The role of nitrate radicals (NO₃) in aerosol life cycle: Secondary organic aerosol formation and aging of atmospheric organic aerosols

de l'ule

Nga Lee "Sally" Ng, Lu Xu, Christopher Boyd, Theodora Nah, Javier Sanchez Georgia Institute of Technology

+ SOAS collaborators

EPA STAR Review March 14, 2016

Nitrate Radical Oxidation of BVOCs

- Nitrate radicals (NO₃) are a major night time oxidant
 - Reacts with approximately 20% of all biogenic volatile organic carbons (Pye et al., 2010)
- Monoterpene+NO₃ reaction has high organic nitrate and SOA yields (e.g., Griffin et al., 1999; Fry et al., 2009)
- NO₃ is created by the reaction of anthropogenic NO₂ with O₃

$$NO_2 + O_3 \rightarrow NO_3 + O_2$$

Nitrate radical oxidation of BVOCs represent a direct way for linking anthropogenic emissions and biogenic SOA formation

Synergetic Approach of Studying Organic Aerosols

Research Goal: determine the extent to which NO_3 radicals oxidation of BVOC affect organic aerosol loading and composition over its atmospheric lifetime

Field Measurements: SOAS and SCAPE

- Southern Oxidant and Aerosol Study (SOAS)
 - 2013 June July
 - Centreville (rural Alabama)

- Southeastern Center of Air Pollution and Epidemiology study (SCAPE)
 - 2012 May 2013 Feb
 - Greater Atlanta Area (urban and rural)

OA Source Apportionment in the SE US

- OA sources vary spatially and seasonally
- Less-Oxidized Oxygenated Organic Aerosol (LO-OOA) is an important factor across all seasons and sites
 - LO-OOA can account for 19-34% of total OA in SE US

Xu et al., PNAS, 2015

LO-OOA Source: local production or long-range transport?

- Diurnal trends are similar for all sites and all seasons (diurnal trends are normalized by the highest LO-OOA concentration of each dataset).
- A diurnal maximum at night and a minimum in the afternoon.

Xu et al., PNAS, 2015

LO-OOA Nighttime Increase

-- boundary layer height change or production?

Nighttime increase still exists after adjusting by the boundary layer height → nighttime aerosol production

Xu et al., PNAS, 2015

LO-OOA at SOAS

- LO-OOA peaks at night and has same diurnal as monoterpenes.
- LO-OOA is identified in all seasons → monoterpene seasonal variation

- LO-OOA is strongly correlated with "nitrate groups (-ONO2) in organic nitrates"
- Estimated based on AMS-IC method

Contribution of monoterpenes + NO₃• chemistry to LO-OOA

Estimation of Particulate Organic Nitrates

Three independent methods to estimate particulate organic nitrates

1. AMS-IC method: AMS total nitrate - PILS inorganic nitrate

3. PMF method: include NO⁺ and NO₂⁺ in PMF analysis

Xu et al., ACP, 2015

NO3_{org} and NO3_{inorg} in the SE US

- Concentration of "nitrate groups" (-ONO2)
- Organic origin: similar amount year round, is ~ 0.2 ug/m³
- Inorganic origin: higher in winter months, ~ 0.8 1.4 ug/m³

Xu et al., ACP, 2015

Ubiquitous Presence of Particulate Organic Nitrate

Organic origin: 63-100% of total "nitrate groups" conc. in summer

Organic nitrates are 5-12% of total OA in summer (assume MW = 200 -300 g/mole)

Xu et al., ACP, 2015

Fundamental Lab Studies: Monoterpenes + NO₃

- 1. Laboratory studies of SOA formation from monoterpenes + NO₃ SOA (SOA yields, formation mechanisms, organic nitrates)
 - Effect of RH
 - Seed Acidity (highly acidic seed, Guo et al., 2015)
 - Peroxy radical fate: Mostly likely "Low-NOx" chemistry (RO₂+HO₂)
 - Loadings ~ 10 µg/m³
 - α -pinene, β -pinene, limonene

2. Changes in SOA and organic nitrates with continued processing

- Hydrolysis
- Dilution
- Temperature Change
- Dark/photochemical aging

Fate of Peroxy Radicals (RO₂)

Figure 1. General schematic of gas-phase peroxy radical chemistry in SOA formation.

Continued Processing of OA and ON

- Different Perturbations
- Changes with hydrolysis, atmospheric dilution, temperature change, photochemical (OH) and dark (NO₃) aging,

Georgia Tech Environmental Chamber Facility

Dual chamber facility, 300 lights, temperature range 4- 40 °C.

Georgia Tech Environmental Chamber Facility

Gas-phase measurements

- Q-CIMS
- HR-ToF-CIMS
- GC-FID
- O₃ monitor
- Chemilumnescence NO/NO₂/NO_x analyzer
- CAPS NO₂ monitor

Particle-phase measurements

- HR-ToF-AMS
- FIGAERO-HR-ToF-CIMS
- SMPS
- CPC
- Offline filter characterization

SOA Formation from α -pinene + NO₃ and β -pinene + NO₃

- Temperature = 25 °C
- RH = 50 54%
- Highly acidic MgSO₄/H₂SO₄ seed
- RO₂+HO₂ and RO₂+NO₃ pathways

Nah et al., ES&T, 2016

β -pinene+NO₃: SOA Yields

- Humidity and RO₂ fate does not have a strong effect on aerosol mass yield
- Aerosol mass yields: 27.0-104.1% for mass loadings ranging from 5.1-216.1 $\mu g/m^3$
- β -pinene+NO₃ can potentially contribute to a large fraction of ambient aerosol

β -pinene+NO₃ : Gas-phase Products

- Aerosol and gas phase species appear almost immediately
- Organic nitrate species identified by Q-CIMS
- Fast reaction with immediate condensation of products

β -pinene+NO₃: Aerosol Composition and Dark Aging

- Large fraction of nitrate species at NO⁺ (m/z 30) and NO₂⁺ (m/z 46), 11%
- NO^+ / NO_2^+ ratio = 4.8 10.2
- Relatively large signal at m/z 67 ($C_5H_7^+$) and m/z 91 ($C_7H_7^+$)
- Increase in O/C with dark aging: 18% (dry), 6% (humid)

Relevance of β -pinene+NO₃ to SOAS

Spectrum of LO-OOA at SOAS has similar features to laboratory β -pinene+NO₃ SOA at m/z > 60

Highly-Oxygenated ON in Chamber Studies (β-pinene + NO₃)

- Highly-oxygenated ON observed in FIGAERO-CIMS with 4 – 9 oxygen atoms
- Rapid formation, likely occurs through auto-oxidation (Crounse et al., 2013; Ehn et al., 2014)

Nah et al., ES&T, 2016

ON Observed with FIGAERO-HR-ToF-CIMS

361.937836

C-HaNO

β -pinene + NO₃

 α -pinene + NO₃

				-
Molecule-iodide adduct formula	Exact m/z		Molecule-iodide adduct formula	Exact m/z
C10H17NOd	342.020782		C10H12NO2	356.000031
C10H15NO5I	356.000031		C10H15NO5	371.994965
C ₁₀ H ₁₇ NO ₅ I	358.015686		C10H16N2O7	403.000763
C10H19NO5I	360.031311		C10H12NO2	419,979706
C ₁₀ H ₁₂ NO ₆ I	369.97934		C ₄ H ₁ NO ₄	357.979309
C10H15NO6I	371.994965		Cationod	557.979509
C10H17NO6I	374.01062			
C10H12NOgI	376.026306			
C10H12NO7I	385.974213			
C10H15NO7I	387.989868			
C10H17NO7I	390.005524	· 1'	1 ON	
C10H19NO-I	392.02121	• 4.	1 ON observed fo	$^{\circ}$ B-pinene+NO ₂
C ₁₀ H13NO ₂ I	401.969147			II 5
C ₁₀ H ₁₅ NO ₅ I	403.984772	10	2 abconvod at CO	AS, Lee et al., 2016
C ₁₀ H ₁₇ NO ₅ I	406.000427	(3	z observed at 50	AS, LEE EL dI., ZUID
C10H12NO2	408.016052	•		
C10H12NO9I	417.96405			
C10H15NO9I	<mark>419.979675</mark>		ON for a ninonal	
C10H17NO9I	421.995361	• 5	ON for α -pinene+	
C ₂ H ₁₃ NO ₂ I	357.979309		•	J
C ₂ H ₁₂ NO ₂ I	359.994965		observed at SOA	S, Lee et al., 2016)
C ₉ H ₁₂ NO ₇ I [*]	<mark>373.974182</mark>	(4	· Ubserveu at SUA	$\mathbf{J}, \mathbf{L} \in \mathbf{C} \subset \mathbf{I}$
C ₉ H ₁₂ NO ₇ I	375.989868			
C ₂ H ₁₇ NO ₇ I	378.005524			
C ₂ H ₁₂ NO ₂ I	389.969147			
C ₂ H ₁₂ NO ₂ I	391.984833			
C ₂ H ₁₂ NO ₂ I	405.96405			
CoH12NOp1	407.979706		chemistry forms	atmospherically
C ₂ H ₁₁ NO ₂ I	343.963654		chemistry forms	aunosphericany
C _s H ₁₃ INO _s I	345.979309			
C ₂ H ₁₁ NO ₂ T	<mark>359.958588</mark>	rele	vant highly oxyge	nated ON
C ₂ H ₁₂ NO ₂ T	361.974213			
C ₂ H ₁₁ NO ₂ T	375.953491			
C ₁ H ₁₁ NO ₁ I	377.969147			
C ₂ H ₁₁ NO ₂ I	391.948395			
C ₇ H ₆ NO ₅ I	313.953094			
C ₇ H ₆ NO ₆ I	329.947998			
C7H11NO6I	331.963654			
C-HaNO-I	<u>345.942932</u>			Nobotal ECOT 2016
C ₇ H ₁₁ NO ₇ I	<mark>347.958588</mark>			Nah et al., ES&T, 2016

Fate of Atmospheric ON

 Aerosol ON that is not removed by deposition can either form nitric acid through hydrolysis or be released as NO_x through photolysis or OH oxidation

1. β -pinene+NO₃: Organic Nitrate Hydrolysis

- Likely that majority (~90%) of ON is primary (which do not hydrolyze at appreciable rates)
- ~ 10% of ON hydrolyzes with a lifetime of 3-4.5 hr
 - Much higher than primary/tertiary ON ratio predicted by SOA formed from photooxidation under high NOx conditions (Browne et al., 2013)
- What happens to ON that do not hydrolyze? (do they get photolyzed /OH reaction?)

2. Photochemical Aging of Nighttime Aerosol

 β -pinene + NO₃

 α -pinene + NO₃

- Photochemically aging, OH + hບ
- β-pinene+NO₃ SOA: photochemical aging has little effect
 - α-pinene+NO₃:
 a large fraction of reactive
 nitrogen is released from the
 α-pinene SOA back to the gas
 phase during photooxidation.

Nah et al., ES&T, 2016

Conclusions

- LO-OOA (19-34%) : likely originates from monoterpenes, and its formation could be controlled by nighttime NO₃ chemistry (NO_x effect)
- ON contributes up to 12% of ambient OA in SE US in summer
- β -pinene+NO₃ reaction
 - FIGAERO-HR-ToF-CIMS: Formation of highly oxygenated ON species in both gas- and particlephase, many of which observed at SOAS
 - This reaction likely contributes substantially to ambient LO-OOA and ON
 - Peroxy radical fate and RH does not have a strong effect on SOA yield
- Hydrolysis: ~90% of the ON formed from the β-pinene+NO₃ reaction are primary nitrates, do not hydrolyze at appreciable rates
- Atmospheric perturbations
 - Particulate ON from β-pinene+NO₃: NOx sinks
 - Particulate ON from α-pinene+NO₃: photochemical oxidation may be an important atmospheric NOx source in the day

Laboratory studies should be an integrated part of field studies

Acknowledgement

Georgia Tech

Hongyu Guo, Aikaterini Bougiatioti, Kate Cerully, James Hite, Rodney Weber, Athanasios Nenes

Emory University Mitchel Klein

UC Berkeley Gabriel Isaacman-VanWertz, Kevin Olson,

Allen Goldstein

Aerosol Dynamics Nathan M. Kreisberg, Susanne V. Hering

NCAR Christoph Knote NOAA and CIRES Abigail Koss, Joost de Gouw

ARA Karsten Baumann

Kent State University

Shan-Hu Lee

University of Kentucky

Alexis Eugene Marcelo Guzman

