Problem 6: Correlation and regression

It is often useful to look for significant relationships among variables in a dataset. Does TP concentration vary with flow? Are SS and TP concentrations related? Such questions are usually addressed by determining if there are correlations between variables and by testing for significant linear relationships with regression. Linear regression quantitatively describes the relationship in a way that can be used to predict values of one variable from the other.

a. Correlations among variables

Using Dataset 1 in file Sampledata.xlsx, evaluate significant correlations among flow (Q_2), TP concentration (TP_2), and SS concentration (SS_2) at Station 2 across all periods.

The following correlation matrix is generated by applying the parametric correlation r statistic (where \pm 1.0 indicates a perfect correlation and 0.0 represents no correlation) to the log-transformed data:

log Q_2 1.000 0.008 0.026	
log TP_2 0.008 1.000 0.782	
log SS_2 0.026 0.782 1.000	

Values of r in bold are statistically significant at $P \le 0.05$

The above table indicates that TP (log TP_2) and SS (log SS_2) concentrations are significantly correlated (r = 0.782) and that the correlation is positive, i.e., higher TP concentrations are associated with higher SS concentrations. There were no significant correlations between flow (log Q_2) and either TP or SS concentrations.

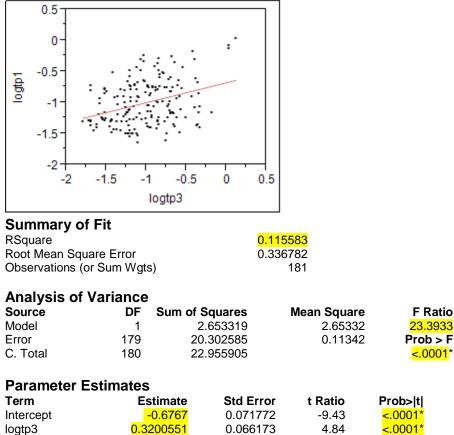
The following result is obtained by applying the nonparametric Spearman's rho (p) (where ± 1.0 indicates a perfect correlation and 0.0 represents no correlation) to the raw data:

Variable	By variable	Spearman's p	P value
TP_2	Q_2	-0.059	0.286
SS_2	Q_2	-0.032	0.557
SS_2	TP_2	0.821	<0.001

The above table indicates a significant positive correlation between TP and SS concentrations at Station 2, but no significant correlation between flow and either TP or SS.

b. Test for regression relationship between the same variable at two sites

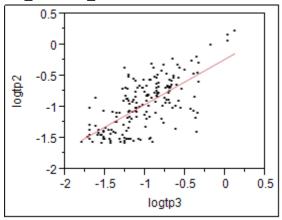
In Dataset 1, Station 3 represents the control watershed, while Stations 1 and 2 represent two treatment watersheds. Using Dataset 1, and assuming that all data satisfy the requirements for parametric statistics using a log transformation, determine if significant regression relationships exist between TP measured at Station 3 and TP measured at each of the other stations during the Calibration Period (Treatment=CAL).



The regression statistics (F ratio and associated *P* value) indicate that there is a significant relationship ($P \le 0.001$) between logTP_3 and logTP_1, although the relationship is relatively weak because the regression model, logTP_3 explains only ~11% (RSquare = 0.115583) of the variation in logTP_1. Both the slope and intercept are significantly different from zero ($P \le 0.001$). The regression equation is:

 $logTP_1 = -0.6767(logTP_3) + 0.3200$

TP_2 vs. TP_3



Summary of Fit RSquare Root Mean Square E Observations (or Sur	Error	5)	<mark>0.464</mark> 0.296					
Analysis of Variance								
Source	DF	Sum of Sc		Mean Square	F Ratio			
Model	1	13.6	90687	13.6907	<mark>155.2674</mark>			
Error	179	15.7	83309	0.0882	Prob > F			
C. Total	180	29.4	73997		<mark><.0001</mark> *			
Parameter Estimates								
Term	Es	stimate	Std Error	t Ratio	Prob> t			
Intercept	-0.2	220853	0.063282	-3.49	0.0006*			
logtp3	0.72	<mark>270138</mark>	0.058345	12.46	<.0001*			

The regression statistics (F ratio and associated *P* value) indicate that there is a significant relationship ($P \le 0.001$) between logTP_3 and logTP_2, one that may be more meaningful than that from Station 1, as the regression model explains 46% of the variation in logTP_2. Both the slope and intercept are significantly different from zero ($P \le 0.001$). The regression equation is:

 $logTP_2 = -0.2208(logTP_3) + 0.7270$