

National HAB Occurrence: Results and Approaches

Keith Loftin, Jennifer Graham
USGS Kansas Water Science Center

How Toxic are Cyanotoxins?

Acute Toxicity

- Cytotoxic
- Dermatoxic
- Hepatotoxic
- Neurotoxic

Chronic Toxicity

- Carcinogen
- Tumor promotor
- Mutagen
- Teratogen
- Embryolethality
- Neurodegenerative disease

USGS State Level Surveys in EPA Region 5

3 of 25

- Michigan survey completed in lakes
- 2 separate NPS surveys in MI and MN

Regional and National CyanoHAB Occurrence Collaborations

- 2006 USGS Midwestern Lake Reconnaissance (n=23)
- 2007 EPA National Lakes Assessment (n=1331)
- 2011 EPA National Wetlands Assessment (n ~ 643)
- 2012-2014 USGS Albemarle Sound, NC (n ~ 39)
- 2014 USGS Southeastern Stream Quality Assessment (n=93)
- 2014-2016 USGS GLRI Lake Erie
- 2015 USGS Pacific Northwest Stream Quality Assessment (n=87)
- 2015 EPA National Coastal Assessment (n ~ 1300)
- 2016 EPA National Wetlands Assessment
- 2016 USGS Northeastern Stream Quality Assessment
- 2016 2019 NOAA MERHAB Toxins at the Land/Sea Interface Coastal California
- 2017 USGS California Stream Quality Assessment

USGS Great Lakes Cyanobacterial HAB Research GLRI

What chemical, biological, and physical factors trigger HABs and toxins?

2007 NLA Results Cylindrospermopsin (ELISA)

- Occurrence: 4.0%
- Mean: 0.56 μg/L
- Median: 0.10 μg/L
- Max: 4.4 μg/L

State recreational thresholds range from 4 to 6 µg/L.

2007 NLA Results Saxitoxins (ELISA)

- Occurrence: 7.7%
- Mean: 0.061 μg/L
- **M**edian: 0.030 μg/L
- Max: 0.38 μg/L

Few state inland recreational thresholds exist. 3 µg/L has been used in 1 case.

Loftin et al. 2016, USGS Data Series, in press. Loftin et al., 2016, Harmful Algae, in press.

Cyanotoxins (LC/MS/MS) – 2% Subset

- Sample selection included 13 of 27 (48%) detections by Microcystin ELISA.
- Anatoxin-a detected: 4 of 27 (15%) samples
- Microcystins detected:14 of 27 (59%) samples
- Nodularin-R detected:1 of 27 (3.7%) in Texas

World Health Organization (WHO) Recreational Microcystin Guidance

Relative Probability of Acute Health Effects	Cyanobacteria (cells/mL)	Microcystin-LR (μg/L)	Chlorophyll-a (µg/L)
Low	< 20,000	< 10	< 10
Moderate	20,000 - 99,999	10 - 19.9	10 - 49.9
High	100,000-9,999,999	20 - 1999	50 - 4999
Very High	≥ 10,000,000	≥ 2000	≥ 5000

Cyanobacteria abundance and chlorophyll-a are used as surrogates for microcystin risk.

No US federal recreational guidance for any cyanotoxins. Some state guidance exists.

2007 NLA Results Microcystins (ELISA)

Occurrence: 32%

Mean: 3.0 μg/L

Median: 0.49 μg/L

Max: 230 μg/L

2007 NLA Results Chlorophyll

Occurrence: 99%

Mean: 29 μg/L

Median: 7.6 μg/L

Max: 940 μg/L

More eutrophic and hypereutrophic lakes east of -100° longitude.

2007 NLA Results Cyanobacterial Abundance

Occurrence: 98%

Dominant: 76%

Mean: 4.0 E4 cells/mL

Max: 5.0 E6 cells/mL

- Potential Toxin Producer Frequency:
- Anatoxins: 81%
- Cylindrospermopsins: 67%
- Microcystins: 95%
- Nodularins: 0.24%
- Saxitoxins: 79%

WHO Cyanobacteria Abundance Over-predicts Microcystin Risk

WHO Chlorophyll Over-predicts Microcystin Risk

WHO Chlorophyll and Cyanobacteria Abundance Have Better Agreement, but Can Still Be Problematic.

Has relevance for detection of cyanoHABs by satellite.

Loftin et al., 2016, Harmful Algae, in press.

Spatial HAB Research-

Blooms aren't always at the surface...

New sensor technologies allow new applications, such as high resolution spatial data collection.

Horizontal and Vertical Profiles

Continuous Water-Quality Monitoring

Developing Models to Compute Probability of Cyanotoxin Occurrence in Real Time

Stone and Graham, http://pubs.usgs.gov/of/2013/1123/http:/nrtwq.usgs.gov/ks

0.01

6212, 5312, 5912, 6212, 9613, 9112, 9812, 912, 912, 4112, 512, 9114, 9514

Microcystin (µg/L)

Conclusions

- Cyanotoxins were detected in 92% of states and 38% of lakes sampled. Issue is National.
- Microcystins occurred the most frequently, but other toxins were detected.
- Co-occurrence of cylindrospermopsins, microcystins, and saxitoxins was rare (0.32%) in integrated photic zone samples.
- WHO surrogate guidance (chlorophyll, cyanobacteria) usually over predicts microcystin recreational risk.
- Chlorophyll agrees better with cyanobacteria abundance which gives credibility to remote sensing approaches focused on chlorophyll reflectance.
- So let's discuss the interagency CyAN project

How Do We Monitor HABs as a Nation?

CyAN (Cyanobacteria Assessment Network) Project

- Using multiple satellite platforms to see U.S. HABs in attempt to provide early warning.
- Brings the strengths of multiple agencies together.

CyAN Technical Approach

https://eos.org/project-updates/agenciescollaborate-develop-a-cyanobacteriaassessment-network

Remote Sensing

Uniform and systematic approach for identifying cyanobacteria blooms. Strategy for evaluation and refinement of algorithms across platforms.

Environment

Identify landscape linkages causes of chlorophyll-a and cyanobacteria.

Health

Exposure and human health effects in drinking and recreational waters.

Economics

Behavioral responses and economic value of the early warning system.

Notifications

Bring the technology to EPA, states and tribal partners.

National HAB Database: Highly Desired Lake/Reservoir Data Sets

- Phytoplankton (cyanobacteria)
 - Abundance
 - Relative Abundance
 - Biovolume
- Pigments
 - Chlorophyll including pheophytin data
 - Phycocyanin
- Cyanotoxins
- Organic Matter TOC, DOC, SUVA, CDOM, FDOM, Water Color
- Particulates Secchi Depth, Suspended Solids, turbidity

CyAN Early Warning System

Future of HAB Research and Monitoring

- Integrated monitoring approaches from field to space
- Directed event-response
- Proactive public health protection
- Needs still include short and long-term solutions
- Predictive models need to be supported by mechanistic understanding of processes.

