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THE UNDERSTANDING - AT LEAST IT HAD BEEN
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A SERIES OF RESEARCH RESULTS FROM THE PROPHET TOWER
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ROLES OF ISOPRENE IN LOW NOX

High BVOC (isoprene) and low NO
conditions
LIF Techniques

BEARPEX 09 (point I): LIF with a
different bkg characterization method
(Mao et al., 2012 ACP)

Rohrer et al. 2014 Nature Geo.
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HO2>+RO: (Lelieveld et al., 2008)
CH,, CO or NMVOCs
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Ultraviolet + visible light
iIsoprene peroxyradical isomerization
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The uncertainty in chemical mechanisms
directly affect our ability to constrain OH and

OH reactivity
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CONFUSIONS IN TWO FRONTS




A. Guenther et al.: MEGAN estimates of global isoprene s o A s
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Fig. 9. Monthly normalized isoprene emission rates estimated with MEGAN for 2003. Rates are normalized by the emission estimated for
standard temperature (=303 K) and PPFD transmission (60%). These normalized rates illustrate the variations associated with changes only
in temperature and PPFD transmission; 1.e. all other model dnivers are held constant.

Biogenic emissions and anthropogenic pollution interact and affect atmospheric
photo- oxidation chemistry and subsequently air quality and climate.

SOAS
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CO, NO, Ozone, and
anthropogenic VOCs are very
low

(NO is In the range of the low
NO regime)

Isoprene (and its oxidation
products) and monoterpenes
show contrast diurnal variations

Isoprene accounts a substantial
fraction of OH loss among the
observed trace gas species



U @ @ & S a a > ) O
MFELC L6 P
Inl . L A 4 =6k 1000 scem o
nlet Y o
.\- T f8Y) Flaw Tube 5“';]5':’:111 :i—lz!i.'-:ul:
| - —L 0V /_
1 _
an sasae ‘
Myin Cherder
S
S GO+ nso-(mo) o, ||| == [ ==
0.4 torr I ~1x 107 0rr ~2x10" torr
Sheath Gas { 0 Ipm 250 vs 250 vs
=10scem Nwlon Waool Tu]'hl} Turhu
+ 25 slpm + 5 I. e 4 ; PIII]I[I Pllll'l[.'l
Charcoal CI
| I-Lnlu:x::l-:rl Filter HNO3 | —
o 0
' v @, . @, @, . @, = @, ' . @
Ky
Pyrrole
Arm E ? C1
Ambient air X + zero air
Arm A [Zero air
PTR-MS «—— 5 6 [ ]
Arm D W T C3
|1 [Arm C Arm B PV\_ X + OH + ambient air
N,/N, + H,0
C2
Pump X + OH + zero air
L, | >
i Tham g Time
A A 2 /) A » A B » /\
B ) ) B




—i LIFOH
— CIMS OH

CIMS and LIF (with the
chemical removal
method, Penn State)
Intercomparisons: within
the analytical uncertainty
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The CIMS results correspond with classical
understanding in OH recycling and
observational outcomes from LIF with updated
Mao et al. 2012 ACP bkg characterization system.
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A wide range of OH in high isoprene

and low NO conditions summarized i | |
GABRIEL-Surinam Rain Forest

by Rohrer and colleagues (2014) Lelieveld et al. (2008)

(HO, + RO,)

The reported elevated OH (utilizing

LIF) cannot be accounted by any N

single updated isoprene oxidation The PROPHET Tower

mechanisms. Tan et al. (2001)_
Fast HPALD formation

OP3
Whalley et al. (2011)

(‘?A
=
o
0
@
=
0
Q@
o
=
N—r
I
@)

Observational outcomes using CIMS
and LIF with an updated bkg.
technique are consistent.

Local Standard Time

PUT THE NUMBER IN CONTEXT — IN A QUALITATIVE SENSE



OHR LIF
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Calculated OHR is dominated by isoprene, MTs, and isoprene oxidation products
Two different techniques show an agreement within the analytical uncertainty
The LIF technique observed higher OHR towards in the late afternoon (The
differences in sampling methods could be the cause)

SOAS-CIMS VS LIF OH REACTIVITY
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UNCERTAINTY FROM CHEMICAL MECHANISMS



BARKET ET AL.: INTERCOMPARISON OF ISOPRENE MEASUREMENTS
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Multiple instruments were deployed for the SOAS campaigns for independent

observations
Careful efforts were exercised among the instrumentations such as cross calibration

Barket et al. (2001) reported differences in the range of 21 % - 88 % among the analytica
techniques for isoprene quantification from a find inter comparison exercise

CONSEQUENCES IN UNCERTAINTY IN COMMONLY MEASURED REACTIVE GASES



+20 % of isoprene differences
can cause significant
differences in OH reactivity
estimations (40- 50 %)

The discrepancy gets
augmented by applying
different isoprene oxidation
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MODELED OHR UNCERTAINTY USING DIFFERENT ANALYTICAL TECHNIQUES
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SUMMARY
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THE UNDERSTANDING - MAY BE STILL HOLD IN THE SE US
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AN ELEPHANT IN THE ROOM



