housing value x number of 

non-owner-occupied units (U.S. Census) 

0.12*** 

(0.028) 

Observations 1,214 

R-squared 0.85 

Standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1 

 

 

 

Table A-2: Percent Census block group housing value within each Bay distance buffer, 

two-parameter beta distribution model 

  

Bayfront 

 

0-500m  

(non-waterfront) 

% land area within 50 meters of Bay 4.6*** -0.57 

 (0.95) (1.3) 

% land area within 500 meters of Bay 0.62** 3.5*** 

 (0.27) (0.26) 

Block group distance from Bay -0.00087 -0.0019*** 

 (0.00083) (0.00052) 

Median housing value 3.4e-06*** 1.9e-06** 

 (6.4e-07) (6.4e-07) 

% second homes 5.5*** 6.7*** 

 (0.81) (0.96) 

Population density -384.0*** 48.4* 

 (72.0) (27.6) 

Constant -2.5*** -1.9*** 

  (0.15) (0.14) 

Log likelihood 272.23 313.70 

Prob > chi2 0.00 0.00 

Observations 388 537 

 

 

 

 

 

 

 

 

 

 



Table A-3: Random effects panel data estimation (dependent variable: elasticity of KD from 

hedonic regressions)  
  (1) (2) (3) (4) (5) (6) 

 Socioeconomic & ecological covariates  
Non-waterfront distance 
buffer 0.042** -0.06 0.042** -0.0036 0.041** -0.089 

 (0.019) (0.10) (0.019) (0.14) (0.019) (0.23) 

Distance from shore ≥ 500 m 0.0087 0.008 0.0082 0.0070 0.0083 0.0072 

 (0.0086) (0.0087 (0.0089) (0.0089) (0.0087) (0.0086) 

Water depth ≥ 1.5 m 0.13*** 0.18 0.19*** 0.13 0.23** 0.30** 

 (0.042) (0.17) (0.06) (0.17) (0.096) (0.15) 

Median home value  -5.4e-07** -1.2e-06 -7.00e-07** -1.3e-06 -1.1e-06* -2.2e-06* 

 (2.6e-07) (1.0e-06) (2.7e-07) (9.3e-07) (6.5e-07) (1.2e-06) 

% coastline along tributary   -0.086* 0.046 -0.047 0.087 

   (0.050) (0.12) (0.12) (0.22) 

Population density   16.5 -29.1 3.4 -86.6 

   (12.2) (22.2) (34.3) (73.4) 

% second homes     -0.89 -3.76 

     (1.6) (2.84) 

Boats per household     1.23 4.05 

     (2.7) (4.72) 

% tidal fresh salinity     0.037 -0.01 

     (0.12) (0.21) 

% oligohaline salinity     0.030 0.093 

     (0.15) (0.27) 

Mean KD (1996-2008)     -0.013 0.0066 

     (0.042) (0.077) 

Covariates interacted with non-waterfront dummy variable 

Water depth ≥ 1.5 m  -0.058  0.071  -0.070 

    * non-waterfront  (0.17)  (0.16)  (0.10) 

Median home value  8.5e-07  7.2e-07  1.4e-06 

    * non-waterfront  (1.0e-06)  (8.9e-07)  (1.1e-06) 

% coastline along tributary    -0.16  -0.16 

    * non-waterfront    (0.12)  (0.22) 

Population density    56.1***  109* 

    * non-waterfront    (21.7)  (63.7) 

% second homes      3.40 

    * non-waterfront      (2.59) 

Boats per household      -3.29 

    * non-waterfront m      (3.98) 

% tidal fresh salinity      0.055 

    * non-waterfront      (0.18) 

% oligohaline salinity      -0.07 

    * non-waterfront      (0.23) 

Mean KD (1996-2008)      -0.023 

    * non-waterfront      (0.071) 

Specification variables 

3-year average water quality  -0.045* -0.046* -0.045* -0.042 -0.046* -0.049* 

 (0.027) (0.026) (0.027) (0.026) (0.027) (0.026) 

Double log model 3.7e-05 -0.0026 -2.8e-05 -0.0015 -0.00062 -0.0082 



 (0.012) (0.0092) (0.012) (0.0092) (0.012) (0.0061) 

3-year average water quality 0.053** 0.053** 0.052** 0.048** 0.053** 0.052** 

    * non-waterfront (0.021) (0.021) (0.02`) (0.021) (0.021) (0.021) 

Double log model 0.00044 0.0032 0.00046 0.0020 0.0011 0.0089 

    * non-waterfront (0.012) (0.0092) (0.012) (0.0092) (0.012) (0.0065) 

Constant -0.0238 0.061 0.036 0.069 0.088 0.19 

 (0.032) (0.098) (0.051) (0.15) (0.086) (0.23) 

Log pseudolikelihood 138.25 139.63 140.29 145.46 141.12 150.78 

Number of groups 14 14 14 14 14 14 

Observations 280 280 280 280 280 280 

Standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1 

 


