LMOP Workshop: LFG Collection & LFG Energy Technologies

> David Mezzacappa, P.E. SCS Engineers Contractor to U.S. EPA on LMOP





## Introduction

- Goal convert LFG into a useful energy form
- Technologies include:
  - Power production/cogeneration
  - Direct use of medium-Btu gas
  - Production of high-Btu gas
- Three components of all LFG systems:
  - Gas collection system and flare
  - Gas treatment system
  - Energy recovery system
- The type of technology selected for a project depends local conditions

#### Landfill Gas to Energy





#### Technologies for Electricity Generation

| Project<br>Technology          | Number of<br>Projects |
|--------------------------------|-----------------------|
| Internal Combustion<br>Engines | 370                   |
| Gas Turbine                    | 36                    |
| Cogeneration                   | 41                    |
| Steam Turbine                  | 15                    |
| Microturbine                   | 15                    |
| Combined Cycle                 | 10                    |
| Stirling Cycle Engine          | 2                     |



#### Technologies for Direct Use

| Project<br>Technology | Number of<br>Projects |
|-----------------------|-----------------------|
| Boiler                | 61                    |
| Direct Thermal        | 49                    |
| High-Btu              | 30                    |
| Leachate Evaporation  | 12                    |
| Greenhouse            | 5                     |
| Alternative Fuel      | 5                     |



#### State of LFG Energy in Texas

- 33 Operational LFG Energy Projects
  - 101 megawatts (MW) of electrical generation from 24 LFG energy projects in Texas
  - 35 million standard cubic feet per day of LFG is utilized in 9 direct use projects
- 2 projects under construction:
  - Ft. Bend Regional Landfill (highBTU)
  - Nelson Gardens LF (electricity)
- Over 50 Candidate Landfills in Texas



#### Gas Collection System and Flare

- Major components:
  - Collection wells and trenches
  - Condensate collection and management system
  - Blower
  - Flare



#### Collection Wells and Trenches

- Two collection configurations:
  - Vertical wells
  - Horizontal trenches
- System design depends on:
  - Site-specific conditions
  - Timing of installation
- LFG from each well is transported via lateral pipes to a main collection header



#### Collection Wells and Trenches (cont.)

- Condensate collection
  - Forms when warm gas cools in a pipeline
  - Can impede flow of LFG
- Blower
  - Pulls gas from landfill
  - Size and type depends on system
- Flare
  - Controls emissions during project start-up or downtime



#### Collection Wells and Trenches (cont.)

- System costs depend on sitespecific conditions
- Example:
  - 40 acre site designed for 600 cfm gas flow
  - \$25,000/acre or \$1,000,000 total
  - \$2,350 annual O&M costs/well
  - \$4,700 annual O&M costs/flare\*

\* Based on 2012 cost estimates



## LFG Treatment Systems

- Treatment requirements depend on end-use of the LFG:
  - Direct use minimal treatment
  - Electricity treatment to remove contaminants that might damage engines/turbines
  - High-Btu extensive treatment required



# LFG Treatment Systems (cont.)

#### • Primary treatment

- Dewatering and filtration to remove moisture and particulates
- More common compression and cooling to remove water vapor and humidity
- Secondary treatment
  - Provide much greater gas cleaning
  - Two common contaminants removed include siloxanes and sulfur



## Energy Recovery Systems

- Power production/cogeneration
- Direct use of medium-Btu gas
- Production of high-Btu gas





## **Electricity Generation**

- 75% of all LFG energy projects produce electricity
- Common technologies include:
  - Internal combustion engines
  - Gas turbines
  - Microturbines









#### Internal Combustion Engines

- Most common type
  - of technology
- Advantages



- Relatively low cost
- High efficiency (25-35%)
- Good size match for many landfills
  - Typical output 800 kW to 3 MW



#### Internal Combustion Engines (cont.)

Examples of available internal combustion engine sizes and corresponding gas flows:

| Engine Size | Gas Flow (cfm at 50% methane |
|-------------|------------------------------|
| 540 kW      | 204                          |
| 633 kW      | 234                          |
| 800 kW      | 350                          |
| 1.2 MW      | 500                          |



## **Gas Turbines**

- More suitable for larger projects
  Typically larger than 5 MW
- Advantages:
  - Significant economics of scale
  - Resistant to corrosion
  - Lower nitrogen oxide emission rates
  - Relatively compact with low O&M costs
- Disadvantages:
  Less efficient than IC engines
   Siloxane Removal





#### Microturbines

- Reasons to select technology:
  - Reduced LFG availability (<300 scfm)</p>
  - Lower LFG methane content (<35%)</p>
  - Lower nitrogen oxide emissions
  - Add and remove units as gas quantities change
  - Ease of

interconnection





# Microturbines (cont.)

- Treatment typically required:
  - Moisture removal
  - Siloxanes
  - Sulfur



- Sizes include 30, 70 and 250 kW units
  - Larger capacity units should be used if LFG quantities exist
- More expensive on a dollar-per-kW installed capacity basis



00011

١.

100001

9001

#### Sample Electricity Generation Costs

|  | Technology                                    | Typical Capital<br>Costs (\$/kW)* | Typical Annual<br>O&M Costs (\$/kW)* |
|--|-----------------------------------------------|-----------------------------------|--------------------------------------|
|  | Internal Combustion<br>Engine (>800 kW)       | \$1,700                           | \$180                                |
|  | Small Internal<br>Combustion Engine<br>(<1MW) | \$2,300                           | \$210                                |
|  | Gas Turbine<br>(>3MW)                         | \$1,400                           | \$130                                |
|  | Microturbine<br>(<1MW)                        | \$5,500                           | \$380                                |

\* 2010 dollars



### **Direct Use**

- 25% of all LFG energy projects are direct use applications
- LFG is piped to nearby end-user and used in boiler or other industrial process
- Limited treatment is required
- Ideal gas end-user will have a steady gas flow compatible with landfill's gas flow



- Provide LFG to multiple endusers if one ideal end-user is not available
- Using LFG may require equipment modifications
- LFG quality might be improved to avoid equipment modifications
- LFG typically treated to remove siloxanes



# Direct Use (cont.) Boiler

- Most common type of direct use project (over 60 projects operating)
- Minimal LFG treatment required
- Usually requires some modifications to run on LFG







#### Typical LFG Flows Based on Landfill Size

| Landfill Size<br>(metric tons WIP) | LFG Output<br>(MMBtu/yr) | Steam Flow<br>Potential (Ibs/hr) |
|------------------------------------|--------------------------|----------------------------------|
| 1,000,000                          | 100,000                  | 10,000                           |
| 5,000,000                          | 450,000                  | 45,000                           |
| 10,000,000                         | 850,000                  | 85,000                           |



#### Leachate Evaporation

- 12 operational projects
- Good option if leachate disposal is
  unavailable or expensive
- Typical evaporator size 10,000 to 30,000 gallons per day
- Costs:
  - Capital\$300,000 \$500,000
  - Annual O&M\$70,000 \$95,000





Greenhouses

- 5 projects in operation
- LFG used for heating and hot water production in hydroponic

plant culture

 Costs will vary





**Artisan Studios** 

- Used in energy-intensive activities:
  - Glass-blowing
  - Metalworking
  - Pottery kilns



- Can be very successful if community backs project
- Small LFG flows and relatively inexpensive



## **High-Btu Gas Production**

- Refers to increasing the CH<sub>4</sub> content of the gas and decreasing CO<sub>2</sub>
- Common uses of high-Btu gas:
  - Injection into natural gas pipeline
  - Creation of vehicle fuel (CNG, LNG)
- Typically more expensive
- Process may achieve economies of scale for larger projects



# High-Btu Gas Production (cont.)

- Three common methods for producing high-Btu gas:
  - Amine scrubbing
  - Molecular sieve (or PSA)
  - Membrane separation
- Methods focus on removing CO<sub>2</sub>
- O<sub>2</sub> and N are best controlled by proper collection system operation



# Amine Scrubbing

- Selexol is the most common amine used
- Process includes:
  - LFG compression
  - Moisture removal using refrigeration
  - H<sub>2</sub>S removal in solid media bed
  - NMOC removal via Selexol absorber
  - CO<sub>2</sub> removal via secondary Selexol absorber



#### **Molecular Sieve**

- Employs compression, moisture removal and H<sub>2</sub>S removal similar to amine scrubbing
- Utilizes activated carbon and molecular sieve for NMOC and CO<sub>2</sub> removal



## **Membrane Separation**

- Employs compression, moisture removal and H<sub>2</sub>S removal similar to amine scrubbing
- Utilizes activated carbon to remove NMOCs
- Uses membranes to remove CO<sub>2</sub>



## **CNG** Production

- Membrane separation and molecular sieve technology used to produce CNG
- 100 cfm of LFG = 440 diesel gallons





## LNG Production

- LNG is produced using conventional natural gas liquefaction technology
- Conditions:
  - Little to no CO<sub>2</sub> present
  - Systems are customized and generally on larger scales
- O<sub>2</sub> and N removal are essential





0000



# Selection of Technology

- Primary consideration: projected expense vs. potential revenue
- Sale of medium-Btu gas is often the simplest and most cost-effective
- Electricity projects may make more sense if:
  - No near-by energy user
  - Additional revenue sources are available (RECs, carbon credits)
- High-Btu may be best if enough gas 35



#### Selection of Technology (cont.)

• Considerations in selecting the right technology for electricity generation:

- Gas recoverability for at least 10 years
- Gas quality
- Need for heat or steam might consider a CHP project
- State and local air quality regulations

• Remember each project is sitespecific and there are other factors to consider.



#### Thank you!

#### **Questions?**