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High aerosol acidity despite declining atmospheric
sulfate concentrations
Lessons learned from the SE US and implications for models.
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Introduction

Particle pH: 35

1. Controls particle phase acid-catalyzed reactions;  soy [0d=ooger]+075

=0.979

» Isoprene (the largest VOC) — IEPOX-OA 2 2
« Laboratory studies found that acidity enhances %20
IEPOX-OA formation (Surratt et al., 2007&2010). © 5]
 |[EPOX-OA 20% of OAin SE in summer (Xu et al., 10
2015) jObserved Ambient Aerosol Acidities™? :

2. Controls acidic and basic gas-particle partitioning:

0 100 200 300 400 500 600

 e.g. Nitric acid and nitrate [H*],,, nmol m”?
HNO3(4) + H,0 < HNO; - H,0, Ky (Surratt et al., 2007)
HNO; -H,0 & NO;~ + H, K, 1
3. Solubilizes mineral dust and metals: 08
~ 06
* 1-2% Fe mobilized after 4 days at pH=2 — Q. a
ecosystem nutrient (Meskhidze et al., 2003) =
» redox metals — reactive oxygen species (ROS) 0
(Verma et al., 2014) -2 1 4 7 10



Introduction

Particle Acidity sources and evolution in atmosphere:

Oxidation

S0,(9) H,S04(p)
B o - 2o

Acidic

Mineral dust + seasalt
»NH3(g) + (Na, K, Ca, Mg, etc.)

Basic

Other sources
of alkalinity

formation of
(NH,),SO,, NH,HSO,,
NH,NO,, etc. that
depends on particle
acidity



Introduction

Historical SO, and SOQZ' trends:

“ In the past twenty years, SO, emissions have decreased significantly (-6.2%
yr1, 2000-2010, Hand et al. 2012).

9:9 8042- fol |0wed SOZ reductlon . 2000-2010 Median Annual SO, Emissions

Scientific questions:

1. Are particles in southeast US becoming
neutral as SO, emissions go down?
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2. Are nitrate particles becoming dominant
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The acidity “paradox”

Historical Data:
SO, is going down
NH; is constant
Nitrate is ~ 0
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Weber et al. (2016), Nature Geosci.



The acidity “paradox”
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Weber et al. (2016), Nature Geosci.



The acidity “paradox”

. o 8= c & $ ; =29 2
Historical Data: ) §J\§ © SO, NHy O NOy -
Ovisgongdown 7 84T EL__p g o
NH; is constant 2 4 E S Gl B
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51 S SRR R gt NH,),50, --------
Aerosol response: sy T E e NSO,
Should have become 1.55 T 5 T * o TTa
. 3. -
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0.5 SOAS Data
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.. but it's NOT becoming more neutral. In fact it's "acidifying”.

Weber et al. (2016), Nature Geosci.



Determining aerosol pH: The problem

Acidity / pH definition:
pH = —logio[H"] = —logy

1000H . 3 .
LWCalT H .., LWC units: ug m=3 air

How to determine particle pH:
= pH cannot be measured for single particles in-situ.
» “pH proxies” (ion balance, molar ratios), do not strongly correlate with pH.

v lons can be in multiple forms depending on pH and pKa.
v" pH depends on LWC, which can vary considerably.

lon balance: NH,*/SO, Molar ratio:
(a) : ~
] [— m 22364011
] 4 m S-2. ;
'E 100- ° b =3.39+0.13 2.0 -2.0
g ] e [R_=036
€ 804 © o
% ] & 19 -1.5
5: 907 %° 50371 [NO3] . [Cl7] [NH] [Na* L
8 40- fon Batance = W ]+[I523]+[35.5]_[ 1341_[. zﬁsl T
= 407 s 1.0 - 1.0
E 20+ 4
2 ]
0- . L
:g ] 0.5 g 0.5
8 207 @ NH,/S0,>
‘_:3‘40", T T . ) O'O—I"'l"'I"'l"'l"'l"'l_o'o
-1 0 1 2 3 0 4 8 12 16 20 24

Ri (Guo et al., 2015) Local Hour

ZOS/-"HN



Determining aerosol pH: How we do it (model+obs)

Follow the approach of Guo et al. (2015):

©)

O
O
O

air

Predicted LWC

N

VS

A4

>

Measured LWC ———

Particle ions (SO,%, NH,*, NO5, CI, Na*, K*, Ca?*, Mg?);
Gas (NH,);
Particle water or total organics & k,,4;
RH and T;
ISORROPIA-II, with RH and T
lons 7
W,
particle water
associated with
inorganics
Organics
W,
—_ .
particle water
K associated with
org :
organics
o
= mdry1 pp

Lu et al. (2015) PNAS; Guo et al., (2015) ACP; Cerully et al., (2015) ACP



Determining aerosol pH: The “heart” of it

1. Solid phase: NaHSO,, NH,HSO,, Na,SO,, NaCl, (NH,),SO,, (NH,);H(SO,),,
NH,NO;, NH,CI, NaNO; K,SO,, KHSO,, KNO;, KCI, CaSO,, Ca(NO;),, CaCl,, MgSQ,,
MgCl,, Mg(NO;), Species in bold were introduced in ISORROPIA Il (Fountoukis and Nenes, 2007)

i

lquid phase: Na*, NH,",
\ HSO,, SO,%, NOg,
Ca?*, K*, Mg?*

GAS PHASE

3. Gas phase: HNO,, HCI, NH;, H,0O

In this study, ISORROPIA-Il was run in “Forward mode”, which calculates
equilibrium partitioning given total concentration of species (gas + particle).

http://isorropia.eas.gatech.edu



The acidity paradox
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The acidity paradox
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SE US: pH is very low despite large reductions in SO,
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SOAS Data analysis confirms pH calculations

PR SRS TR W W ST T TR T——

1

NH;. ug m

0.0-

:8,,NW\ U»UM

~—— Measured NHy —— Predicted NHy
—— NH, fraction 1 Precipitation

Guo et al., ACP, 2015.

— Comparison of

1.0+ ~
.= 0.8+ l—" ‘E
: ‘;'fj '\f "\»'J WU \\ predicted vs.
% 02, observed gas-
0.0~ 3
6116 phase NH3
Localbme /
(a) 2 0_ 1.5_ | (AN PRT WY NS NN Y TN TS UPRNT TUNN) F AN ST SRS .....1 B
R > —&— pH mean 1 INHglpeq = m [NHglop + b —o—" |
] S edwn S 1 m=1.02 £ 0.02 o i
1.5-_* = 1.0_‘ b=-0.03 + 0.01 »
i %" 1 rR*=0.90
< 1.0 3 | i
; S 0.5- B
: b . g
: 0.0:".. . T T :—
0.0 1+ D e S, ofo ofs 1?0 1?5
0 4 8 12 16 20 24 Measured NH;, (i3 3



SOAS Data analysis confirms pH calculations

Guo et aI., ACP
| J\ | ;Sﬁaiﬂifmﬁ” e Guoetal, ACP, 2015
2 0.8+
& 1 1|
B U \ i WMM W“J AR ﬂ v iw,
0.0
. — Comparison of
2 o
g oo M‘N\N W u Coa ) predicted vs.
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The vola‘riliza‘rlon fraction 15l / ity
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E 1 m=1.02 £ 0.02 P
. . ) ) g 1.0_' b=-0.03 £ 0.01 fove i '_
This means that prediction biases s 1 g
in pH would result in appreciable 3 : ‘ j
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£ §
pH 0.5-15 is indeed likely for the o6 _

SE US.
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Weber et al. (2016), Nature Geosci.



NH; has and probably will remain the same

Proof from observation: 3 years (AMoN sites)

NH3v Hg m

P

i s 1

3.5 1‘

2.54

2.0

Yorkville

3'05 0 Georgia Station

&

1.0

1
10

054 =&

0.0

7N
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1/1/12

7171

2

LA A R

1/1/13
Date

71

! A S T

/13

1N

N

/14

TrT

1/1/15

Summary:

In the past, NH; has been
fairly constant.

In the future, NH,; will
probably stay at current
level or increase slightly.

(Erisman et al., 2008)

Weber et al. (2016), Nature Geosci.



NH; has and probably will

Proof from observation: 3 years (AMoN sites)

remain the same
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Date

Proof from mass balance (in the boundary layer):

NH}
d[NH,] 3 v,
TzENHg_ A [NH3]— n [NH4+]
. gas aerosol
emissions

deposition rate

Enn,:gas phase NH; emission rate;
NH3,

vy
NH} : o .

v, “:particle phase deposition velocity;

h: boundary layer mixed depth

gas phase deposition velocity;

Weber et al. (2016), Nature Geosci.



NH; has and probably will

Proof from observation: 3 years (AMoN sites)

remain the same
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Proof from mass balance (in the boundary layer):

NH}
d[NH,] p 3 v,
TzENHg_ A [NHs]— n [NHI]
.. gas aerosol
emissions

deposition rate

NH}
but v > v,

Enn,:gas phase NH; emission rate;
NH3,

vy
NH} : o .

v, “:particle phase deposition velocity;

h: boundary layer mixed depth

gas phase deposition velocity;

Weber et al. (2016), Nature Geosci.



NH; has and probably will remain the same

Proof from observation: 3 years (AMoN sites)

T e g Fn g g b b e g Gvia L Summary:
3l o - Seon stition - | In the past, NH; has been
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Date

Proof from mass balance (in the boundary layer):

Enn,:gas phase NH; emission rate;

hE iy .
NI\I’{P? vY"3: gas phase deposition velocity;

V4 h: boundary layer mixed depth

[NH;3] =
Enp, increased slightly (~10%) during the last decade globally. (Erisman et al., 2008)

NH; has and probably will remain the same

Weber et al. (2016), Nature Geosci.



Looking into the future: how will acidity respond?

Reference state: average SOAS conditions (RH=75%, T=25°C)

total NHg, pg m™

For constant total NH;, Rsp4
goes downas SO, drops.

This is seen in the data too.

Weber et al. (2016), Nature Geosci.
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Looking into the future: how will acidity respond?

Reference state: average SOAS conditions (RH=75%, T=25°C)

total NH,, pg m”>

0, pgm®

For constant total NH;, Rsp4
goes downas SO, drops.

This is seen in the data too.

Weber et al. (2016), Nature Geosci.
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total NHj;, ug m°

o
—_
o
O
xS
i
(@]

S0, pgm’®

The pH levels remain insensitive to
S0, changes in the SE US.

Huge changes in NH; (which won't
happen) are needed to increase pH



Why this behavior? NH; is semi-volatile, buffers system

initially: a lot of (NH,),S0O4 at equilibrium: some NH, volatilizes.
but no NHj3,, particles become acidic
4 A 4 ™
@ @ © ©
ceo®| W) |¢ °
°© o © ¢ ¢

\_ J kNHs(g) )




Why this behavior? NH; is semi-volatile, buffers system

initially: /ess (NH,),S04 at equilibrium: more NH, volatilizes.
ho NHj, particles may become a little more acidic
4 A 4 ™
Q [~
© @ > ° e
o o
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Low acidities are found everywhere
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Finokalia, Crete pH distributions

Airmass type: Mineral dust aerosol (fine)

NOAA HYSPLIT MODEL
Backward frajectories ending at 12 UTC 03 Oct 12
GDAS Meteorological Data

—&- pH median RN S TN S
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ey
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pH "threshold"
0.0 - [ T [ T [ T | T [ T [ T |
0 4 8 12 16 20 24

Hour of Day

Summary/implications:
* NH; vs SO, is like in SE US, aerosol is quite acidic.
* Most of the time, very low NO; levels on fine mode aerosol (Surprisel!).



Finokalia, Crete pH distributions

Airmass type: Continental aerosol (fine)

—| | —f— I NOAA HYSPLIT MCDEL
25 [}H median Backward frajectories ending at 12 UTC 24 Sep 12
—&— pH average |

GDAS Meteorclogeal Data
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Summary/implications:
* NH; vs SO, is like in SE US, aerosol is quite acidic.
* Most of the time, low levels of NO; on fine mode aerosol.



Finokalia, Crete pH distributions

Airmass type: Smoke/Biomass burning

NOAA HYSPLIT MODEL
Backward trajectories ending at 12 UTC 28 Jul 12
GDAS Meteorological Data

5 —=— pHmedian
—=— pH average

p—

Source * at 3530N 2570E

pH

rs AGL

Mete!

- Nitrate formation
pH "threshold”

4 8 12 16 20 24
Hour of Day
Summary/implications:

« NH; is very high (vs SO,) and that leads to neutralization of aerosol.
* Most of the time, a lot (almost all) HNO;/NO; partitions to aerosol.



Some take home messages

Findings:

Particle pH is low (-0.5 to 1.5) and NH; varied little in the SE US. Very
low acidity seen in dusty regions too (E.Med; Bougiatioti et al., 2016).

Future particle pH may remain low even if SO, goes down. pH is
Insensitive to shifts in NH; and SO, levels because NH, is volatile.

You can have very acidic aerosol even if NH,/SO, > 2.
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Particle pH is low (-0.5 to 1.5) and NH; varied little in the SE US. Very
low acidity seen in dusty regions too (E.Med; Bougiatioti et al., 2016).

Future particle pH may remain low even if SO, goes down. pH is
Insensitive to shifts in NH; and SO, levels because NH, is volatile.

You can have very acidic aerosol even if NH,/SO, > 2.

Implications:

pPH proxies used for decades do not work well and should be avoided.

Aerosol nitrate, contrary to current belief and policy, may not be a
major component of the regional aerosol as sulfate levels drop.

Acid-mediated process may continue to remain unchanged.
Mineral dust (land use change)/seasalt emissions very important.



Some take home messages

Findings:

Particle pH is low (-0.5 to 1.5) and NH; varied little in the SE US. Very
low acidity seen in dusty regions too (E.Med; Bougiatioti et al., 2016).

Future particle pH may remain low even if SO, goes down. pH is
Insensitive to shifts in NH; and SO, levels because NH, is volatile.

You can have very acidic aerosol even if NH,/SO, > 2.

Implications:

pPH proxies used for decades do not work well and should be avoided.

Aerosol nitrate, contrary to current belief and policy, may not be a
major component of the regional aerosol as sulfate levels drop.

Acid-mediated process may continue to remain unchanged.
Mineral dust (land use change)/seasalt emissions very important.

Models have never been evaluated for their ability to
predict pH —and presents a unique opportunity for
understanding predictive biases.
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