EPAct/V2/E-89: Assessing the Effect of Five Gasoline Properties on Exhaust Emissions from Light-Duty Vehicles Certified to Tier 2 Standards

Final Report on Program Design and Data Collection

Appendix N EPAct NMOG Calculation Protocol

Assessment and Standards Division Office of Transportation and Air Quality U.S. Environmental Protection Agency

National Renewable Energy Laboratory U.S. Department of Energy

Coordinating Research Council

NOTICE

This technical report does not necessarily represent final EPA decisions or positions. It is intended to present technical analysis of issues using data that are currently available. The purpose in the release of such reports is to facilitate the exchange of technical information and to inform the public of technical developments.

EPA-420-R-13-004 April 2013

EPAct NMOG Calculation Protocol

19-Feb-2009

The series of calculations shown here (Equations (1) through (6)) must be performed separately for each test phase (bag). The NMOG mass results can then be weighed in the usual way to form a test cycle composite emission rate.

First we calculate corrected NMHC concentration for dilute exhaust (subscript e) and dilution air (subscript d) as follows:

$$\mathsf{NMHC}_{\mathsf{e}} = \mathsf{FIDHC}_{\mathsf{e}} - \mathsf{r}_{\mathsf{CH4}} \cdot \mathsf{CH4}_{\mathsf{e}} - \mathsf{r}_{\mathsf{MeOH}} \cdot \mathsf{MeOH}_{\mathsf{e}} - \mathsf{r}_{\mathsf{EtOH}} \cdot \mathsf{EtOH}_{\mathsf{e}} - \mathsf{r}_{\mathsf{PrOH}} \cdot \mathsf{PrOH}_{\mathsf{e}} - \mathsf{r}_{\mathsf{AcetHO}} \cdot \mathsf{AcetHO}_{\mathsf{e}}$$
(1)

$$\mathsf{NMHC}_{\mathsf{d}} = \mathsf{FIDHC}_{\mathsf{d}} - \mathsf{r}_{\mathsf{CH4}} \cdot \mathsf{CH4}_{\mathsf{d}} - \mathsf{r}_{\mathsf{MeOH}} \cdot \mathsf{MeOH}_{\mathsf{d}} - \mathsf{r}_{\mathsf{EtOH}} \cdot \mathsf{EtOH}_{\mathsf{d}} - \mathsf{r}_{\mathsf{PrOH}} \cdot \mathsf{PrOH}_{\mathsf{d}} - \mathsf{r}_{\mathsf{AcetHO}} \cdot \mathsf{AcetHO}_{\mathsf{d}}$$
(2)

Note that these values are all as ppmC (so speciation results for EtOH, PrOH, and AcetHO reported in ppm of the particular chemical compound will need to be multiplied by 2 or 3 depending on the number of C atoms in the compound).

The following constant values shall be used for FID response factors:

$$\begin{split} r_{CH4} &= 1.15 \ ppmC/ppmC \ (this \ program) \\ r_{MeOH} &= 0.63 \ ppmC/ppmC \ (this \ program) \\ r_{EtOH} &= 0.74 \ ppmC/ppmC \ (this \ program) \\ r_{PrOH} &= 0.85 \ ppmC/ppmC \ (CARB) \\ r_{FormHO} &= 0.00 \ ppmC/ppmC \ (various \ sources) \\ r_{AcetHO} &= 0.51 \ ppmC/ppmC \ (this \ program) \end{split}$$

Next, we must calculate the dilution factor to be used in generating the net NMHC concentration:

$$\mathsf{DF} = \frac{100 \cdot \left[\frac{x}{x + 0.5y + 3.76 \cdot (x + 0.25y - 0.5z)}\right]}{\mathsf{CO2}_{\mathsf{e}} + (\mathsf{NMHC}_{\mathsf{e}} + \mathsf{CH4}_{\mathsf{e}} + \mathsf{MeOH}_{\mathsf{e}} + \mathsf{PrOH}_{\mathsf{e}} + \mathsf{EtOH}_{\mathsf{e}} + \mathsf{FormHO}_{\mathsf{e}} + \mathsf{AcetHO}_{\mathsf{e}} + \mathsf{CO}_{\mathsf{e}}) \cdot 10^{-4}}$$
(3)

The parameters x, y and z in Eq. (3) are coefficients taken from the chemical formula $C_xH_yO_z$ of a test fuel. The procedure to calculate their values is provided in Appendix 2.

Once the DF is determined, we calculate the net NMHC concentration as follows:

$$NMHC_{conc} = NMHC_{e} - NMHC_{d} \cdot \left(1 - \frac{1}{DF}\right)$$
(4)

Then we compute NMHC_{mass}:

$$NMHC_{mass} = V_{mix} \cdot Density_{NMHC} \cdot NMHC_{conc} \cdot 10^{-6}$$
(5)

Equations (4) and (5) must be repeated for each emission being considered. V_{mix} is the volume of dilute exhaust collected during a given phase of the test cycle, measured in standard cubic feet. Density is the calculated gas phase density of a particular species treated as a $C_1H_vO_z$ ideal gas.

The following values of gas phase density shall be used:

 $\begin{array}{l} Density_{NMHC} = 16.334 \ g/ft^3 \\ Density_{HeOH} = 37.718 \ g/ft^3 \\ Density_{EtOH} = 27.115 \ g/ft^3 \\ Density_{PrOH} = 23.581 \ g/ft^3 \\ Density_{FormHO} = 35.345 \ g/ft^3 \\ Density_{AcetHO} = 25.929 \ g/ft^3 \end{array}$

To generate the NMOG figure, we need methanol, ethanol, 2-propanol, formaldehyde and acetaldehyde mass emissions as computed using Eq. (4) and (5) based on measured concentration values form the speciation results (as in Eq. (1) and (2)).

Finally, then, NMOG mass emissions can be computed as follows:

$$NMOG_{mass} = NMHC_{mass} + MeOH_{mass} + EtOH_{mass} + PrOH_{mass} + FormHO_{mass} + AcetHO_{mass}$$
(6)

Once $NMOG_{mass}$ calculations have been completed for all three phases (cold transient (ct), stabilized (s) and hot transient (ht)) of the LA92 test cycle they, calculate the total weighted NMOG emissions using the following formula:

$$NMOG_{wm} = 0.43 \cdot \left(\frac{NMOG_{mass.ct} + NMOG_{mass.s}}{D_{ct} + D_{s}}\right) + 0.57 \cdot \left(\frac{NMOG_{mass.ht} + NMOG_{mass.s}}{D_{ht} + D_{s}}\right)$$
(7)

For tests where there is no bag 2 or 3 speciation data, NMOG shall be computed assuming emission levels for oxygenated species in bags 2 and 3 are zero.

Attachment 1

Definitions

NMHC_e – Concentration of NMHC in dilute exhaust sample, ppm C equivalent

 $FIDHC_e$ - Uncorrected concentration of HC in dilute exhaust sample as measured by the FID, ppm C equivalent

CH4_e – Concentration of methane in dilute exhaust sample as measured, ppm C equivalent

MeOH_e - Concentration of methanol in dilute exhaust sample as measured, ppm C equivalent

EtOH_e - Concentration of ethanol in dilute exhaust sample as measured, ppm C equivalent

 $PrOH_e$ - Concentration of 2-propanol in dilute exhaust sample as measured, ppm C equivalent FormHO_e - Concentration of formaldehyde in dilute exhaust sample as measured, ppm C equivalent

AcetHO_e - Concentration of acetaldehyde in dilute exhaust sample as measured, ppm C equivalent

 $\overline{CO2}_{e}$ - Concentration of carbon dioxide in dilute exhaust sample as measured, percent

CO_e - Concentration of carbon monoxide in dilute exhaust sample as measured, ppm

r_{CH4} - FID response to methane, ppmC/ppmC

r_{MeOH} - FID response to methanol, ppmC/ppmC

r_{EtOH} - FID response to ethanol, ppmC/ppmC

r_{PrOH} - FID response to 2-propanol, ppmC/ppmC

r_{FormHO} - FID response to formaldehyde, ppmC/ppmC

r_{AcetHO} - FID response to acetaldehyde, ppmC/ppmC

NMHC_d - NMHC concentration in dilution air, ppm C equivalent

FIDHC_d - Uncorrected HC concentration in dilution air sample as measured by the FID, ppm C equivalent

CH4_d - Concentration of methane in dilution air sample as measured, ppm C equivalent

MeOH_d - Concentration of methanol in dilution air sample as measured, ppm C equivalent

EtOH_d - Concentration of ethanol in dilution air sample as measured, ppm C equivalent

PrOH_d - Concentration of 2-propanol in dilution air sample as measured, ppm C equivalent

 $FormHO_d$ - Concentration of formaldehyde in dilution air sample as measured, ppm C equivalent AcetHO_d - Concentration of acetaldehyde in dilution air sample as measured, ppm C equivalent

DF - Dilution factor

 $_x$ - Carbon-to-carbon ratio in formula $C_xH_yO_z$ determined as in Appendix 2 for the fuel used (by definition x=1)

 $_{y}$ - Hydrogen-to-carbon ratio in formula $C_{x}H_{y}O_{z}$ determined as in Appendix 2 for the fuel used

 $_z$ - Oxygen-to-carbon ratio in formula $C_xH_yO_z$ determined as in Appendix 2 for the fuel used

X – Carbon mass fraction of the fuel

Y – Hydrogen mass fraction of the fuel

Z – Oxygen mass fraction of the fuel

NMHC_{conc} – Concentration of NMHC in dilute exhaust sample corrected for background, ppm C equivalent

MeOH_{conc} - Concentration of methanol in dilute exhaust sample corrected for background, ppm C equivalent

EtOH_{conc} - Concentration of ethanol in dilute exhaust sample corrected for background, ppm C equivalent

PrOH_{conc} - Concentration of 2-propanol in dilute exhaust sample corrected for background, ppm C equivalent

FormHO_{conc} - Concentration of formaldehyde in dilute exhaust sample corrected for background, ppm C equivalent

AcetHO_{conc} - Concentration of acetaldehyde in dilute exhaust sample corrected for background, ppm C equivalent

 V_{mix} - Volume of dilute exhaust collected during a given phase of the test cycle, scf

Density_{NMHC} – Density of NMHC treated as a C_1H_y ideal gas at standard conditions of 293.16°K and 760 mm Hg, g/ft³

Density_{MeOH} - Density of methanol treated as a $C_1H_yO_z$ ideal gas at standard conditions of 293.16°K and 760 mm Hg, g/ft³

Density_{EtOH} - Density of ethanol treated as a $C_1H_yO_z$ ideal gas at standard conditions of 293.16°K and 760 mm Hg, g/ft³

Density_{PrOH} - Density of 2-propanol treated as a $C_1H_yO_z$ ideal gas at standard conditions of 293.16°K and 760 mm Hg, g/ft³

Density_{FormHO} - Density of formaldehyde treated as a $C_1H_yO_z$ ideal gas at standard conditions of 293.16°K and 760 mm Hg,ft³

Density_{AcetHO} - Density of acetaldehyde treated as a $C_1H_yO_z$ ideal gas at standard conditions of 293.16°K and 760 mm Hg, g/ft³

 M_{NMHC} - Molecular mass of NMHC treated as a C_1H_y , g/mole, calculated according to the formula provided in Appendix 3

NMOG_{mass} - NMOG mass, g/test phase

NMHC_{mass} - NMHC mass, g/test phase

MeOH_{mass} - Methanol mass, g/test phase

EtOH_{mass} - Ethanol mass, g/test phase

PrOH_{mass} - 2-propanol mass, g/test phase

FormHO_{mass} - Formaldehyde mass, g/test phase

AcetHO_{mass} - Acetaldehyde mass, g/test phase

NMOG_{wm} - Weighted NMOG emissions, g/mile

 $NMOG_{mass.ct}$ - NMOG mass emitted during the cold transient phase of the test cycle, g/test phase $NMOG_{mass.s}$ - NMOG mass emitted during the stabilized phase of the test cycle, g/test phase $NMOG_{mass.ht}$ - NMOG mass emitted during the hot transient phase of the test cycle, g/test phase D_{ct} - Distance driven by the test vehicle on a chassis dynamometer during the cold transient phase of the LA92 test cycle, miles

 D_s - Distance driven by the test vehicle on a chassis dynamometer during the stabilized phase of the LA92 test cycle, miles

 D_{ht} - Distance driven by the test vehicle on a chassis dynamometer during the hot transient phase of the LA92 test cycle, miles

Attachment 2

<u>Calculation of x, y and z Coefficients in Formula $C_xH_yO_z$ Using Fuel C, H and O Content Data</u>

The carbon-to-carbon ratio x in formula $C_xH_yO_z$ by definition equals 1. The hydrogen-to-carbon and oxygen-to-carbon ratios y and z, respectively, can be calculated using the following equations:

$$y = \frac{\frac{Y}{1.008}}{\frac{X}{12.011}}$$
 (A2.1) and $z = \frac{\frac{Z}{15.999}}{\frac{X}{12.011}}$ (A2.2) where:

X - Carbon mass fraction of the fuel Y - Hydrogen mass fraction of the fuel

Z – Oxygen mass fraction of the fuel

The values of X, Y and Z will be provided by the EPA for all fuels tested in the EPAct Program.