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Fugitive Emissions: Motivation

= Fugitive emissions are significant sources:
« UNFCCC 2011 estimates:
« 576 Mt CO, eq.
+ 3.8% of reported GHG emissions

= Fugitive emissions are often economic to mitigate based on
value of gas alone

= Advances in IR camera technology and operation protocols
have improved detection ability

= Quantification remains a challenge

= Could leaks be detected and quantified on a quasi-
continuous basis?
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Fugitive Emissions: Inverse / Sensor Oriented Analysis

Is there another approach?
= Starting from measureable sensor data, what source(s)

would reproduce observations?

 Sensor data contains
iInformation about
upwind concentrations 3001

= Similar approaches
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used on continental B o
. OO
scale since 1980s
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= Project considers two
. -100+t, R A . . .
classes of methods: 100 0 100 200 300 400 500
« Statistical (trajectory based) ximw]
« Adjoint (gradient optimization based)
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What is the concept?

= Semi-permanent concentration sensor network combined

with wind direction and speed
« Quasi-continuous operation

« Directed maintenance to
new leaks as they appear

» Reduced costs and h 3
reduced emissions

= Current research focus:
1. Novel detection system design

2. Numerical testing and development of statistical source location
algorithms

3. Simulation and development of advanced, gradient adjoint based,
guantification algorithms
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Tuneable Diode Laser Based
Detector Network Design & Testing
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Fugitive Emission Sensing System

= Sensor system required attributes:

Fast
— Many gas measurements over an array of sensors every minute

Selective

— Low interference from other
constituents (CO,, H,0) '

Accurate
Sensitive ‘-
| 4 %

— Must measure small changes
(0.25 ppm) in ambient methane
concentration (~2.0 ppm)

Robust

— Operate in a harsh outdoor environment year-round

— Function over a wide range of temperatures
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A Novel Fibre-optic-based TDLAS System

= How does it work?
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A Novel

Tunable
Diode
Laser
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Fibre-optic-based TDLAS System
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= How does it work?
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A Novel Fibre-optic-based TDLAS System
- > M.

How does it work?
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A Novel Fibre-optic-based TDLAS System

= How does it work?
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SOURCE LOCATION &
QUANTIFICATION ALGORITHMS
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Tests on a Simplified Gas Plant Geometry

= Basic gas plant

layout meshed for
numerical testing

Detailed wind
modelling and
simulated fugitive
emissions
releases

Simulation based
development
using both in-
house and
commercial codes
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= Video shows
plume in a
realistic transient
wind flow

* Inflow velocity
profile from actual
tower data

 Highly dynamic,
complex flow
behavior and
entrapment of gas
In building wakes

CFD Simulations
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2. Statistical Source Location: Summary

= Trajectory-based algorithms show very good potential for

leak location in complex environments
« C.A. Brereton, M.R. Johnson (2012) Identifying Sources of Fugitive

Emissions in Industrial Facilities using Trajectory Statistical
Methods, Atmospheric Environment, 51-46-55

= Success in using algorithms
with pre-computed, simplified
wind profiles raises possibility
of quasi-continuous source i f
detection

= However methods shown up
to now are only good for __
source location... ; B

X [m]
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3. Advanced Algorithms: Adjoint Methods
e —

= Early-phase investigation of adjoint-based optimization
to locate and quantify stationary fugitive emissions

« Advanced mathematical approach to solving ill-posed
Inverse problems

« Similar techniques have been implemented in a variety
of fields

= Current research focus is on development and
practical implementation of algorithms
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How Does it Work?

= Want source(s) to reproduce observations

* “Objective Function”™ measure of
mismatch between measurements ...
& model prediction |

1 1502-
f=2> (c—c*) |
2 receptors 100?’
Yim

C = receptor measurements niSone g

¢* = predicted receptor concentrations o
* Find the source(s) that minimizes f X [m]
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Objective Function, f

[ Gues:(f)ource ][ Obsergiations J ° F|nd the source parameters
‘ s(x) that minimize f

Forward Model
- 1
Objective
Function
f(c(x),c”)

Gradient
df/dx(4,db/dx)

N

* Need to know the gradient of
f (how f changes with model
Inputs)
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Optimization
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Find the source parameters
s(x) that minimize f

Need to know the gradient of

f (how f changes with model

Inputs)

* Find it using the adjoint
sensitivity method

Standard gradient-based

optimization algorithm

- L-BFGS-B

« Get a better source guess s(x)
to minimize f(x)
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Sample Results: 3D -4 Source Case
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Sample Results: Adjoint Transport
e
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Sample Results: Adjoint Transport
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Sample Results: 3D -4 Source Case
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Sample Results: 3D -4 Source Case

[ Guess Source J Observations
s(X) c*

L 4

Forward Model
c(x) l

g ' A 4
Y [m] 1o , \' [Adjoint Sensitivity] Objective
. % L. s (kg/s/m3) A(c(x),c) Function
/ Q 01 ‘ f(c(x),c")
: Gradient
i | df/dx(2,db/dx)
(U .
... lteration 30 o o
0 50 100 150 200
Optimization
X [m] [ f, df/d ]
Source Lo
Prediction

2 Carleton

UNIVERSITY



Sample Results: 3D -4 Source Case
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Sample Results: 3D -4 Source Case
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Sample Results: 3D -4 Source Case
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Sample Results: 3D -4 Source Case
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Sample Results: 3D -4 Source Case
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Sample Results: Quantification

Proof-of-concept results:

= ~16% overestimation 34— 1o 1 1
In total mass flow rate
In simplified test case
with 4 sources

= Uncertainty in wind
field will affect results

« Ongoing work

MNormalized Total Mass Flow Rate
|
T

focussed on simpler 0 T
wind modelling 0 50 100 150 200 250

Iteration #
approaches
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Conclusions

= Fugitive emissions: is there another approach?
« Quite possibly...

= |nnovative fibre-optic sensor approach could have a
number of applications related to fugitive type sources

= Proof of concept simulations reveal trajectory methods as
a promising approach for quasi-continuous source location
monitoring

= Preliminary adjoint-based simulations suggest emissions
guantification could be possible but practical
Implementation will require innovative approaches for using

pre-computed wind fields
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Future Directions

= Development of a full working prototype gas detection
network

 Investigate related applications for direct flux measurements
(e.g. vent stack emissions from liquid storage tanks)

= Continued research and development of advanced source
guantification and location algorithms

« Currently reconstructing field experiment releases

 Investigate possible ways to reduce computational
requirements to make the method more tractable
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