Region 5 Harmful Algal Bloom Clean Water Act and Safe Drinking Water Act Workshop

OHIO SEA GRANT AND OSU STONE LABORATORY

Current Research Efforts on Nutrient Load Reduction Methods

Dr. Christopher J. Winslow Interim Director, Ohio Sea Grant College Program

April 28th, 2016

What is Causing the Harmful Algal Blooms in Lake Erie?

- Clean Air Act
- Climate change
- Commodity prices
- **Conservation Tillage** Larger farm size
 - (No/Reduced till)
- Crop uptake
- **Equipment size**
- Ethanol
- Fertilizer placement
- Fertilizer rates
- Fertilizer source
- Fertilizer timing
- **Glyphosate**

- GMOs
- Increased soil pH
- Ignoring amounts of P loss
- Lower levels of sediment in the water
- Manure
- P Misconceptions by researchers
- Rental agreements
- Products sold to ↑ P solubility in soil
- Soil biology alterations
- Soil testing and analysis
- Tile drainage
- Zebra mussels, "near-shore shunt'

Low Phosphorus Loads Per Field

- < 1.7 kg/ha (<1.5 lbs/acre)
- 3 to 5% of application rates

	DRP (kg P/ha)	TP (kg P/ha)
Maumee	0.273	1.12
Sandusky	0.311	1.41
Honey Cr.	0.369	1.29
Rock Cr.	0.250	1.38

Projects to Highlight

- Field to Faucet:
 - o N and P removal from animal manure --- Y. Li
 - Ohio nutrient management mobile applications --- J. Fulton
 - Geospatial Data Warehouse for Improved Agricultural Water Quality J. Fulton and S. Shearer
 - Detection of cyanotoxins in irrigation water sources using UAV --- J. Lee, J. Gregory and CK Shum
 - Best strategies to reduce phosphorus loads to Lake Erie from agricultural watersheds --- L. Johnson
 - Organic-P source tracking in Lake Erie watersheds --- P. Mouser
- FACT-Fertilizer Applicator Certification Training (4R Program) --- Senate Bill 150
- Senate Bill 1
- USDA-ARS Edge-of-Field Work --- K. King
- WBLE Multi-Model Project --- Ensemble Model
- Education in the Field (x2)
- Nutrient Stewardship for Cleaner Water; Signature Program from OSU Extension
- Sea Grant / OSU Stone Lab grant management

OSU CFAES's "Field to Faucet"

Partners for Field to Faucet:

Integrated system for N and P removal from animal manure (Phosphorus Recovery System)

- Series of centrifuge units and liquid hydrated lime (Ca(OH)2) facilitate coagulation/precipitation of solids
- A filter press squeezes liquids in one of last steps
- Filtered liquid from press has P content <1mg/L (can irrigate)
- Separated lime solids (lime/P cakes) can be transported affordably out of distressed watershed and/or soil blended

Ohio Nutrient Management Mobile Applications

- Document field notes about nutrient application with emphasis on N and P management
- Different from OFBF "App"; not just to keep farmer 4R compliant but helps to use information learned in 4R training
- = Continuous improvement in nutrient stewardship.

Geospatial Data Warehouse for Improved Agricultural Water Quality

- Developing access protocols that enable water quality researchers to secure and share data
- Aggregating publicly available base layer data to populate warehouse
- Will expand the database to hydrologic, weather, agricultural production, and water quality and monitoring data
- Will link with parallel efforts to archive production level data provided by agricultural producers (Agricultural Data Cooperative) and remote sensing imagery (OhioView)

Data Co-op

Detection of cyanotoxins in irrigation water sources using UAV

- Drone cameras have been acquired and have been integrated into UAV
- Have analyzed various optical images to contrast their water color classifications
- Water collection device has been tested on the ground

Best Strategy to Reduce P loads to Lake Erie from Agri. Watersheds

Goal: Subwatershed-scale as proof of concept (versus mouth Maumee) **Objectives:**

- 1. Intensively monitor and analyze subwatersheds (~90-1000 km²) with high export of dissolved P to (Rock Creek and Honey Creek):
 - Locate sources of P
 - Determine in-stream processing of P
 - Help prioritize BMP implementation
- 2. Coordinate and update existing watershed models with the results from this project (component "Ensemble Models"; slides soon)

Organic-P Source Tracking in Lake Erie Watersheds

Motivation:

 Organic-P from non-point sources and point sources are under-characterized in their respective concentrations

 Organic sources may contribute significantly to Lake Erie P load

Study Objectives:

- Apply new analytical tools to distinguish sources of organic-P in Lake Erie watershed
- Use knowledge on organic-P sources to improve management decisions for P regulation

FACT-Fertilizer Applicator Certification Training

- Ohio Department of Ag is the issuing authority coming from SB 150 (2014)
- Ohio State University Extension provides required Educational Sessions
- >6,500 persons have been trained in >100 sessions

Agriculture Nutrient Certificates Issued

What is Covered in Training

- Current rules for certification
- Nutrient enrichment effects on water quality
- Quality in soil testing
- Phosphorus management for yield and water quality
- Nitrogen management
- Materials used posted at http://go.osu.edu/FACT2015

Survey Results from the Training Tell us...

Question	Agree or Strongly Agree % answering			
Farm P is a significant problem to water quality	76			
I have improved my knowledge	92			
I will change my Nutrient Management practices	51			
Training method was appropriate	91			

- 2074 Surveys summarized
- 20% had not attended OSUE programs in the past

Senate Bill 1 (2015)

- Came into effect 7/3/2015
- Criteria for manure and granular fertilizer with P and N:
 - 1. No frozen, snow covered applications
 - 2. Top 2 inches soil saturated
 - 3. Account for rainfall forecast 24 or 12 hours after application

Edge-of-Field Methods

- 40 fields (20 paired fields) representative of Ohio crop production agriculture
- Surface runoff and tile discharge measurements
- Using a before-after control impact study design

Edge-of-Field Instrumentation

- H-flumes for surface runoff
- Thel-mar compound weirs and Isco area velocity sensors for tile

Data Collection and Analysis

- Precipitation and discharge recorded on a 10 minute interval
- Water quality:
 - Event and daily samples
 - Flow injection analysis (DRP, TP, NO3-N, and TN)

So What About 2015?

So What About 2015?

How does 2015 Compare?

Phosphorus Concentrations

Time of Application Data

- Greatest potential for surface and tile losses occurs with fall and winter application
- Applying P in spring or after wheat harvest seems to minimize surface and tile losses

DRP concentrations in tile discharge gr	eater in no-
tilled fields even after 5 storm events ((>1 month)

Storm Event	TD1 TD2 (tilled) (no-tille			
	ç	g/ha		
1	12.6	12.4		
2	16.5	19.7		
3	18.2	129.6		
4	54.8	210.3		
5	1.7	3.9		
6	0.6	1.5		
7	2.0	3.8		
Total	106.4	381.2		

Incorporated fertilizer substantially decreased DRP loads from drain discharge

WBLE Multi-Model Project (Ensemble Model)

Education in the Field (x1)

Validation of Ohio Nutrient recommendations

- Goal: Check of Ohio nutrient recommendations in todays production environment using small plot and on-farm plot results for N, P & K.
- Project Led: Dr Steve Culman, SENR
- Time Period: 2014-2018
- Product:
 - Revised Recommendations
 - Guidelines for adaptive management

Education in the Field (x2)

Alternative manure application timing

- Goal: Open up another liquid manure application window close to crop use to replace purchased N input and balanced P application.
- Project Led: Glen Arnold, Field Specialist
- Time Period: 2011 to present
- Product: Recommendations for in crop application of liquid manure

Nutrient Stewardship For Cleaner Water: 2-3 Year Goals

- Conduct cooperative field trials for BMP
- Adoption of soil testing and utilization of Tri-state fertilizer recommendations
- Mechanism to support adaptive management information
- Improve crop nutrient utilization efficiencies
- Development of voluntary Nutrient Management Plans
- Identify fields with high nutrient loss risk and implement appropriate cost effective BMP's

- http://ohioseagrant.osu.edu/research/collaborations/habs
- http://ohioseagrant.osu.edu/research/collaborations

54 Projects Total

- Ohio Sea Grant Funded Projects = 9 + 9 (\$1,821,000)
- OSU CFAES, "F2F" Projects = 5 (~\$1,000,000)
- Ohio Department of Higher Education I = 18 (~\$2,000,000)
- Ohio Department of Higher Education II = 13 (~\$2,000,000)
 - o 50 @ \$5,728,000
 - 19 @ \$2,684,000

ODHE Co-Chaired by OSU and UT

0
THE OHIO STATE UNIVERSITY

ODHE I and II Driven by Agency Priorities and Annex IV

- Agency Advisory Board consisted of two representatives from each OEPA, ODNR, ODH, and ODA
- Agency representatives on external review panel
- Extremely enjoyable, collaborative, and effective process

Focus Areas and Priorities

- Focus Areas (ODHE I):
 - Blooms: Sources and Movement
 - Produce Safe Drinking Water
 - Protect Public Health
 - Educate and Engage
- Priority categories (ODHE II):
 - Treatment Optimization
 - Cyanotoxin Toxicity Research
 - Reservoir Management
 - Bloom Dynamics
 - Analytical Methods
 - Nutrient Load Reduction Methods

LimnoTech, U of M, University of Amsterdam, Akron Water Supply, U.S. Geological Survey, Charles River Laboratory, USDA-ARS, and University of Kentucky

	Ohio Sea Grant College Program (Omnibus years 2014-15 and 2016-17)						
Year	Project Title		OHSG Funds	Matching Funds	PI Name - Last	Affiliation	
	Beneficial reuse of dredged material in manufactured soil blending: Economic/logistical and		03.404	¢ 46.727	Dayton	Ohio State	
	performance considerations	\$	93,404	\$ 46,737	Dayton	University	
	Impacts of Climate Change on Bublic Health in the Creat Lakes due to Harmful Algae Blooms		20.057	¢ 10.440	Martin	Ohio State	
	Impacts of Climate Change on Public Health in the Great Lakes due to Harmful Algae Blooms	\$	20,857	\$ 10,449	Martin	University	
	Should nitrogen be managed Lake Erie? The potential role of nitrogen fixation by	\$	58,596	\$ 30,183	Bade	Kent State	
	cyanobacteria.	Ą	36,350	\$ 30,163	baue	University	
	Relative contributions of hypoxia and natural gas drilling to methane emissions from Lake	\$	87,507	\$ 48,533	Townsend-Small	University of	
	Erie	ş	67,307	\$ 40,555	Townsenu-smail	Cincinnati	
2014-15	Understanding dam removal impacts on a formerly prolific Great Lake's walleye population	\$	80,000	\$ 40,000	Vandergoot	ODNR	
		ļ.		-		_	
	Linking Agricultural Production and Great Lakes Ecosystem Services: Modeling and Valuing	\$	198,955	\$ 129,051	Irwin	Ohio State	
	the Impacts of Harmful Algal Blooms in Lake Erie	_		-		University	
	Source tracking and toxigenicity of Planktothrix in Sandusky Bay	\$	103,833	\$ 61,949	Bullerjahn	Bowling Green	
		Ľ.				State University	
	The role of nitrogen concentration in regulating cyanobacterial bloom toxicity in a eutrophic	\$	91,212	\$ 51,068	Chaffin	Ohio State	
	lake	Ľ.		. ,		University	
	Mapping drain tile and modeling agricultural contribution to nonpoint source pollution in the	\$	76,308	\$ 59,281	Czajkowski	University of Toledo	
	western Lake Erie basin	ļ.		-	-		
	What makes Planktothrix bloom? An examination of physiological ecology from a genomics	\$	119,137	\$ 60,068	Bullerjahn	Bowling Green	
	perspective	<u> </u>		-		State University	
	Can fish see the bait on the hook? Linking effects of algal and sedimentary turbidity on fish	\$	119,839	\$ 62,263	Gray	Ohio State	
	vision to the Lake Erie recreational fishery through research and outreach	<u> </u>				University	
	Determining the role of urban runoff in harmful algal bloom formation in the Western Lake	\$	59,573	\$ 29,867	Gruden	University of Toledo	
	Erie basin						
	Opening the black box of nutrient processing in a Great Lakes coastal wetland	\$	113,634	\$ 56,817	Kinsman-Costello	Kent State	
		_				University	
2016-17	Sediment nitrogen dynamics in the western basin of Lake Erie relative to cyanobacterial	\$	120,000	\$ 62,256	McCarthy	Wright State	
	blooms					University	
	Characterizing ammonium dynamics affecting harmful algal blooms in Lake Erie	\$	120,000	\$ 69,169	Newell	Wright State	
						University	
	Hydrologic controls on legacy phosphorus release to Lake Erie	\$	119,360	\$ 71,259	Sawyer	Ohio State	
	F					University	
	From the headwaters to the littoral zone: using attached algae as indicators of ecosystem	\$	119,552	\$ 69,634	Vadeboncoeur	Wright State	
	impairment and nutrient processing in the Lake Erie watershed					University	
	Anthropogenic phosphorus storage, bioavaiability, and cycling in the Maumee Bay and	\$	119,855	\$ 61,644	Yuan	Cleveland State	
	western Lake Erie Title:	<u> </u>	\$1.821.622	\$542 977		University	

Title: \$1,821,622 \$542,977

Ohio State University's Field to Faucet Initiative						
F2F Funds	PI Name - Last	Affiliation				
\$100,000	Lu	Ohio State University				
\$100,000	Li	Ohio State University				
\$199,925	Johnson	Heidelberg University				
\$65,000	Fulton	Ohio State University				
\$250,000	Shearer	Ohio State University				
\$205,075	Lee	Ohio State University				
	\$100,000 \$100,000 \$199,925 \$65,000 \$250,000	F2F Funds PI Name - Last \$100,000 Lu \$100,000 Li \$199,925 Johnson \$65,000 Fulton \$250,000 Shearer				

Total: \$920,000

	Ohio Department of Higher Educa	ation Research Initia	tive Round One		
Focus Area	Project Title	ODHE Funds	Matching Funds	PI Name - Last	Affiliation
Blooms: Sources and	HAB Detection, Mapping, and Warning Network: Maumee Bay Area	\$249,597.00	\$118,950.00	Bridgeman	University of Toledo
	HAB Detection, Mapping, and Warning Network: Sandusky Bay	\$250,000.00	\$162,409.00	Bullerjahn	BGSU
Movement	Identifying the best strategy to reduce phosphorus loads to Lake Erie from agricultural watersheds	\$251,565.00	\$433,996.00	Johnson	Heidelberg University
	Guidance for powdered activated carbon use to remove cyanotoxins	\$114,674.00	\$128,526.00	Lenhart	Ohio State University
	Investigation of water treatment alternatives in the removal of microcystin-LR	\$199,998.00	\$191,306.00	Seo	University of Toledo
	Transport and Fate of Cyanotoxins in Drinking Water Distribution Systems	\$106,209.00	\$126,231.00	Seo	University of Toledo
Produce Safe Drinking Water	Investigation of ELISA and interferences for the detection of cyanotoxins	\$75,011.00	\$107,409.00	Isailovic	University of Toledo
	Identifying Bacterial Isolates for Bioremediation of Microcystin- contaminated Waters	\$40,000.00	\$20,056.00	Mou	Kent State University
	Development of Microcystin Detoxifying Water Biofilters	\$55,000.00	\$78,740.00	Huntley	University of Toledo
	Prevention of cyanobacterial bloom formation using cyanophages	\$40,000.00	\$20,328.00	Lee	Ohio State University
	Method Development for Detecting Toxins in Biological Samples	\$55,000.00	\$70,621.00	Hensley	University of Toledo
Protect Public	Impact of pre-existing liver disease on microcystin hepatotoxicity	\$55,000.00	\$213,588.00	Kennedy	University of Toledo
Health	Fish flesh and fresh produce as sources of microcystin exposure to humans	\$162,597.77	\$95,109.04	Ludsin	Ohio State University
	Evaluation of Cyanobacteria and their Toxins in a Two-Staged Model of Hepatocarcinogenesis	\$30,000.00	\$32,803.00	Weghorst	Ohio State University
	Maumee Basin Lake Erie HABS Nutrient Management Options Comparative Analysis	\$64,649.51	\$42,481.83	Haab	Ohio State University
Educate and Engage	Social Network Analysis of Lake Erie HABs Stakeholder Groups	\$65,166.43	\$33,904.16	Turner	Kent State University
	Maumee Basin Lake Erie HABs Stakeholder Informed Decision- Making Support System	\$66,501.00	\$134,391.00	Lawrence	University of Toledo
	Farmer/Farm Advisor Water Quality Sampling Network	\$148,380.00	\$38,578	LaBarge	Ohio State University
	Total:	\$2,029,349	\$2,049,427		

Ohio Department of Hig	her Education Resea	rch Initiative Round T	wo	
Project Title	ODHE Funds	Matching Funds	PI Name - Last	Affiliation
Characterization of recreational exposures to cyanotoxins in western Lake Erie basin	\$21,213	\$54,655	Ames	University of Toledo
HAB Avoidance: Vertical Movement of Harmful Algal Blooms in Lake Erie	\$206,145	\$211,072	Bridgeman	University of Toledo
Seasonal quantification of toxic and nontoxic Planktothrix in Sandusky Bay by qPCR	\$31,571	\$65,159	Bullerjahn	Bowling Green State University
Optimization of carbon barriers for effective removal of dissolved cyanotoxins from Ohio's fresh water	\$210,695	\$219,901	Chae	University of Cincinnati
Evaluation of Optimal Algaecide Sources and Dosages fro Ohio Drinking Water Sources	\$137,842	\$153,287	Cutright	University of Akron
Discovery of Enzymes and Pathways Responsible for Microcystin Degradation	\$95,216	\$119,392	Huntley	University of Toledo
Determining sources of phosphorus to western Lake Erie from field to lake	\$199,266	\$251,707	Johnson	Heidelberg College
A comprehensive approach for evaluation of acute toxin responses after microcystin ingestion	\$184,292	\$186,568	Lee	Ohio State University
Evaluating Home Point-of-Use Reverse Osmosis Membrane Systems for Cyanotoxin Removal	\$99,328	\$146,143	Lipscomb	University of Toledo
Development of the MMPB method for quantifying total microcystins in water edible Lake Erie fish tissues	\$156,617	\$156,660	Ludsin	Ohio State University
Kinetic Models for Oxidative Destruction of Cyanotoxins in Raw Drinking Water	\$254,306	\$259,658	MacKay	Ohio State University
How quickly can target phosphorus reductions be met? Robust predictions from multiple watershed models.	\$255,757	\$255,956	Martin	Ohio State University
Early season (March) phosphorus inventory of offshore waters of Lake Erie	\$17,947	\$43,765	McKay	Bowling Green State University
Totals	\$1,870,195	\$2,123,923		

What Can Agriculture Do?

- Avoiding fall and winter application of fertilizer and manure (SB1)
- No fertilizer when rain is in forecast and saturated soils (SB1)
- Eliminate broadcast application and incorporate fertilizer (i.e., subsurface placement; band/inject)
- Soil testing of all fields to prevent application of too much P
 - The 4R Nutrient Program (SB 150):
 - Right fertilizer source (i.e., manure and P free)
 - Right rate (i.e., amount; Ag need)
 - Right time (i.e., rain and frozen ground)
 - Right place (i.e., only where needed)
 - Treat as leaves?
- Account for manure in nutrient calculations (algae don't care about source)
 - Treat manure and commercial fertilizer the same
 - The algae don't care about P source

inlets

What Other Levers Can We Pull?

- Lawn Care Recommendations:
 - Follow Scott's lead.....all lawn care fertilizer sellers and lawn care applicators meet the zero P goal
- Reduce property runoff (e.g., rain barrels, terraces, porous surfaces, etc.)
- Immediate Needs:
 - Arm water treatment plants with tools, technology, and training to remove toxins
 - Find surrogate for toxin
 - Reduce load of P into Lake Erie by 40%
 - Incorporate fertilizer
 - Water management
 - Soil testing (<30ppm)

Questions?

- For more information:
 - Dr. Christopher Winslow
 - o **Phone**: 614-247-6684
 - o **E-mail**: winslow.33@osu.edu
- Special thanks to:
 - Kevin King (Acting Research Leader w/ USDA-ARS)
 - Greg Labarge (Field Specialist w/ OSU Extension)
 - All Pls and Co-PIS on grants

Questions?

- For more information:
 - Dr. Christopher Winslow
 - Phone: 614-247-6684
 - o **E-mail**: winslow.33@osu.edu
- Special thanks to:
 - Kevin King (Acting Research Leader w/

State of the Science Webinars coming soon (end of May thru Beginning of Sept.)

LACOHOIÒH)

All Pls and Co-PIS on grants

