Methane quantification & ARPA-E's MONITOR Program

Dr. Bryan Willson- U.S. DOE / ARPA-E- Colorado State University

Nov 18, 2015

Outline

 Monitoring technology Introduction to ARPA-E • ARPA-E's MONITOR program MONITOR portfolio Field Testing & schedule • Other development efforts

U.S. regulatory requirements for monitoring

Safety – related

1968 Requirements for transmission pipelines to survey for leakage / safety

VOC / HAPS

- 2004 ZZZZ / NESHAP rule on HAPs, primarily formaldehyde
- 2012 OOOO NSPS for VOCs

Greenhouse gas mitigation

- 2014 Colorado AIMM rule: Approved Instrument Monitoring Method (AIMM) iLDAR using infra-red camera, EPA Method 21, or other approved; others followed
- 2015 Draft EPA methane rule, ammending VOC NSPS to include methane
- 2015 Draft BLM methane rule

Detection vs. Quantification

Detection

- Basis of LDAR
- Disincentive for improved technology
- Requires on-site operator
- Variability between operators
- Periodic: annual, biannual, or quarterly

Concentration quantification

- Provides numerical value of volume concentration
- Concentration varies with location along plume, windspeed, etc.
- Little additional value over detection

Mass flow quantification

- Provides numerical value of mass flow rate of leakage
- Can be used to prioritize mitigation
- Can be used for inventories
- Can use:
 - Concentration + wind + dispersion model
 - Visualization + image processing
- Enabled by new technology

The case for quantification

- To date, regulatory and industry focus has been on detection of leaks, without quantification
- Quantification of individual leaks has been possible using hi-flow sampler or bagging
- Cost-effective quantification of emissions from entire sites has not been possible

Current Detection / Monitoring Technology

Point sensors

- <u>High resolution / high cost (\$100K)</u> Cavity ringdown, tunable laser diode absorption spectrometer (TLDAS)
- <u>Mid resolution / mid cost (\$10K \$50K)</u> Flame ionization, non-dispersive infrared
- Low resolution / low cost (<\$10K) Catalytic sensors, electrochemical sensors

Path Sensors

Backscatter TLDAS (tunable laser spectrometer) (\$50K)

Mass Sensor

High flow sampler – pump with an IR (\$25K)

Optical Gas Imaging

- Crycooled single-band IR camera (\$100K)
- Multi-band IR camera (\$250K+)

Assessment of State-of-the-art

What exists

- Focused on detection
- Equipment is expensive, labor is expensive
- Periods between inspections of 3-12 months; cannot catch "fattail" events in timely manner

What's needed

 Continuous or near-continuous quantification solutions at 10X – 100X lower total operating costs

Why it's hard

- Requires significant advances in sensor technology
- Requires significant advances in dispersion modeling
- Business model obstacle: current regs based on optical imaging for detection and immediate repair; no consideration of threshold analysis & prioritization

Outline

 Monitoring technology Introduction to ARPA-E • ARPA-E's MONITOR program MONITOR portfolio Field Testing & schedule • Other development efforts

The ARPA-E Mission

Catalyze and support the development of transformational, highimpact energy technologies

Ensure America's

- Economic Security
- Energy Security
- Technological Lead

Creating New Learning Curves

Outline

Monitoring technology ARPA-E'S MONITOR program MONITOR portfolio Field Testing & schedule Other development efforts

The Environmental Case for Natural Gas

On a lifecycle basis, natural gas emits nearly half the level of greenhouse gases as coal when burned; the challenge is ensuring that environmental risks throughout the supply chain are effectively mitigated

The Importance of Focusing on Methane

Methane – the main component of natural gas – accounts for about one-tenth of U.S. greenhouse gas emissions However, over a 20-year period, one gram of methane has 84 times the global warming potential as the same amount of carbon dioxide

MONITOR Metrics & Targets

Detection Threshold	1 ton per year (6 standard cubic feet per hour)
Cost	\$3,000 per site per year (for basic functionality)
Resulting Leak Reduction	90% methane leakage reduction with a 90% confidence level
False Positives	No more than 1 per year
Mass Flow Rate	Able to estimate mass flow rate within 20% margin of error
Leak Location	Able to estimate location within 1 meter
Communications	Transmits results wirelessly to remote receiver
Enhanced Functionality	Methane selectivity, speciation capability, thermogenic/biogenic differentiation, continuous measurement, enhanced stability

Complete & Partial Solutions to Detection

Complete measurement systems: 6 projects

- Systems that include:
 - 1) Methane emission sensing
 - 2) Leak rate characterization and data analytics
 - 3) Provisions for data quality control
 - **Digital communication** 4)
 - 5) Enhanced functionality

Palo Alto, CA

Bozeman, MT

Redwood City, CA

Niskayuna, NY

Yorktown Heights, NY Houston, TX

Partial measurement systems: 5 projects

- Nascent technologies that may be too early in the development process for incorporation into a complete system
- Could significantly contribute to meeting system-level objectives
- Primarily envisioned as advances in detector technology or data analytics

Lincoln. NE

Durham, NC

University of Colorado Boulder

Boulder, CO

Outline

 Monitoring technology Introduction to ARPA-E • ARPA-E's MONITOR program MONITOR portfolio Field Testing & schedule • Other development efforts

The Portfolio: 3 Technology Categories

The Portfolio: 3 Technology Categories

Miniature, High Accuracy Tunable Laser Spectrometer for CH₄/C₂H₆ Leak Detection

PROJECT HIGHLIGHTS

- Enables ppb/s sensitivity via simple and robust direct absorption spectroscopy
- Performance meets/exceeds ICOS or CRDS (<1 ppb at 1 Hz) while being order of magnitude smaller and consuming less power (10-30W)
- Compatible with other industry applications that require high accuracy, real-time analyses (e.g. process control, CEMS, environmental/GHG monitoring)

AWARD AMOUNT: \$2.4 million PROJECT PARTNERS: Los Alamos National Laboratory, Rice University

Laser Spectroscopic Point Sensor for Methane Leak Detection

PROJECT HIGHLIGHTS

- Performance of state of the art cavitybased point sensors at reduced cost
- High sensitivity, selectivity, and stability measurements with low maintenance
- Suitable for continuous or intermittent stationary and mobile applications
- Advanced manufacturing and novel design enable significant cost reductions

AWARD AMOUNT: \$2.85 million PROJECT PARTNERS: Colorado State University, Gener8

On-Chip Optical Sensors and Distributed Mesh Networks for Methane Leak Detection

Printed Carbon Nanotube Sensors for Methane Leak Detection

PROJECT HIGHLIGHTS

- Uses scalable low-cost, additive printing methods to print chemical sensor arrays based on modified carbon nanotubes
- Sensor elements with different responses to methane, ethane, propane and other wellhead gases
- Total system costs under \$350 per site per year
- Multiple sensors reduces false positives
- Sensitive to 1 ppm with leak localization within 1 m

AWARD AMOUNT: \$3.4 million PROJECT PARTNERS: NASA Ames Research Center, BP, Xerox Corporation

Coded Aperture Miniature Mass Spectrometer for Methane Sensing

The Portfolio: 3 Technology Categories

Frequency Comb-based Methane Sensing

PROJECT HIGHLIGHTS

- High sensitivity (ppb-m) kilometer-scale path length measurements with specificity of FTIR
- Simplifying design to reduce the cost of dual comb spectroscopy
- Multispecies sensing includes CH₄, ¹³CH₄, H₂O, propane, and ethane
- Coupled to large eddy dispersion modeling to provide localization

AWARD AMOUNT: \$2.1 million PROJECT PARTNERS: NIST, NOAA

Microstructured Optical Fiber for Methane Sensing

PROJECT HIGHLIGHTS

- Fiber optic sensor is broadly applicable throughout the oil and gas industry, particularly for large-scale infrastructure (such as transmission lines)
- Photonic crystal fiber design will minimize optical losses while permitting ambient gas to enter hollow core

AWARD AMOUNT: \$1.4 million PROJECT PARTNERS: Virginia Tech

The Portfolio: 3 Technology Categories

UAV-based Laser Spectroscopy for Methane Leak Measurement

PROJECT HIGHLIGHTS

- Continuous leak monitoring with leak quantification and real-time alarm notification
- Two modes of operation: continuous perimeter monitoring and search mode to pinpoint leak location
- Speciation of methane and ethane differentiates thermogenic vs. biogenic emission
- Improved production processes reduce costs of mid-IR Interband Cascade Laser (ICL) sources

AWARD AMOUNT: \$2.9 million PROJECT PARTNERS: Heath Consultants, Thorlabs, Princeton University, University of Houston, Cascodium

Mobile LiDAR Sensors for Methane Leak Detection

PROJECT HIGHLIGHTS

Simultaneous, rapid, and precise 3D topography and methane gas sensing

P.H

DBRIDGE

- Capable of covering a broad range: a frequency-swept laser beam is transmitted to a topographical target 1-300 m from the sensor
- Potentially able to achieve a minimum leak rate detection of 1 gram per minute
- Estimated between ~\$1,400-2,200 per well per year

AWARD AMOUNT: \$1.5 million

The Portfolio: 3 Technology Categories

Portable Imaging Spectrometer for Methane Leak Detection

PROJECT HIGHLIGHTS

- Miniaturization of Rebellion's Gas Cloud Imager (GCI), a long-wave infrared imaging spectrometer
- Camera will be lightweight and portable

 the size of a Red Bull can and
 capable of being incorporated into
 personal protective equipment
- Data processing uses cloud-based computing architecture that streams results to mobile device

AWARD AMOUNT: \$4.3 million

The Portfolio: 3 Technology Categories

Tunable Mid-infrared Laser for Methane Sensing

Outline

 Monitoring technology Introduction to ARPA-E • ARPA-E's MONITOR program MONITOR portfolio • Field Testing & schedule

• Other development efforts

Field Testing of MONITOR Technologies

Goal #1: Gauge technical performance

- Independent testing and validation will provide a neutral venue to demonstrate technology and system performance
- **First round testing** (year two) will provide an opportunity to demonstrate technologies outside of laboratory tests; this will ensure technologies are tested in a standardized, realistic environment
- Second round testing (year three) will provide an opportunity to assess previously undemonstrated capabilities, as well as technical gains made since the first round of testing

Goal #2: Engage stakeholder community

- Establishing a testing site also enables MONITOR to materially engage strategic stakeholders early in the program
- This early engagement with industry leaders could facilitate hand-offs and/or post-MONITOR field demonstrations by developers and/or local distribution companies

Selecting a Field Test Site

ARPA-E will issue a competitive solicitation seeking proposals from highly qualified organizations and will then select a suitable field test host based on the following general criteria:

Technical expertise	Strong capabilities related to testing, evaluating, and validating emission detection technologies	S
Experience	Extensive work in the O&G sector, preferably focused on methane emissions detection and/or mitigation	
Reputation	Recognized for high-caliber work	
Industry exposure	Familiarity with major O&G industry players	
Impartiality	Independent and objective	
Government experience	Experience working with federal entities in research partnerships	
Proximity	Convenient for ARPA-E and performers; relatively easy access to major airport	

Example Test Site Layout

*1x3 size ratio is approximate

The MONITOR Timeline: ARPA-E & Beyond

*Subject to change

Outline

 Monitoring technology Introduction to ARPA-E • ARPA-E's MONITOR program MONITOR portfolio Field Testing & schedule Other development efforts

EDF Methane Detector Challenge

- Available technology
- Focus on detection
- 10+ TPY

- New technology
- Focus on quantification
- Down to 1 TPY

Bryan.Willson@hq.doe.gov Bryan.Willson@ColoState.edu

www.arpa-e.energy.gov