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Climate-relevant impacts of Aerosol
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Relevant properties : Water uptake (hygroscopicity), CCN number, optical properties.
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Warm (Liquid) Cloud Formation

The “simple story” (1D parcel theory) 
Consider conservation of energy and water vapor condensing on aerosol 
particles in cloudy updrafts.
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Conceptual steps are:

• Air parcel cools, exceeds dew
point

• Water vapor is supersaturated

• Droplets start forming on 
existing CCN.

• Condensation of water 
on droplets becomes intense.

• Humidity reaches a maximum

• No more additional drops form

A “classical” nucleation/growth problem



Examine the equilibrium vapor pressure of a wet aerosol particle.
Consider the effects of solute and droplet curvature

When does an aerosol act as a CCN ?
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The combined Kelvin 
and Raoult effects is 
known as the Köhler
equation (1922).

You can be in 
equilibrium even if 

you are above 
saturation.



Ambient RH less than Sc -> 
stable equilibrium.

Köhler theory:
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Size is more 
important than 

composition

When does an aerosol particle act as a CCN ?

Ambient RH above Sc -> 
unstable equilibrium.



aerosol

activation

drop growth

S

Smax

t

1. Calculate smax (approach-dependent) 

2. Nd is equal to the CCN with sc ≤ smax

Algorithm for calculating Nd
(Mechanistic parameterization)

Input: P,T, vertical wind, particle 
size distribution,composition.

Output: Cloud properties (droplet 
number, size distribution).

Mechanistic Parameterizations: 
Twomey (1959); Abdul-Razzak et al., 
(1998); Nenes and Seinfeld, (2003); 
Fountoukis and Nenes, (2005); Kumar 
et al. (2009), Morales and Nenes
(2014), and others.

Comprehensive review & intercomparison:
Ghan, et al., JAMES (2011); Morales and Nenes (2014) 

:

Droplet number needs CCN and max.cloud RH…



Aerosol Problem: Complexity

An integrated “soup” of 
Inorganics, organics (1000’s)
Particles can have uniform 
composition with size…
… or not
Can vary vastly with space 
and time (esp. near sources)

Organic species have been a headache
 They can facilitate cloud formation by acting as surfactants 

and adding solute (hygroscopicity)

 Oily films can form and delay cloud growth kinetics

In-situ data to study the aerosol-CCN link:
Usage of CCN activity measurements to “constrain” the above 
“chemical effects” on cloud droplet formation.



Parameterizing “characteristic” CCN activity…

Petters and Kreidenweis (2007) expressed the solute 
parameter in terms of a “hygroscopicity parameter”, k

k ~ 1 for NaCl,  ~ 0.6 for (NH4)2SO4 , ~ 0-0.3 for organics
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Simple way to think of k : the “equivalent” volume fraction 
of NaCl in the aerosol (the rest being insoluble).

k ~ 0.6   particle behaves like 60% NaCl, 40% insoluble

k rarely exceeds 1 in atmospheric aerosol



Hygroscopicity Space

■ k is used to parameterize the activation of particles in the atmosphere

*adapted from Petters and Kreidenweis, 2007



Source of CCN measurements: DMT CFSTGC

Roberts and Nenes (2005), US Patent 7,656,510

Lance et al., (2006), Lathem and Nenes (2011),
Raatikainen et al. (2012, 2013) 

 Standard CCN measurement 
(>100 instruments in operation).

 Metal cylinder with wetted walls

 Streamwise Temp. Gradient

 Water diffuses faster than heat

 Supersaturation, S, generated       
at the centerline = f (Flowrate,    

Pressure, and Temp. Gradient)

 Operated as a spectrometer
using Scanning Flow CCN Analysis

(Moore and Nenes, 2009)
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Obtaining κ from CCN 

Measurements

*Moore and Nenes (2009)

2. Find where backwards integrated  
size distribution = [CCN] to obtain 
the critical diameter, dp

*

3. Calculate κ

1. Using Scanning Flow CCN Analysis, 
determine CCN concentration, [CCN], 
at a given s*
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Our goals for SOAS and SENEX

Photo credit: Jon Mak’s Long-EZ

SOAS Field Site

• Study links between volatility, hygroscopicity & oxidation state of 

the Organic Aerosol (OA).

• Investigate which fractions of the OA are responsible for the 

observed hygroscopicity and volatility.

• Quantify the major contributors of LWC variability, particularly the 

relative role of organic vs. inorganic species.

• Estimate the impact of aerosol properties on cloud droplet number

and cloud supersaturation

SENEX 



SOAS: Measurement Setup
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• Measured ambient and water-soluble (PILS) aerosol at 3 different 
supersaturations and 4 temperature conditions (non-denuded, 60°C, 
80°C, and 100°C)



SOAS: κorg, Volatility, and O:C

κorg with volatility

Ambient PILS

Non-denuded 0.14±0.09 0.14±0.06

TD at 60°C 0.12±0.08 0.12±0.06

TD at 80°C 0.12±0.11 0.09±0.04

TD at 100°C 0.08±0.07 0.08±0.06

Most volatile fraction is also 
the most hygroscopic 

(contradictory to expected 
link) … but why? 

• κorg calculated from AMS composition measurements:

• Investigate κorg and oxidation state… Looking at ambient data 

15

0.30

0.25

0.20

0.15

0.10

0.05

0.00

k
o

rg

-1.7 -1.6 -1.5 -1.4 -1.3 -1.2

Oxidation State

 Non-denuded

 TD 60°C

 TD 100°C

       Ambient

Organic fraction hygroscopicity actually 
seems to go down a little when you 

heat the aerosol a lot..

Cerully et al., ACP, (2015)



SOAS: κorg and O:C of PMF Factors

• AMS Positive Matrix Factorization (PMF) determined 3 factors describing the PILS 
aerosol (Xu et al., PNAS, 2015)
• Less oxidized oxygenated organic aerosol (LO-OOA)
• More oxidized oxygenated organic aerosol (MO-OOA)
• Isoprene-derived organic aerosol (Isoprene-OA)

• The κorg of each respective factor was found by bootstrapped resampling of  the 
linear regression of the three factors:
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• MO-OOA displayed a higher κorg and 
O:C compared to LO-OOA 

• In general, no clear correlation 
between κorg and O:C (or oxidation 
state) 

Cerully et al., ACP, (2015); Xu et al., PNAS, (2015)
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Using hygroscopicity for LWC calculations

Gas: HNO3, HCl, NH3, H2O

Liquid: Na+, 

NH4
+, H+, OH-, 

HSO4
-, SO4

2-, 

NO3
-, Cl-, H2O, 

HNO3(aq),HCl(aq), 

NH3(aq), Ca2+, K+, 

Mg2+

http://nenes.eas.gatech.edu/ISORROPIA

Solids: NaHSO4, 

NH4HSO4, Na2SO4, 

NaCl, (NH4)2SO4, 

(NH4)3H(SO4)2, NH4NO3, 

NH4Cl, NaNO3, K2SO4, 

KHSO4, KNO3, KCl, 

CaSO4, Ca(NO3)2, 

CaCl2, MgSO4, MgCl2, 

Mg(NO3)2

Inorganic species: ISORROPIA-II (Fountoukis and Nenes, 2007) 

Organic species: k-Köhler theory (Petters and Kreidenweis, 2007) 

T, RH

mo: aerosol mass

ρp: aerosol density

ko: hygroscopicity parameter



Predicted LWC vs measured LWC (SOAS)

 Wi: LWC associated with inorganics

Wo: LWC associated with organics

 Total predicted water (Wi + Wo) matches 

nephelometer-derived water very well.

 LWC diurnal ratio (max/min) is 5.

 Wo was significant, 29-39% of total LWC at all 

sites.
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Liquid Water: Predicted vs Measured

Fraction of organic water

Guo et al., ACP; Cerully et al., ACP



Our goals for SOAS and SENEX

Photo credit: Jon Mak’s Long-EZ

SOAS Field Site

• Study links between volatility, hygroscopicity & oxidation state of 

the Organic Aerosol (OA).

• Investigate which fractions of the OA are responsible for the 

observed hygroscopicity and volatility.

• Quantify the major contributors of LWC variability, particularly the 

relative role of organic vs. inorganic species.

• Estimate the impact of aerosol properties on cloud droplet number

and cloud supersaturation

SENEX 



SENEX: flight overview (June-July 2013)

Lin et al., in prep; Bougiatioti et al., in prep



Area of interest: SE US around Centerville

Lin et al., in prep; Bougiatioti et al., in prep



CCN spectra: SE US around Centerville

• Maximum CCN activation fractions of 
90% were observed by around 0.6% 
supersaturation. 

• CCN spectrum aloft different from that 
observed at the SOAS ground site.

• Regionally consistent CCN spectra. A lot 
of variability from sampling of point 
sources.

Lin et al., in prep



Aerosol hygroscopicity: SE US around Centerville

• Aircraft measured size distributions have 
a prominent Aitken mode – not seen in 
ground site data.

• Accumulation mode aerosol dominated 
by organics with κ ~ 0.2 – consistent with 
ground &P3 AMS data (bulk). 

• Aitken mode aerosol is dominated by 
inorganic compounds, with κ ~ 0.6.

Measured

κ = 0.217 
± 0.026

Measured

κ = 0.267 
± 0.069

Measured

κ = 0.235 
± 0.027

Lin et al., in prep



Input: P,T, vertical 
wind, particle size 
distribution & k or
CCN spectra.

Output: Nd, smax

• CCN at fixed give an incomplete picture of 
cloud droplet responses to aerosol. 

• You need to know smax in clouds and how it 
responds to aerosol changes because of water 
vapor competition.

• Droplet parameterizations for climate models 
solve this effectively.

• We use Nenes and Seinfeld, (2003) with 
modifications by Fountoukis and Nenes, 
(2005), Barahona et al., (2010) and Morales 
and Nenes (2014).

• Input velocity: Integrated droplet number 
over a PDF of vertical velocities 
characteristic of BL clouds
 sw=0.3 ms-1, 0.6 ms-1

• Attribution of Nd variability with sensitivities

From SENEX data to cloud drops and smax

aerosol

activation

growth

Nd

Smax



SENEX: Birmingham and Alabama (Flight 5)

• Much less variability in CCN – except 
in the Gaston EC plume.

• Maximum supersaturation drops with 
increasing aerosol – and most often is 
below 0.1% in the BL.

• Droplet number concentrations 
exhibit low variability, in the BL. 

• We see indications of a negative 
response of Nd to Na (overseeding).
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SENEX: Birmingham and Alabama (Flight 5)

• Above 2-3km, concentrations drop 
considerably, and smax increases

• Between 1-2km, there is mixing of 
airmasses, so s is between 0.1-0.2%.

• In the boundary layer, s much less 
than 0.1% again (its ~ 0.06%).

• Droplet number shows very little 
sensitivity to aerosol changes even 
when flying through the EC plume.
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Bougiatioti et al., in prep



SENEX: Atlanta PM flight (Flight 6)

• A lot of variability in CCN in the 
Atlanta plume.

• Droplet number concentrations 
exhibit low variability in the boundary 
layer, only when you go out it changes.

• Maximum supersaturation drops with 
increasing aerosol – and almost always 
is below 0.1% in the BL.
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SENEX: Atlanta PM flight (Flight 6)

• Above 2-3km, concentrations drop 
considerably, and smax increases

• Between 1-2km, there is mixing of 
airmasses, so s is between 0.1-0.2%.

• In the boundary layer, s much less 
than 0.1% again (its < 0.06%).

• Droplet number shows very little 
sensitivity to aerosol changes even 
when flying through Atlanta.
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Bougiatioti et al., in prep



Summary of Results: SOAS
• Changes in total κ from thermally-denuding are small (relative 

change<12%) even with mass losses of ~ 35%.

• κorg appears to decrease with increased heating regardless of O:C or 
oxidation state, opposing the conventional view of the most volatile 
compounds being the least hygroscopic.

• No clear correlation between κorg and O:C for all PILS non-denuded 
PMF factors, but MO-OOA and LO-OOA factors show the expected 
property relationships.

• MO-OOA is responsible for 50% of the mass and up to 60% of the 
water uptake of all the organic aerosol. 

• Organic contribution to aerosol LWC is maximum early morning and 
can be up to 70% of the total aerosol water (diurnal average: 30%).
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Summary of Results: SENEX
• Aircraft measured size distributions have a prominent Aitken mode 

– not seen in ground site data.

• Accumulation mode aerosol dominated by organics with overall       
κ ~ 0.2 – consistent with ground & P3 AMS data (bulk). 

• Aitken mode aerosol is much more (NH4)2SO4-like, with κ ~ 0.6.

• Cloud droplet calculations driven by the aircraft data show that:

 Much of the variability of CCN observed in the CCN is not reflected in the 
droplet calculations. Supersaturation fluctuates in response to aerosol 
fluctuations.

 Strong insensitivity of Nd to aerosol levels in BL clouds. We actually see 
at times evidence of a negative impact of aerosol increases on Nd (from 
overseeding)

 Very low smax is predicted for those clouds (0.05-0.1%).

 Any impacts of aerosol  can only be seen in the “buffer” zone and 
detrainment in the free troposphere. 
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THANK YOU!

http://climate.envsci.rutgers.edu/SOAS/index.html
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