EPA's Natural Gas STAR Program Overview

Roger Fernandez
U.S. EPA, Natural Gas STAR Program

Denver, Colorado, February 11, 2014 Park City, Utah, February 13, 2014

Anthropogenic Global Gas Emissions Contributing to Climate Change

Key GHGs Emitted by Human Activities

Carbon dioxide (CO₂)

Methane (CH₄)

Nitrous oxide (N₂O)

Fluorinated gases (F-gases)

Industrial processes, refrigeration, and the use of consumer products contribute to emissions of F-gases, which include hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆).

Source: IPCC (2007); summarized at http://www.epa.gov/climatechange/ghgemissions/global.html

Future Climate Impact of Current Emissions (20-year versus 100-year)

100-Year*

^{*}Source: Adapted from IPCC (2007), http://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-chapter2.pdf, Chapter 2, page 206

Current US GHG Emissions Estimates

U.S. GHG Emissions All Sources

Oil and natural gas systems are the largest

man-made source of methane emissions in

the U.S. (30%).

Methane emissions from oil and natural gas systems make up about 3% of total U.S. GHG emissions.

Source: EPA. *Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2011*. April 2013.

Why Methane?

Potent greenhouse gas

- 100 year GWP = 21
- Lifetime = 12 years
- Most important short-lived forcer—based on emissions, accounts for >1/3 of current anthropogenic forcing

Ozone precursor

- Affects ground-level ozone levels
- Clean energy source primary component of natural gas
- Many emission sources
 - Oil & gas, agriculture & waste sectors
 - 50 70% of which are anthropogenic
- Concentration of methane in the atmosphere has increased by 150% in the last 260 years

2011 U.S. Human-Made Methane Emissions by Industry (BCF)

Production Sector Emissions (2011, Bcf)

Total Emissions: 210.3 Bcf

Sources of Methane Emissions from Oil and Gas Operations

Picture courtesy of American Gas Association Values Source: Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2011, April 2013

Methane Projects Deliver Significant Co-Benefits

New Sources of Clean Energy

Emission capture makes methane available for local energy generation

Air Quality Improvement

- Decrease in ground-level ozone
- Reduction of local emissions of VOCs and HAPs

Industrial Safety

Methane is explosive – improved worker safety

Natural Gas STAR Program

- Started in U.S. in 1993 to increase awareness of methane emission sources and share innovative means of reducing them
 - Expanded internationally in 2006 as part of GMI
- Over 120 domestic and international partners have
 - Identified over 50 cost-effective technologies and practices to reduce methane emissions
 - Reduced methane emissions by more than 1 trillion cubic feet (Tcf), saving more than U.S. \$3 billion

Natural Gas STAR Resources

- Resources to advance cost-effective oil & gas sector methane emission reductions:
 - General technology transfer, training, and capacity building
- Technical documents and research outlining over 50 mitigation options, including analyses of economic, environmental and operational benefits
- Workshops and Conferences
- Individual assistance to assess project opportunities
 - Estimated methane emission inventories
 - Measurement studies
 - Mitigation project feasibility studies
- Services and resources provided free of charge and at no obligation

Over 50 Cost-Effective Methane Reduction Opportunities

Pneumatics/Controls

Document Title	Capital Costs	Production	Gathering and Processing	Transmission	Distribution			
Estimated Payback: 0-1 year								
Convert Gas Pneumatic Controls to Instrument Air Lessons Learned (PDF) (12 pp, 314K)	> \$50,000	Х	×	×	X			
Estimated Payback: 1-3 years								
Options for Reducing Methane Emissions From Pneumatic Devices in the Natural Gas Industry <u>Lessons Learned (PDF)</u> (12 pp, 201K) Presentation (PDF) (20 pp, 384K)	< \$1,000	Х	Х	х	Х			
November 2011	•	 Low implementation costs 						
Convert Pneumatics to Mechanical Controls PRO Fact Sheet #301 (PDF) (3 pp, 204K)	\$1,000-\$1	· ·						
Convert Natural Gas-Driven Chemical Pumps PRO Fact Sheet #202 (PDF) (3 pp, 130K)	\$1,000-\$1							
Replacing Gas-Assisted Glycol Pumps with Electric	\$1,000-\$1	 Quick payback times (\$3/Mcf) 						
Pumps Lessons Learned (PDF) (17 pp., 197K)		50% pay back in <1 year						
(PTop of page		- 67	% pay back in <2 y	ears				
Tanks	•	Low co	st per Mcf or tC	O₂e redu	ced			
Document Title	Capital	 70% cost <\$3 per Mcf reduced 70% cost <\$10 per tCO₂e reduced 						
Convert Water Tank Blanket from Natural Gas to	\$1,000-\$1							

Screenshot from EPA Gas STAR website

Strategy for Addressing Methane Emissions

Develop Emissions BASELINE

- Develop source- and process-specific methane inventory.
- Use emission factors, engineering calculations, software tools, direct measurement.

Evaluate Best REDUCTION OPPORTUNITIES

- Prioritize largest sources and most cost-effective reduction projects.
- Conduct measurement studies and detailed analyses to confirm volumes and scope reduction projects.

IMPLEMENT Reduction PROJECTS

- Implement top reduction projects.
- Pilot projects or company-wide.
- Document and share lessons learned.

Document and SHARE SUCCESSES

- Quantify operational, economic, and environmental results.
- Publicize results to stakeholders.

Industry Experience – Well Unloading

Well Venting Reduction Using Plunger Lifts and Smart Automation

Industry Experience – Pneumatics

- Chesapeake retrofitted controllers with Mizer low bleed components
- Total 2,670 retrofits done through March 31, 2009
 - Cost: U.S.\$1,447,140
 - Methane Reductions: 18 million m3
 - 7 month simple payback reported using
 Chesapeake's gas value of ~\$3.50/MMBtu

Cemco/WellMark 6900 Retrofit w/ Mizer Valve

Fisher 2500, 2506
Retrofit w/ Mizer, bracket, tubing & relay plug

Industry Experience – Pneumatics

U.S. District	Retrofits Done Thru 31-Mar-09	Daily Reduction (thousand m³)	Annual Reduction (million m³)
Anadarko	1,264	25.1	9.2
Arkansas	100	2.0	0.7
North Mid-Continent	467	9.3	2.8
Southern Oklahoma	372	7.4	2.8
West Mid-Continent	47	0.9	0.4
Gulf Coast	161	3.2	1.2
Louisiana	17	0.3	0.1
North Permian	93	1.8	0.7
South Permian	149	2.9	0.6
Total	2,670	52.9	18.4

Using \$3.50/MMBtu, the simple payback is 7 months.

Industry Experience – VRUs

Payback economics – project for 9 tank batteries

Purchase price for 9 VRUsU.S.\$475,000

Estimate install costU.S.\$237,500

Total capital costsU.S.\$712,500

Approximate Gas Revenue

- 29.7 Mcm/day x \$100/Mcm* x 30 days = U.S.\$89,100/ month
- Payback on capital investment < 8 months
- Installed in 2005 & early 2006 all locations continue to generate incremental revenue and meet environmental compliance goals today

*U.S.\$100/Mcm ≈ U.S.\$3/Mcf

Become a Natural Gas STAR Partner

Benefits

- Information sharing and tech transfer
- Technical guidance, including assistance conducting economic analyses related to the implementation of cost-effective technologies and practices
- Peer networking
- Voluntary record of reductions
- Public recognition

Requirements

Annual reporting of voluntary methane emission reduction activities

Partnership is open to companies operating in the United States and abroad.

Steps to Join:

- 1. Sign and send in an MOU
- Coordinate with EPA to plan your participation and implementation strategy

Learn more at www.epa.gov/gasstar/join/

SAVE THE DATE!

Natural Gas STAR Annual Implementation Workshop

May 12-14, 2014 Grand Hyatt San Antonio San Antonio, TX

Learn more at:

www.epa.gov/gasstar/workshops/annualimplementation/2013.html

Contact Information

Roger Fernandez fernandez.roger@epa.gov 202-343-9386

epa.gov/gasstar