Field Validation of an On-Line FTIR Analyzer for Measuring Total Siloxane Content in Landfill Gas

Barbara Marshik

MKS Instruments

Barbara Marshik@MKSinst.com

Presented at the 2014 LMOP Conference

Why Monitor Siloxanes in Biogas?

Assess Biogas Fuel Quality

- Quantify Methane and CO₂ content
- Verify composition before gas enters pipeline
- Verify impurity levels

Siloxane Impurities

- High temperature: SiO2 powders form
- Turbines mechanical wear and tear
- Boilers particulate build up increase in maintenance frequency
- SCR Catalysts plugged in minutes
- Micro-turbines can be destroyed

2009 Engine MFG Siloxanes Limits in mg/m³

_	Caterpillar	28
_	Jenbacher	10
_	Waukesha	25
_	Deutz	5
_	Solar Turbines	0.1
_	IR Microturbines	0.06
_	Capstone Microturbines	0.03

Traditional Landfill Gas Siloxane Sampling and Analysis

Process

- Landfill gas sample collected at site
- Sample sent to off site analytical lab
- Analysis results generally take 1 week turn around time

Traditional Sampling Methods

- Extraction / Concentrators
 - Thermal Desorption tubes (Tenex)
 - Impingers (methanol)
 - JetCare (oil-based extraction)
 - Extra processing needed to release or determine Siloxane content
- Direct Sampling Methods
 - Tedlar bags
 - Suma Canisters
 - Canisters must be coated with glass

Issues with Traditional Sampling Methods

- Difficultly in sending gas samples across borders
 - Interstate as well as national border issues
- Not representative
 - One shot analysis over 2 30 minutes
- Sample prep or conditioning required
 - Remove H₂O
 - Concentrate sample
 - Recover / extract from media Some Siloxanes unrecoverable
- Inconsistencies in reported results for duplicates
 - Sample handling issues
 - Conversion of TMS and Siloxanes during transportation, due to media or H₂O content

FTIR as the Alternative Siloxane Sampling & Analysis Tool

- On Site continuous sampling and analysis
 - Pre- and Post-Scrubber analysis with same instrument
- No sample gas conditioning required
 - Sample gas pressure used to flow gas into FTIR
 - H₂O removal not required
 - Rapid Analysis
 - 20 seconds to 1 minute
- FTIR detects multiple species at same instance
 - Siloxanes have strong FTIR signal ppb detection
 - CH₄, CO₂, H₂O from ppb to percent level
 - Analyze for other components as well
 - ▶ NH₃, CO, COS, Hydrocarbons, etc.

MKS Patented Total Siloxane Method

- Does not provide speciated Siloxane numbers
 - Not needed only useful for filter development
- Provides one number for all of the main straight chain (L2-L5) and cyclic (D3 – D6) siloxanes
- Reports Trimethylsilanol (TMS) as well as Total Si at current CH₄ content
 - Total Siloxanes as mg/m³ and Si (mg/m³)
 - Total TMS as mg/m³ and Si (mg/m³)
 - Total TMS and Siloxanes as Si (mg/m³)
 - Scale reported values to the Laboratory value
- Calibrations based upon Permeation Devices
 - Permeation device mechanism NIST Traceable

FTIR Landfill Gas Siloxane Analysis

MKS AIRGARD® FTIR

- Transported to Landfill port via hand cart (75 lbs)
- Setup < 15 minutes</p>
- Continuous analysis 60 sec scan time
- Total Siloxane method used
 - Conservative Detection Limit 0.2 mg/m³

Landfill Sites – 9 Total

- Three sites had Siloxane scrubber systems
 - Different filter media at each site
- 7 sites collected Tenex adsorption tubes
- 1 site collected Tedlar Bag

Total Siloxane Landfill Gas Analysis Validation Process

- Goal
 - Use lab analysis on gas sample to validate FTIR method in the field
- Field Collection Process
 - Collect FTIR Landfill gas data
 - Gas Spectra for Raw and Processed Landfill gas
 - Run continuously at 1 minute rate
 - Collect Landfill Gas Samples for Laboratory Analysis
 - Collect duplicate samples
 - Tenex spaced 30 minutes apart due to gas collection time
 - ▶ Tedlar bag collections immediately after Tenex collection
 - Send gas samples to preselected labs
- Use Lab results to validate the FTIR field Data
 - Use FTIR Total Siloxane method
 - Scale the Total Siloxane value to the Lab reported results

FTIR Total Siloxane Analysis East (2) and West (4) Sites

Example of Same Laboratory Different Landfill Discrepancies

Site	Tenex TMS (Si mg/m³)	FTIR TMS (Si mg/m³)	Tenex Total Siloxane (Si mg/m³)	FTIR Total Siloxane (Si mg/m³)
East #1 Pre-scrubber	3.3	3.35	12.7	14.7
East #1 Post-scrubber	0.35	2.8	4.7	4.4
East #2 No scrubber	3.9	4.1	8.1	9.4
West #1 Pre-scrubber	7.9	2.7	3.1	9.4
West #1 Post-scrubber	0.11	0.8	2.2	<0.2

Component	Tenex Inlet1	FTIR	Tenex Outlet1	FTIR
TMS	6.552	2.330	0.103	0.63
L2	0.619	0.600	0.019	0.001
D4	0.346	1.670	0.407	0.018

PPM not Si (mg/m³)

Component	Tenex Inlet1	FTIR	Tenex Outlet1	FTIR
TMS	6.552	2.330	0.103	0.63
L2	0.619	0.600	0.019	0.001
D4	0.346	1.670	0.407	0.018

PPM not Si (mg/m³)

Example of Single Landfill Multiple Laboratory Discrepancies

	Scrubber Inlet WET / RAW (Si mg/m3)				
	Tedlar AnSol	Tedlar OSB	TENAX CAS	FTIR	JetCare*
(1) Siloxane	11.292	12.480	13.143	17.661	
(1) Siloxane+TMS	14.812	18.536	18.943	24.317	110.080
(2) Siloxane		3.407	16.304	17.867	
(2) Siloxane+TMS		6.797	22.704	24.725	
		Scrubber Inlet	DRY (Post Chiller)) (Si mg/m3)	
	Tedlar AnSol	Tedlar OSB	TENAX CAS	FTIR	JetCare
(1) Siloxane	10.508	10.606	9.981	17.546	
(1) Siloxane+TMS	13.608	14.950	15.481	24.382	81.801
(2) Siloxane		9.432	15.198	17.556	
(2) Siloxane+TMS		14.795	22.798	24.146	
	Scrubber Outlet (Si mg/m3)				
	Tedlar AnSol	Tedlar OSB	TENAX CAS	FTIR	JetCare
(1) Siloxane	0.838	0.647	1.558	1.896	
(1) Siloxane+TMS	0.838	1.131	1.650	2.715	7.174
(2) Siloxane		0.563	1.681	2.169	
(2) Siloxane+TMS		0.971	1.791	2.982	
•	* Paparts Total Si which includes particulates as well as volatiles				

^{*} Reports Total Si which includes particulates as well as volatiles

Method Validation Issues

 Which Golden Standard do you use for comparison or scaling?

	Scrubber Outlet (Si mg/m3)					
	Tedlar AnSol	Tedlar OSB	TENAX CAS	FTIR		
	0.838	0.647	1.558	1.896		
-TMS	0.838	1.131	1.650	2.715		
		0.563	1.681	2.169		
-TMS		0.971	1.791	2.982		

- (1) Siloxane
- (1) Siloxane+TMS
- (2) Siloxane
- (2) Siloxane+TMS
- Which Laboratory is correct?
 - Duplicate samples are inconsistent
 - One lab did not detect TMS all others did
- What sampling method is correct?

FTIR Field Validation Process Using Analyte Spiking

- Analyze the FTIR Response to the Spike Gas
 - Run the Landfill gas sample through the FTIR
 - Dilute 10% of landfill gas with "known" Siloxane mix (Spike)
- Validate the FTIR Response
 - Use the CO₂ response to determine the dilution amount
 - Calculate how much Siloxane should reach the FTIR in the diluted stream
 - Calculations
 - Determine Native Siloxane run Landfill gas only
 - Determine Siloxane content of the undiluted Siloxane Gas Mixture
 - Determine Siloxane content during the 10% Spike
 - Calculate the % Recovery (Actual Spike / Expected Spike)
 - If within ± 30% Expected Value then this is "validated"

Analyte Spike Experimental Setup

On Site Field Validation Study

GC/FID for External Validation

- Analytical trailer equipped with GC/FID transported to site
- 12 min / full scan
- Used to validate Siloxane
 Mixture and Spikes

FTIR

- MKS AIRGARD transported to site
- 1 min / scan

Field GC / FID Issues

- GC/FID equipment available for only one day
- Requires daily field calibration
 - Calibration standards necessary for on-site analysis
- Permeation tubes used for Siloxane calibrations
 - >2 hours run time for stable permeation reading
 - Permeation Tubes bundled to shorten wait time
 - Bundled tubes produced incorrect concentrations
 - Results were reproduced later in the lab
 - Conversion of siloxanes in the permeation oven
 - Incomplete permeation of other siloxanes
 - Initial concentration of TMS in Tedlar bag unknown
- Unable to verify GC Peaks in the field
 - Concentrations measured by GC are unknown
 - Direct GC to FTIR comparison unable to be performed
 - Need better Field transportable Siloxane and TMS standards

Landfill Siloxane and TMS Spike Tests

Other Issues Related to Siloxane Field Validation

- Sampling Methods
 - Shipping samples Customs, DOT Hazard forms
 - Conversion of L2, D3, D4 and TMS to other compounds
- Field Calibration Methods
 - Permeation Device
 - Only one tube in oven at any one time
 - Time to equilibrium extremely long
 - Higher concentrations not accurate
 - Syringe Pump
 - Hard to vaporize
 - Low concentrations only
 - Mixtures can be made using Hexane solution
 - Cylinders
 - Siloxanes stick to the walls
 - Cylinders not readily available
 - Not certified
 - Not in high concentrations

Field Validation Method

Proposed Modifications (Brown)

- Use Cylinder Gas Mixtures
 - (A) Purchase from Gas Supplier
 - ▶ TMS needs its own cylinder
 - Siloxanes blended in a cylinder
 - (B) Or create own using siloxane blends using diffusion method
 - Yet to be tested
 - Must be in Summa Canisters
 - (C) Use Syringe Pump
 - Mix with Hexane to vaporize
- Analyze Cylinder gases response on FTIR prior to shipping
 - Send equipment and cylinders to site
- Analyze the FTIR Response to the Spike Gas
 - Run Cylinder gases response on FTIR at Site prior to Spike Test
 - Run the Landfill gas sample through the FTIR
 - Dilute 10% of landfill gas with "known" Siloxane mix (Spike)
- Validate the FTIR Response
 - Use MFCs for Landfill gas and Spike gas if possible
 - ▶ Or at least use MFC for Spike gas and CO₂ for dilution amount
 - Calculate how much Siloxane should reach the FTIR in the diluted stream
 - Calculations
 - Determine Native Siloxane run Landfill gas only
 - Determine Siloxane content of the undiluted Siloxane Gas Mixture
 - Determine Siloxane content during the 10% Spike
 - Calculate the % Recovery (Actual Spike / Expected Spike)
 - If within ± 30% Expected Value then this is "validated"

Proposed ASTM Field Validation Method

- FTIR, Gas cylinders and field equipment ready
- Currently looking for site near Raleigh, NC
 - Prefer site with Siloxane Removal system and existing GC (or other analyzer) for Siloxanes comparison
- Multi-Analyzer Round Robin
 - Round Robin tests at Los Angeles County Sanitation District (LACSD)
 - Analyze samples in the field as well as in the lab at same time as GC-ICP, GC-MS
 - Send field collected samples to various labs for analysis:
 - Tenex
 - Methanol Impingers
 - Tedlar bag
 - Summa Canisters
- Create ASTM Test Methods
 - Lab GC-XX Sally Mathison LACSD
 - FTIR Field Method Barbara Marshik MKS Instruments

Summary

- MKS AIRGARD® FTIR Technology
 - Clearly capable of analyzing siloxanes and TMS to very low concentrations
 - At-line analysis in high level CH₄, CO₂ and H₂O
 - Fixed installations or transportable to site
- Total Siloxane and Total Silicon Method
 - Works well in raw or scrubbed biogas applications
 - TMS and Siloxane continuous monitoring at <0.2mg/m³
- FTIR Field Validation
 - Laboratory analysis varies so too much to determine which is correct
 - Better FTIR MDLs can be provided once field validation is completed

