Centrifugal Compressor Wet Seals Seal Oil De-gassing & Control

Natural Gas Star Annual Workshop; Denver, Colorado; April 2012 Reid Smith BP,

Centrifugal Compressor Wet Seals

- High pressure seal oil circulates between rings around the compressor shaft
- Oil absorbs the gas on the inboard side
 - Little gas leaks through the oil seal
 - Seal oil degassing vents methane to the atmosphere
- Wet seals leak little gas at the seal face
- Most emissions are from seal oil degassing
- Seal oil degassing may vent 40 to 200 scf/minute
- One Natural Gas STAR
 Partner reported emissions as high as 75,000 scf/day

Source: PEMEX

Traditional Solution: Retrofitting/Installing Dry Seals

Dry seals:

- 0.4 to 2.8 scf/min leak rate
- Significantly less than emissions from wet seals

Very cost-effective option for new compressors

Significant capital costs and downtime for retrofitting compressors

See Lessons Learned for more info¹

Seal-oil degassing and vapor recovery is a more cost effective retrofit with less downtime and roughly equivalent emissions

Dry seals keep gas from escaping while rotating with the shaft

Background of North Slope Study

- Natural Gas STAR learned of anecdotal information on this potential mitigation opportunity a few years back
 - Developed a theoretical example and presented to Natural Gas STAR Partners at workshops and in the Spring 2009 Newsletter
- In taking measurements, BP identified wet seal gas recovery systems on centrifugal compressors at its North Slope facilities
 - BP's initial results showed recovery of >99% of seal oil gas that would be otherwise vented to atmosphere from degassing tank
- Led to BP and Natural Gas STAR collaboration on detailed measurement study of alternative wet seal capture mitigation opportunity
 - Recovery system that separates gas from the sour seal oil before being sent to the degassing tank
 - Recovered gas sent to various outlets: flare purge, low pressure fuel, turbine fuel ~273 psig (18.6 Bar), compressor suction
 - System leads to lower emissions from degassing tank vent (more details on following slides)

Overview of North Slope Operations

Overview of North Slope Operations

Central Gas Facility (CGF)

- World's largest gas processing plant (max feed of ~ 8bcf/day)
- Processes all gas from Prudhoe Bay gathering & boosting stations (except local fuel)
- Products:
 - Residue gas
 - Natural gas liquids (blended with oil and delivered to TAPS)
 - Miscible injectant (used for EOR purposes)
- 11 compressors (totaling over 500,000 HP)
 - Three boosters
 - Two refrigerant
 - Two MI
 - Four tandems
- Seal oil vapor recovery lines routed to flare purge

Central Compressor Plant (CCP)

- World's largest compressor station (~8bcf/day capacity)
- Receives residue gas from CGF, compresses to higher pressures, and sends to gas injection well-pads (~7.1 BCF/day at 3,600 to 4,000 psig)
- 15 compressors (totaling 537,000 HP)
 - Nine low pressure (1st stage) compressors in parallel
 - Four high pressure (2nd stage) compressors in parallel
 - Two tandem compressors (1st and 2nd stages) in parallel
- Seal oil vapor recovery lines routed to fuel gas (for compressor turbines, heaters, and blanket gas)

Sour Seal Oil Vapor Recovery System

NaturalGas

Seal Oil Degassing Separators

Seal Oil Degassing Separators

Seal Oil Degassing Separator/System

Seal Oil Degassing Separators

Early Results: BP Measurements of CCP

- Table shows initial measurements taken by BP from a low- and highpressure compressor at CCP <u>before</u> study
- Used nitrogen as "tracer gas" to calculate methane and total hydrocarbon flow-rates from vents
- Recovered Gas: 0.92 MMSCFD LP; 3.7 MMSCFD HP Turbine Fuel

	High-Pressure Compressor	Low-Pressure Compressor
Nitrogen Purge Rate (SCF/Hr)	33	25
Vent Analysis (mole%)		
Nitrogen	43.846	86.734
Methane	37.872	6.93
Total Hydrocarbon + CO2	56.1540	13.2660
Total Methane Vent Flow (SCFM)	0.4751	0.0333
Total Vent Gas Flow (SCFM)	0.7044	0.0637
Number of Seals	2	2
Total Methane Vent Flow (SCFM/Seal)	0.2375	0.0166
Total Vent Gas Flow (SCFM/Seal)	0.3522	0.0319
"Average" Total Gas/Seal (Including Recovered) (SCFM)	108	108
Control Percentage	0.997	1.000

Preliminary results: Velocity Measurements

- Table shows vane anemometer measurements taken prior to and during the study
- Full results of study are not yet final, but initial results from CCP measurements show generally consistent with BP's results from before the study

			,									
			CCP Veloci	ty Readings	s - During	Study						
				# of Seals		1 Min	1 Min	1 Min	Vent			N2 Purge
Facility	Compressor Tag	Compressor description		per Tank	Vent size	Mean	Mean	Mean	Area ft2	fpm	scf/min	scf/min
					in	m/s	m/s	m/s				
CCP	K-18-1801	1st Stage Injection comp		2	2	0.36	0.38	0.28	0.022	66.9	1.5	
			Seal Oil Reservoir									\
			Vent		4	0.35	0.34	0.37	0.087	69.5	6.1	1
		2nd Stage Injection			_							
CCP	K-18-1809	comp	Degassing Tank Vent	2	2	0.42	0.4	0.2	0.022	66.9	1.5	
			Seal Oil Reservoir		4	0.6	0.57	0.04	0.007	400.0	44.0	/
			Vent	Doodings I			0.57	0.81	0.087	129.9	11.3	
	K-E3-	Main A (1st, 2nd, 3rd	velocity i	Readings - I	Prior to St	uay						
END	1510/20/30A	stages)	Degassing Tank Vent	6	2	0.86	0.8	0.48	0.022	140.4	3.1	
END	K-E3-	stages)	Degassing rank vent	В		0.86	0.8	0.46	0.022	140.4	3.1	
END	1510/20/30A	second vent	Degassing Tank Vent	6	6	0.87	0.52	0.71	0.196	137.8	27.1	
END	1310/20/30A	Second vent	Degassing rank vent	6	0	0.07	0.52	0.71	0.190	137.0	30.1	
 	K-E3-	Main B (1st, 2nd, 3rd						-			30.1	
END	1510/20/30B	stages)	Degassing Tank Vent	6	2	3.84	3.5	3.15	0.022	688.1	15.0	
LIND	K-E3-	piayes)	Degassing rank vent	U		3.04	3.3	3.13	0.022	000.1	13.0	
END	1510/20/30B	second vent	Degassing Tank Vent	6	6	2.68	2.14	4.67	0.196	622.5	122.3	
LIND	1310/20/30D	Second vent	Degassing rank vent	0		2.00	2.17	4.07	0.130	022.0	137.3	
		Booster B (1st & 2nd									137.3	
END	C-1501/02B	stages)	Degassing Tank Vent	2	2	0.64	0.42	0.67	0.022	113.5	2.5	
END	C-1501/02B	second vent	Degassing Tank Vent	2	2	0.54	0.39	0.46	0.021825	91.2	2.0	—
LIND	O-1301/02D	Second Vent	Degassing rank vent			0.04	0.55	0.40	0.021025	31.2	4.5	
											4.5	
LPC	K-52-1807	Reinjection Compressors	Degassing Tank Vent	2	2	0.82	0.91	0.83	0.022	167.9	3.7	
LPC	K-52-1808	Reinjection Compressors			2	1.44	1.73	1.6	0.022	312.9	6.8	
LPC	K-42-1801	STV/IP Compressors	Degassing Tank Vent	2	2	0.82	0.93	1.06	0.022	184.3	4.0	
LPC	K-42-1801	Second vent	Degassing Tank Vent		4	0.96	0.58	0.52	0.022	135.1	11.8	
	11 42 1001	CCCCIIG VCIII	Događani granik veni			0.00	0.00	0.02	0.007	100.1	15.8	
											10.0	
CCP	K-18-1801	1st Stage Injection comp	Degassing Tank Vent	2	2	0.3	0.33	0.32	0.022	62.3	1.4	
CCP	K-18-1802	1st Stage Injection comp		2	2	0.54	0.56	0.45	0.022	101.7	2.2	
CCP	K-18-1803			2	2	0.45	0.15	0.19	0.022	51.8	1.1	
CCP	K-18-1804	1st Stage Injection comp		2	2	0.45	0.13	0.19	0.022	18.4	0.4	+
CCP	K-18-1805	1st Stage Injection comp		2	2	2.65	2.67	2.52	0.022	514.3	11.2	+
CCP	K-18-1806			2	2	0.38	0.74	0.56	0.022	110.2	2.4	+
CCP	K-18-1807			2	2	0.38	0.74	0.30	0.022	17.1	0.4	
CCP	K-18-1808	1st Stage Injection comp		2	2	0.2	0.04	0.09	0.022	24.9	0.5	
CCP	K-18-1813	1st Stage Injection comp		2	2	0.54	0.64	0.65	0.022	120.0	2.6	
CCF	K-10-1013	2nd Stage Injection	Degassing rank vent			0.54	0.04	0.03	0.022	120.0	2.0	
CCP	K-18-1809	comp	Degassing Tank Vent	2	2	0.54	0.42	0.29	0.022	82.0	1.8	
CCF	K-10-1009	2nd Stage Injection	Degassing rank vent			0.34	0.42	0.29	0.022	02.0	1.0	
CCP	K-18-1810	comp	Degassing Tank Vent	2	2	1.17	0.46	0.34	0.022	129.2	2.8	
CCF	K-10-1010	2nd Stage Injection	Degassing rank vent			1.17	0.40	0.54	0.022	125.2	2.0	+
CCP	K-18-1811	comp	Degassing Tank Vent	2	2	1.44	1.38	0.59	0.022	223.7	4.9	
JUF	10-1011	2nd Stage Injection	Događaniy rank velil			1.44	1.30	0.03	0.022	223.1	7.3	
CCP	K-18-1812	comp	Degassing Tank Vent	2	2	0.38	0.43	0.4	0.022	79.4	1.7	
JUF	pt 10-1012	роттр	pogassing rank velil			0.00	0.43	U. 4	0.022	13.4	1.7	
CGF	K-19-1802A/B	Booster #2	Degassing Tank Vent	2	3	0.26	0.31	0.93	0.049	98.4	4.8	
CGF	K-19-1802A/B	Second vent	Degassing Tank Vent		3	0.36	0.31	0.82	0.049	93.8	4.6	
001	10-100270	OCCOUNT VOITE	Događaniy rank Vent			0.50	0.20	0.02	0.043	33.0	9.4	
CGF	K-19-1805	MI Compressor	Degassing Tank Vent	2	2	0.49	0.4	0.38	0.022	83.3	1.8	
CGF	K-19-1805	Second vent	Degassing Tank Vent		2	9.98	9.55	9.77	0.022	1922.1	42.0	
-100	13-1003	DOGGING VOITE	Događaniy rank Vent			3.30	9.00	3.11	0.022	1022.1	43.8	
	1		1		1				1		-10.0	4

CCP Compressor Vent Measurement

Close-up

FLIR Camera Verification

Applicability & Benefits

- Sased on the results, a sour seal oil vapor recovery system could prove to be an economic alternative to dry seal retrofits on centrifugal compressors
 - Ory seals on new compressors are now more prevalent in industry—typically cheaper than wet seals
 - Dry seal retrofits on older compressors very high in cost;
 ~\$250,000 to \$1 million per compressor
 - Sour seal oil vapor recovery system on wet seals compressors much lower in capital cost, requires short duration compressor shutdown or interruption in gas service
- Recovery projects can provide companies with a way to both reduce methane emissions and utilize recovered gas <u>cost-effectively</u>

Applicability/Benefits

- Investment includes cost of:
 - Intermediate degassing drum ("sour seal oil trap")
 - New piping
 - 6 Gas demister/filter
 - Pressure regulator for fuel gas line
- Project summary:
 - Less expensive capital costs compared to dry seal retrofit
 - Prevents most seal oil gas emissions from venting to atmosphere while also improving site efficiency
 - Positive cash flow after less than a month

PROJECT SUMMARY: CAPTURE AND USE OF SEAL OIL DEGASSING EMISSIONS						
Operating Requirements	 Centrifugal compressor with seal oil system Nearby use for fuel gas or recycle New intermediate pressure flash drum, fuel filter, pressure regulator 					
Capital & Installation Costs	\$22,000 ¹					
Annual Labor & Maintenance Costs	Minimal					
Gas saved	~100 MMSCF/Year (2 seals @ 108 scf/min each)					
Gas Price per mscf	\$2.5	\$3.0	\$3.5			
Value of Gas Saved	\$250,000	\$300,000	\$350,000			
Payback Period in Months	1	<1	<1			

¹Assuming a typical seal oil flow rate of 14.20 liters/minute (3.75 gallons/minute)

Conclusions and Next Steps

- Preliminary results are promising and indicate that sour seal oil vapor recovery from centrifugal compressors can be a viable project option for companies
- BP and Natural Gas STAR currently analyzing data obtained during study
- BP and Natural Gas STAR will continue to collaborate on this study to fully characterize the seal oil vapor recovery system seen on the North Slope
- Team to publish more detailed results of study in a future article

Contact Information

For further details, direct questions to:

Suzie Waltzer
EPA Natural Gas STAR Program
waltzer.suzanne@epa.gov
+1 (202) 343-9544

Reid Smith
BP
gordon-reid.smith@bp.com
+1 (281) 384-3583

Don Robinson
ICF International
drobinson@icfi.com
+1 (703) 218-2512