

November 17, 2011

Enbridge Energy, Limited Partnership c/o Mr. Rich Adams Vice President, Operations Superior City Centre Second Floor 1409 Hammond Ave. Superior, Wisconsin 54880

Re: Required Modification to Enbridge Energy, Limited Partnership's October 20, 2011 Submittal in response to the Administrative Order issued by U.S. EPA on July 27, 2010 and Supplement to the Administrative Order issued by U.S. EPA on September 23, 2010, pursuant to §311(c) of the Clean Water Act (Docket No. CWA 1321-5-10-001)

Dear Mr. Adams:

U.S. EPA is writing you regarding the following document submitted by Enbridge Energy, Limited Partnership, Enbridge Pipelines (Lakehead) L.L.C., Enbridge Pipelines (Wisconsin), and Enbridge Energy Partners, L.P. (herein collectively referred to as "Enbridge") on October 20, 2011:

Enbridge Line 6B MP 608, Marshall, MI Pipeline Release, Addendum to the Response Plan for Downstream Impacted Areas, August 2, 2010 (Revised August 17, 2010 per U.S. EPA August 17, 2010 letter), Supplement to the Source Area Response Plan and Supplement to Response Plan for Downstream Impacted Areas, Referred to as Operations and Maintenance Work Plan. Commonly referred to as **"Consolidated Work Plan for Activities through 2012,"** Prepared for United States Environmental Protection Agency, Enbridge Energy, Limited Partnership, Submitted: October 20, 2011

The U.S. EPA disapproves Enbridge's above-referenced *Consolidated Work Plan for Activities through 2012* ("Work Plan") due to inadequacies and lack of required detail in the Work Plan. Pursuant to paragraph 20 of the Administrative Order issued on July 27, 2010, pursuant to §311(c) of the Clean Water Act (Docket No. CWA 1321-5-10-001) ("Order"), the U.S. EPA has modified the Work Plan to include significantly more details of the response work planned for the Fall 2011-Fall 2012 timeframe. A copy of the Work Plan, as modified by the U.S. EPA, is attached.

Please replace the Enbridge Work Plan submitted on October 20, 2011 with the attached modified Work Plan. In addition to this modification, please provide and incorporate the following elements into the modified Work Plan:

1. Reorder and rename the previous attachments to correspond with the attached, modified Work Plan.

- 2. Attachment B, Figure 2: please add a figure showing the proposed locations of the jet test for erodibility.
- Attachment E Overbank Oil Recovery Standard Operating Procedures: please provide this SOP which was referenced as an attachment to the original work plan but was not provided.

Enbridge shall implement the attached Work Plan, as modified, perform tasks consistent with the Order, and comply with the U.S.EPA FOSC's directions. Enbridge shall submit the revised Work Plan incorporating the additional modifications described above to the U.S. EPA by 17:00 Eastern time on December 4, 2011. The U.S. EPA is available to meet regarding the attached Work Plan if Enbridge wishes to further discuss.

If you have any questions regarding letter, please contact me immediately at (231) 301-0559.

Sincerely,

Ralph Dollhopf Federal On-Scene Coordinator and Incident Commander U.S. EPA, Region 5

cc: L. Kirby-Miles, U.S. EPA, ORC M. Durno, U.S. EPA S.Vega, U.S. EPA M. Ducharme, MDEQ M.Alexander, MDEQ Records Center, U.S. EPA, Reg. V

Enbridge Line 6B MP 608 Marshall, MI Pipeline Release

Addendum to the Response Plan for Downstream Impacted Areas, August 2, 2010 (Revised August 17, 2010 per U.S. EPA August 17, 2010 letter), Supplement to Source Area Response Plan, and Supplement to Response Plan for Downstream Impacted Areas, Referred to as Operations and Maintenance Work Plan

Commonly referred to as "Consolidated Work Plan for Activities through 2012"

Prepared for the United States Environmental Protection Agency by Enbridge Energy, Limited Partnership Submitted: October 20, 2011

Revised by the United States Environmental Protection Agency November 17, 2011

CONTENTS

1.0 INTRODUCTION	1
1.1 Background	1
1.2 Regulatory Framework	1
1.3 Purpose and Objective	2
1.4 Environmental Protection	3
1.5 Adaptive Management	3
2.0 OUTSTANDING SITES CHARACTERIZATION AND RECONCILIATION	5
3.1 Overbank and Shoreline Reassessment	7
3.1.1 Reassessment Procedures	7
3.1.2 Reassessment Sites	8
3.2 Submerged Oil Reassessment	9
3.2.1 Poling Reassessment	9
3.2.2 Poling Locations and Frequency	0
3.3 Data Collection and Documentation	1
3.4 Data Analysis	1
4.0 SUBMERGED OIL CHARACTERIZATION	2
4.1 Submerged Oil Science Group	2
4.2 Hydrodynamic Assessment	2
4.2.1 Poling in Morrow Lake Downstream of Fan	3
4.2.2 Cohesion and Erodibility Tests14	4
4.2.3 Water Velocity Profiling	б
4.2.4 Surficial Streambed Sediment Characteristics	7
4.2.5 Sediment Transport	0
4.2.6 Data Results	1
4.3 Hydrodynamic Modeling Strategy and Operational Plans	2
4.3.1 Introduction	2
4.3.2 Purpose and Scope	3
4.3.3 Study Area Description	5

4.3.4	Existing Hydraulic Models of the Kalamazoo River in the Study Area	. 27
4.3.5	Data Collection	. 28
4.3.6	Hydrodynamic Model Geometry, Parameterization, and Calibration	. 31
4.3.7	Hydrodynamic Simulations Using Calibrated Model	. 35
4.3.8	Timeline for Hydrodynamic Simulations [Example]	. 37
4.4 Ten	nperature Effects on Submerged Oil	. 40
4.4.1	Overview	. 40
4.4.2	Objective	. 40
4.4.3	Study Procedures	. 40
4.4.4	Data Evaluation and Reporting	. 44
4.4.5	Additional Temperature Effects Studies	. 44
4.5 Sub	merged Oil Quantification	. 44
4.5.1	Quantification Events	. 44
4.5.2	Quantification Model	. 45
4.5.3	Input Data	. 47
4.5.4	Statistical Evaluation of TPH Data	. 49
5.0 OIL H	RECOVERY	. 51
5.1 Sub	omerged Oil Recovery	. 51
5.1.1	Winter 2011 Submerged Oil Recovery Actions	. 51
5.1.2	Spring/Summer 2012 Submerged Oil Recovery Actions	. 52
5.2 Ove	erbank and Shoreline Oil Recovery	. 52
6.0 FALL	2 2011, WINTER AND SPRING 2012 CONTAINMENT PLAN	54
6.1 Fall	l/Winter Containment Removal Procedure	. 55
6.2 Rer	noval Priority and Scheduling:	55
6.2.1	Submerged Oil Containment Removal Schedule	. 56
6.2.2	Control Point and Protective Containment Removal Schedule	. 56
6.2.3	O&M Containment Removal Schedule	. 57
6.2.4	Submerged Oil Containment to Prevent Migration of Oil Past Morrow Lake Dam	. 58
6.2.5	Winter Maintenance Procedure	. 58
6.2.6	Spring 2012 Containment Plan	. 58
7.0 PASSI	IVE SEDIMENT COLLECTION AREAS AND DEVICES	63

8.0	SCHEDULE	68
9.0	REFERENCES	69

FIGURES

Figure 1.4	Scientific Support Coordination Group
Figure 2.0	Scientific Group Support of the OSCAR Process
Figure 4.3.1	The Adaptive Management Cycle of Experimentation and Iterative Learning
Figure 4.3.2	Example Map of Digital Elevation Model
Figure 4.3.3	Location of Kalamazoo River Study Area
Figure 4.3.4	Relation Between Simulated Flow and Measured Flow
Figure 7.1	Results from the 2011 LSR Poling
Figure 7.2	Geomorphic Settings for Heavy Oil Transport and Deposition in a Riverine Environment

TABLES

Table 4.2.2	In-situ Jet Testing Locations
Table 4.3.1	Stream Flow-Gauging Stations within or Adjacent to the Study Area
Table 4.3.2	[Example of] Location of Survey Control Stations and Daily Water-Surface Elevations During Bathymetric Survey
Table 4.3.3	[Example of] Model Parameters and Boundary Conditions Used for Simulations
Table 4.3.4	Partial Listing of Management Scenarios to Be Simulated and Compared with the Fall 2011 Baseline Simulation

ATTACHMENTS

Attachment A Overbank Oil: Spring 2012 Reassessment

Attachment B Submerged Oil: Spring 2012 Reassessment

Attachment C Hydrodynamic Assessment

Attachment D Temperature Effects on Submerged Oil

Attachment E Overbank Oil Recovery Standard Operating Procedures

Attachment F Schedule

1.0 INTRODUCTION

The *Consolidated Work Plan for Oil Recovery Activities from Fall 2011 through Fall 2012* ("Work Plan") attached herein is an addendum to the following U.S. EPA-approved documents for the Enbridge Line 6B MP 608 oil spill which occurred near Marshall, Michigan on July 26, 2010:

- Response Plan for Downstream Impacted Areas, August 2, 2010 (Revised August 17, 2010 per United States Environmental Protection Agency (U.S. EPA) August 17, 2010 letter);
- Supplement to Source Area Response Plan; and
- Supplement to Response Plan for Downstream Impacted Areas, Referred to as Operations and Maintenance Work Plan.

1.1 Background

The Work Plan prepared in response to U.S. EPA's letter (October 6, 2011) to Enbridge Energy, Limited Partnership, Enbridge Pipelines (Lakehead) LLC, Enbridge Pipelines (Wisconsin), and Enbridge Energy Partners, L.P. - (collectively "Enbridge") requiring modifications to work plans for oil recovery activities to be conducted by Enbridge from Fall 2011 through Fall 2012. The October 6, 2011 U.S. EPA letter requires Enbridge to provide a plan for continued activities to perform oil containment, assessment and recovery activities pursuant to the Removal Administrative Order ("Order") issued by the U.S. EPA on July 27, 2010 and a Supplement to Order ("Supplement") issued by the U.S. EPA on September 23, 2010.

Enbridge submitted the Work Plan to the U.S. EPA on October 20, 2011. However, upon review of the October 20, 2011 Work, the U.S. EPA has determined that the Work Plan is deficient and lacks the requisite detail. Consequently, pursuant to Paragraph 20 of the Order, the U.S. EPA has modified the Work Plan. The U.S. EPA revised Work Plan details the response activities that shall be performed by Enbridge from Fall 2011 through Fall 2012 and amends the following documents; *Response Plan for Downstream Impacted Areas, August 2, 2010 (Revised August 17, 2010 per United States Environmental Protection Agency (U.S. EPA) August 17, 2010 letter); Supplement to Source Area Response Plan; and Supplement to Response Plan for Downstream Impacted Areas, Referred to as Operations and Maintenance Work Plan.*

1.2 Regulatory Framework

As required by the U.S. EPA Order and Supplement, all oil assessment, containment, and recovery activities shall be performed in accordance with Section 311(c) of the Clean Water Act, 33 U.S.C. § 1321(c), as amended by the Oil Pollution Act of 1990, and 33 U.S.C. § 2701 et seq.

Paragraph 18 of the Order and Paragraph 6 of the Supplement require, among other things, that Enbridge perform the following actions in response to the Enbridge Line 6B oil spill:

1. Contain all oil;

- 2. Assess all oil-impacted areas and media;
- 3. Remediate/recover all submerged oil;
- 4. Recover all oil sheen;
- 5. Remediate all oil-containing soils;
- 6. Remediate all oil-containing sediments; and
- 7. Perform operations and maintenance activities directed by the U.S. EPA.

In addition to the regulations cited above, oil assessment, containment, and recovery activities shall be performed in accordance with all federal, state, and local regulations. Undertaking activities directed by the U.S. EPA does not obviate the need for Enbridge to acquire all necessary permits and comply with other applicable regulatory requirements.

Failure to comply with the U.S. EPA Order, the Supplement, and/or the requirements specified herein may result in the assessment of civil penalties against Enbridge and/or a court-ordered cleanup.

1.3 Purpose and Objective

This Work Plan requires activities designed to improve the understanding of sediment transport, containment of oil, and recovery of oil-containing soil/sediment related to the Enbridge Line 6B oil discharge. Activities and tasks described herein shall be performed from Fall 2011 through Fall 2012.

The Work Plan applies to all affected oil-impacted overbank areas (the areas along the banks and floodplains of the Kalamazoo River) and submerged oil located within the Kalamazoo River (including the Morrow Lake Delta and Morrow Lake). Although the U.S. EPA has transitioned primary oversight authority of oil containment and recovery activities in and adjacent to Talmadge Creek to the Michigan Department of Environmental Quality (MDEQ), all activities performed by Enbridge in and adjacent to the Talmadge Creek shall also be compliant with the U.S. EPA Order and Supplement, and is subject to further review by the U.S. EPA.

In order to address the remaining oil, Enbridge shall evaluate and design a broader range of options to address remaining oil than were employed in 2010 and 2011. Once the Spring 2012 reassessments of the Kalamazoo River overbank and submerged oil locations has been completed, Enbridge, as directed by U.S. EPA, shall implement site-specific options for each area to address residual oil and sheen. Options include, but are not limited to, the following:

- Dredging of oil-containing sediments;
- Excavation of overbank areas;
- Agitation of sediments coupled with oil/sheen collection;
- Installation of sediment collection devices/structures; and/or
- No further action.

1.4 Environmental Protection

As stated above, all response activities shall be governed by applicable regulations, and as directed by the U.S. EPA in the role of Federal On-Scene Coordinator (FOSC). Response actions chosen by the U.S. EPA will continue to consider ecological benefits and consequences of recovery activities, engineering feasibility factors, and other scientific factors. Many ecological or scientific consideration incorporated by the U.S. EPA in its directives will be guided by advise from entities commissioned by the U.S. EPA FOSC. These entities are established as the U.S. EPA Scientific Support Coordination Group (SSC Group) for the Enbridge Kalamazoo River Response.

All active oil recovery shall include an evaluation of ecological considerations, as well as an evaluation of the potential benefits and consequences of oil recovery, or the lack thereof. Although Enbridge may recommend actions, the decision of adverse ecological risk will be made solely by the U.S. EPA FOSC who will consult with the SSC Group. The supporting role of the SSC Group is demonstrated in Figure 1.4

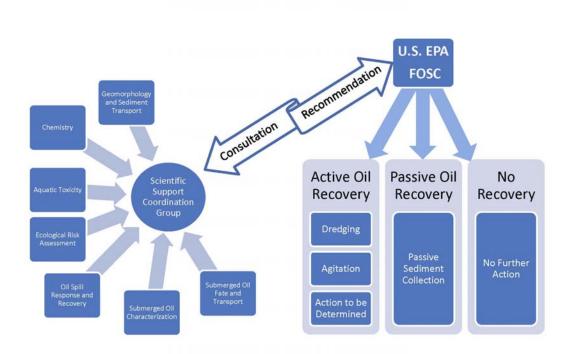


Figure 1.4 Scientific Support Coordination Group

1.5 Adaptive Management

Many of the activities described in this Work Plan are investigative in nature and are designed to provide scientific information that can be used to further refine assessment, containment, and/or oil recovery activities. Therefore, future findings of assessment and investigative activities may affect the viability and/or effectiveness of activities described herein. Findings of investigative

activities shall be evaluated and considered in an iterative fashion when determining tactics and strategies to accomplish the overall objectives of the work. However, any changes to the activities described must be approved by the U.S. EPA prior to changing the Work Plan and/or implementation of activities.

2.0 OUTSTANDING SITES CHARACTERIZATION AND RECONCILIATION

The U.S. EPA established the Outstanding Sites Characterization and Reconciliation (OSCAR) process during 2011 reassessment and recovery activities. The OSCAR process shall continue during 2012 with the objective to compile a single list of impacted and unresolved sites along the Kalamazoo River, and Morrow Lake. The OSCAR Group shall be comprised of Enbridge, U.S. EPA, and MDEQ representatives acting as a task force to review current and historic data, provide data quality assurance (QA)/quality control (QC) measures, and to determine a course of action for each site that shall ensures no further action is require under the U.S. EPA Order and Supplement.

To reach this goal, qualitative assessments are conducted by Enbridge and U.S. EPA representatives at each unresolved site to characterize the nature and extent of remaining oil impact. A vegetative assessment at each site will be conducted concurrently with the qualitative assessment to determine if the location meets MDEQ criteria for wetland areas of potential high value criteria. Once the assessment is complete for a given site, the assessment team shall evaluate the current and historical data, and present the information to the OSCAR Group. Based on the information presented, the OSCAR Group will determine what recovery or assessment response actions should be implemented next at that site regarding the status of the site.

The OSCAR Group evaluates information associated with the following general reassessment sites:

- All former overbank excavation areas;
- Impacted overbank areas identified during the 2011 shoreline and overbank reassessment technique (SORT) assessments that were inundated during assessment activities;
- Impacted overbank areas identified during 2012 SORT reassessments;
- Impacted overbank areas identified as having "Film," "Sheen," or "Pooled Oil" during the 2011 SORT process;
- Overbank pond and back-water areas identified as "Strike" sites during 2011 SORT reassessment and recovery activities;
- New sites including sheening banks, and other locations identified via monitoring, aerial over-flights, or other means;
- Submerged oil focus areas, select transects, and additional sites identified through postrecovery and/or 2011 Late Summer Reassessment (LSR) poling; and
- Un-reconciled O&M sites that have not been determined to have had response action completed consistent with the U.S. EPA Order.

The OSCAR Group shall evaluate all available information for each site, and make a determination as to whether or not response actions have been completed at each site consistent with the U.S. EPA Order and Supplement and ready for future management under Part 201 of Michigan Act 451 of 1994 as amended (Part 201). If the OSCAR Group determination is that the site no longer needs response under the Order and Supplement, then the OSCAR Group will recommend that the site be transitioned to MDEQ. If the site is determined to need further response work pursuant to the Order or Supplement, the OSCAR Group will make a recommendation to complete all work necessary at the site. These recommendations may include, but are not limited to, one of the following:

- Additional qualitative assessment activities;
- Additional recovery operations using approved methods;
- Transfer of the site to the submerged oil branch;
- Initiation of an expedited Remedial Investigation (RI) pursuant to MDEQ Part 201; and/or
- Permitted recovery operations under the U.S. EPA Order.

If a response work is required, a site specific work plan shall be submitted to the U.S. EPA that outlines the specific actions that shall be taken to ensure that the site no longer needs response pursuant to the Order or Supplement.

Upon completion of any response work, the OSCAR Group will re-evaluate each site consistent with the OSCAR process. The OSCAR process will be continued as needed until all sites are transitioned to MDEQ.

As depicted in Figure 2.0, the science groups support the operations branches with technical information and expertise as the operations branches evaluate site information and determine further actions for each site in the OSCAR process.

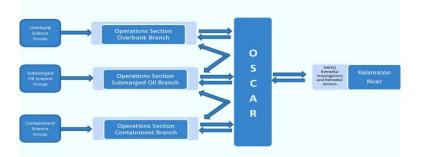


Figure 2.0 Scientific Group Support of the OSCAR Process

3.0 REASSESSMENT OF OIL LOCATION AND EXTENT

3.1 Overbank and Shoreline Reassessment

Overbank and shoreline reassessment activities shall be conducted on an ongoing basis to characterize any remaining oil and/or oil sheen from the confluence of the Kalamazoo River and Talmadge Creek to the Morrow Lake Dam.

3.1.1 Reassessment Procedures

Shoreline and overbank reassessment activities conducted by the Overbank Science Group (OSG) to assess if further actions are needed under the U.S. EPA Order at sites shall include qualitative screening techniques to determine the presence or absence of oil and/or oil sheen including the following:

- Visual examination of exposed surface soils and vegetation to determine the presence and extent of any pooled oil, tar accumulations, oil film, or oil sheen;
- Poling assessment of any overbank areas that remain submerged at the time the inspections are performed, using approved poling techniques;
- Visual and ultraviolet (UV) screening of soil cores collected using hand-augers or other means according to applicable Standard Operating Procedure (SOPs);
- Visual assessment of soils/mud flats/dried overbank ponds and backwater areas according to the Bucket Sheen Test SOP, approved by U.S. EPA in correspondence dated October 11, 2011;
- Visual assessment of soils/mud flats/dried overbank ponds and backwater areas according to the Poling Ring Test SOP approved by U.S. EPA in correspondence dated October 11, 2011; and
- Aerial over-flight photo log review.

Core sample collection shall be done in accordance with procedures described in the existing approved Sampling and Analysis Plan (SAP, Enbridge, 2011). Procedures for performing and evaluating UV screening of soil cores shall be described in a separate SOP to be submitted and approved by U.S. EPA prior to undertaking the work.

Select locations shall be qualitatively reassessed during the Spring 2012 reassessment according to the SORT procedures developed and utilized during the Spring of 2011. SORT teams shall be comprised of one U.S. EPA Superfund Technical Assessment and Response Team (START) or U.S. EPA representative, one MDEQ representative, and Enbridge representative(s). SORT teams shall complete the following tasks for each targeted reassessment location:

• Characterize oiling conditions and substrate types using a standardized terminology (SORT Metric Quick Guide);

- Characterize shoreline and overbank habitat types and the degree and characteristics of any oiling conditions;
- Record percent cover of a specific oiling condition within a point/zone on field maps and data collection forms;
- Collect a waypoint and/or polygon dimensions for each of the oiled points/zones identified as potentially needing additional response activities using a Global Positioning System (GPS) unit with sub-meter accuracy;
- Identify and estimate the area of impact of specific oiling and substrate conditions observed during current conditions;
- Determine whether the impacted area is characterized as a sensitive habitat according to the MDEQ Water Resources Division (WRD); and
- Assign official site identification nomenclature prescribed by the OSCAR Group to avoid conflict with historic naming conventions (2010 Shoreline Cleanup Assessment Techniques (SCAT), 2011 SORT, O&M, etc.)

3.1.2 Reassessment Sites

Spring 2012 SORT activities shall focus on, but shall not be limited to the following sites:

- All former excavation areas;
- Impacted areas identified during the 2011 SORT assessment that were inundated during 2011 assessment activities;
- Impacted areas identified as having "Film", "Sheen", and/or "Pooled Oil" during the 2011 SORT process;
- Overbank pond and back-water areas identified as "Strike" sites during 2011reassessment and recovery activities;
- New sites including sheening banks, and other locations identified via monitoring, aerial over-flights, or other means; and
- Un-reconciled O&M sites that have not been determined to be consistent with the U.S. EPA Order.

Shoreline and overbank sites currently targeted for reassessment are presented in Attachment A. Data obtained for each site shall be uploaded to the GIS database using the appropriate naming and symbol conventions. SORT data for each site shall also be added to the OSCAR list and presented to the OSCAR Group for review and evaluation. The OSCAR Group shall review all current and historic information for each reassessment site to determine whether sites have been or shall continue to be addressed under the U.S. EPA Order or transitioned to MDEQ. The reassessment process shall continue until response action completion at all outstanding sites are

transitioned to MDEQ.

3.2 Submerged Oil Reassessment

The 2012 submerged oil reassessment scope of work shall include site-wide poling of river sediments, the collection of hydrodynamic assessment information, and the completion of hydrodynamic modeling of the Kalamazoo River between MP 2.25 and Morrow Lake Dam. A minimum of one complete site-wide poling event shall be performed. Additional completed or partial, poling events may be required subsequent to 2012 recovery actions implemented at the site. Data obtained from submerged oil reassessment activities shall be used for comparison to 2010 and 2011 submerged oil data sets, and to make determinations as to the distribution and relative quantity of submerged oil remaining in the river. Submerged oil reassessment information shall be used in conjunction with other considerations to direct all future submerged oil recovery actions. Additional focused poling within specific sub-areas of the river shall be performed, as determined by the Submerged Oil Science Group (SOSG- see Section 4.1), to assess the effectiveness of submerged oil recovery or containment actions implemented at the site.

3.2.1 Poling Reassessment

Submerged oil reassessment activities shall include poling of soft sediments in targeted depositional areas. Data associated with poling including water depth, pole advancement depth, soft sediment thickness, bed characteristics, the presence/absence of oil, GPS coordinates, and the relative amount of oil sheen and globules shall be collected at each location.

Water depth data shall be collected using a 6-inch diameter disk attached to the end of an aluminum pole approximately 2 inches in diameter marked at 0.1-foot intervals. At each poling location, the disc shall gradually be lowered to the top of the sediment bed, and the depth from the water surface to the top of soft sediment (water depth) shall be recorded to the nearest 0.1 ft.

Soft sediment thickness data shall be collected using a pole without a disk and marked at intervals of 0.1 feet. The pole shall be pushed vertically through the sediment until advancement is restricted. The depth to sediment surface (water depth) and maximum poling depth into the soft sediment shall determine the soft sediment thickness at each location.

A description of the sediment type shall be documented based on the poling results (e.g., soft sediment – silt over sand).

An approximate determination of the relative amount of submerged oil at each poling location shall be made by using the pole with a 6-inch diameter disk to agitate the soft sediment. After agitation, the amount of oil/sheen observed at the water surface shall be described using the same categories as the 2011 field season (heavy, moderate, light, or none). These categories are outlined in the attached Submerged Oil Field Observation Flow Chart (Figure 1).

If "moderate" or "heavy" indications of submerged oil sheen/globules are observed, the area shall be delineated with additional poling. The poling teams shall work away from the

"moderate" or "heavy" location until they have poled either a "light" submerged oil classification, or no indication of submerged oil. This location shall be the delineated boundary and a stake with survey flagging shall be set to designate the perimeter of all submerged oil deposits.

A GPS unit shall be used to document the coordinates for each poling location. All poling locations shall be staked and/or surveyed during the project to the extent practicable using a differential GPS unit with sub-meter accuracy. The horizontal coordinate system shall be the Michigan State Plane Coordinate System, South zone, referenced to the North American Datum (NAD) 83, in international feet.

All poling activities shall be conducted during optimal temperature conditions as determined via an evaluation of the results from temperature effects on submerged oil studies as described herein. As such, sediment and water temperature data shall be collected during poling activities as thresholds for data reliability are approached.

3.2.2 Poling Locations and Frequency

Site-wide poling shall be conducted in targeted areas along the Kalamazoo River from the confluence of Talmadge Creek and the Kalamazoo River to the Morrow Lake Delta, within Morrow Lake and at additional areas downstream of the Morrow Lake Dam. Poling activities shall be focused in depositional areas with soft bed sediment types since submerged oil is most often associated with depositional geomorphic environments. Poling locations shall be minimal in erosional or bed-material transporting areas with sand/gravel bed types, because submerged oil is not typically associated with this these higher river velocity geomorphic settings.

Poling shall be conducted at the following locations: all locations where moderate or heavy submerged oil was identified during the 2010 and 2011 field seasons, including areas identified during 2011 Late Summer Reassessment (LSR) locations, within all 2011 focus areas, at select transect locations, and as directed by the U.S. EPA. Additional poling targets consisting of grid points located in selected river sections extending upstream from impoundment structures shall be included. The latter shall include grid points extending from approximately MP4.0 to Ceresco Dam, from approximately MP14.0 to Battle Creek Dam, and within the engineered channel portion of the river from approximately MP18.0 to 20.0. All of the above locations represent potential depositional areas and contained significant submerged oil during 2011. Additionally, any areas identified from the hydrodynamic assessment or hydrodynamic modeling results as potential depositional areas, and not previously poled, will be added to the list of targets for the 2012 site-wide poling. For all these areas, crews shall visually assess the area and select representative poling locations. The crews may add poling locations to an area based on field observations. Proposed site-wide poling locations for the Spring 2012 Reassessment are presented in Attachment B.

Poling locations on the Morrow Lake fan shall be determined by the SOSG. Poling locations within Morrow Lake shall be comparable to the areas presented in the Addendum to the Spring

2011 Overbank and Poling Reassessment Work Plan. Additional required poling data collection downstream of the Morrow Lake Dam is described in Section 4.2.1 of this work plan, and the targeted locations are summarized therein. Ongoing focused poling reassessment activities shall be conducted at locations and frequencies as deemed necessary by the SOSG and OSCAR Group.

3.3 Data Collection and Documentation

Electronic field data forms shall serve as a daily record of events, observations, and measurements during all shoreline, overbank, and submerged oil field assessment activities. All information shall be recorded electronically on these forms. Entries on these forms shall include:

- Names of field crew;
- Date and time of site entry and exit;
- Location of poling activity;
- Site description;
- Field measurements;
- Field observations; and
- Photographs.

Paper copies of the field forms shall be printed and filed for hard copy backup of all data collected. In addition, all electronic data shall be downloaded to a server at the end of each work day and stored in a Geographical Information System (GIS) database. GIS is used to organize data and to display the data in map form. Location information, field observations, media characteristics, utility information, and any analytical results are stored in the GIS database.

3.4 Data Analysis

All reassessment results shall be uploaded to the GIS database on an ongoing basis, and shall be reviewed by the OSG and/or SOSG, as appropriate. Data generated during shoreline, overbank, and submerged oil reassessment activities shall be used along with other data sets to determine additional reassessment data collection needs, and to make informed decisions regarding recovery targets as well as appropriate active and/or passive recovery strategies and tactics.

4.0 SUBMERGED OIL CHARACTERIZATION

4.1 Submerged Oil Science Group

An SOSG shall be established to review data associated with submerged oil assessment and recovery activities. The SOSG shall be comprised of Enbridge, U.S. EPA representatives, United States Geological Survey (USGS), and MDEQ representatives. The overall goal for the SOSG will be to ensure data quality, evaluate submerged oil recovery tools and effectiveness, and provide recommendations for the placement of sediment traps.

To reach this goal, the SOSG shall review and evaluate the following data on an ongoing basis throughout Fall 2011-Fall 2012:

- Historic poling data;
- Sediment core data;
- Hydrodynamic assessment data;
- Hydrodynamic modeling data;
- Temperature effects studies data;
- Submerged oil quantification data;
- 2012 Reassessment results;
- Containment placement, monitoring, and removal; and
- Placement, monitoring, and maintenance of oil-containing sediment traps.

The SOSG shall consult and coordinate with the OSCAR Group to discuss findings and to provide recommendations for submerged oil reassessment and recovery operations.

4.2 Hydrodynamic Assessment

Data shall be collected to evaluate the fate and transport of submerged oil and oil-containing sediment in the affected river system (Talmadge Creek, Kalamazoo River, Morrow Lake Delta, Morrow Lake fan, and Morrow Lake). Data shall be collected in cooperation with U.S. EPA and USGS representatives. The primary objectives of the hydrodynamic assessment are to:

- Develop an understanding of the physical and chemical behavior associated with the migration, mobilization and recovery of submerged oil and oil remaining in riverine sediment, including, but not limited to, the effects of temperature, barometric pressure and river velocity on the migration of submerged oil;
- Identify physical patterns and migration rates of submerged oil along channel bars, impoundments, and delta/fan environments caused by the following river conditions including high flow, low flow, seasonal/diurnal variation, and oil recovery/assessment activities;

- Optimize and focus submerged oil recovery strategies;
- Evaluate effectiveness of submerged oil recovery operations; and
- Provide support for quantification of submerged oil in riverine sediment.

4.2.1 Poling in Morrow Lake Downstream of Fan

Qualitative assessments using poling techniques shall be performed at locations and frequencies similar to 2010 pre-recovery, Spring 2011 reassessment activities, and routine monitoring points established during the 2011 recovery activities. Additional information collected with the descriptions of sheen and globules shall include geo-referenced locations, qualitative velocity, water depth, soft sediment depth, and qualitative substrate descriptions. Enbridge shall perform poling as specified below:

- Poling locations upstream of Morrow Lake Dam:
 - Poling locations shall have their horizontal coordinates recorded with sub-meter accuracy using differential GPS receivers. For subsequent surveys, the initial poling locations shall be resurveyed to detect change.
 - Poling locations shall be well distributed across the fan upstream of the control point E4.5 double chevron, and well distributed within and along the downstream side of the double chevron, extending westward until no further indications of submerged oil are detected.
 - If the area where submerged oil indications are detected expands, then the monitored area and number of poling locations also shall increase accordingly.
 - Locations shall be reviewed and updated in consultation with U.S. EPA and USGS representatives.
- Poling frequency upstream of Morrow Lake Dam:
 - To occur daily during submerged oil recovery operations;
 - Post-recovery at least 24 but not more than 60 hours after completion of submerged oil recovery operations at a site and downstream of the given site;
 - At least once each season when water temperature is greater than 45°F or the temperature threshold determined in the temperature study described in herein (Fall 2011, Spring 2012, Summer 2012, and Fall 2012); and/or
 - After large flood events (two year or higher) in 2012. Poling after multiple floods within a three month period, shall occur more than once if the difference in recurrence interval between floods is 5 years or higher.
- Focus area poling locations downstream of Morrow Lake Dam (e.g., next likely depositional areas):

- Immediately downstream of the Morrow Lake Dam, in left backwater area at MP 39.9 South;
- Margin of a bend on the left descending bank at MP 40.3 South;
- Downstream side of a mid-channel island at MP 40.9 North;
- North side channel margin at MP 41.1 North and upstream of River St. Bridge; and
- Upstream end of an oxbow at MP 41.25 North (downstream of River St. and upstream of King Hwy).

Focus area poling locations downstream of Morrow Lake Dam are shown in Attachment C, Figure 1. A minimum of five poling locations shall be collected at each focus area. For the initial poling survey, the poling locations shall be selected in the field to be representative of the focus area based on sediment thickness, water depth, and water velocity. Poling locations shall have their horizontal coordinates recorded with sub-meter accuracy using differential GPS receivers. For subsequent surveys, the initial poling locations shall be resurveyed to detect change.

- Poling frequency downstream of Morrow Lake Dam:
 - At least once each season when water temperature is greater than the temperature threshold determined in the temperature study described herein (Fall 2011, Spring 2012, Summer 2012, and Fall 2012); and/or
 - After large flood events (two year or higher) in 2012. Poling after multiple floods within a three month period, shall occur when the difference in recurrence interval between flood events is 5 years or greater.

If submerged oil is found downstream of the Morrow Lake Dam, the poling locations shall be reevaluated with U.S. EPA and USGS personnel.

4.2.2 Cohesion and Erodibility Tests

The purpose of these tests is to provide information on specific sediment characteristics and their effect on submerged oil migration and transport under typical Kalamazoo River temperature and velocity conditions. The tests to determine the effect of temperature on the submerged oil release and mobility are provided herein.

The cohesion and erodibility of oil-containing sediment shall be estimated through: (1) a literature search of other heavy-oil spills with similar sediment characteristics and geotechnical properties, with particular attention given to spills in riverine systems; and (2) other possible field techniques including, but not limited to, in-situ jet tester, sed flume, and/or other devices. The site specific data provided by these methods shall inform selection of appropriate values for hydrodynamic parameters, includes cohesion, critical shear stress, and erodibility, which shall be used in the hydrodynamic model (described herein). The specific field techniques shall be

selected in consultation with U.S. EPA and USGS personnel and shall begin in Fall 2011. The locations of the 15 in-situ jet tests selected in consultation with USGS are shown in Attachment C, Figure 2. The test locations include the following:

Location	Geomorphic Setting	Surface particle size (top six inches)
5.25 South	Upstream of dam; increased channel width	Silt loan to 4.5'
5.75 South A	Upstream of dam	Silt loam to 2.3'
10.75 L2	Backwater; high flow cutoff channel	Silt loam over sand – adjust toward shoreline
12.5 c	Oxbow	Sandy loam with visible oil – adjust toward shoreline
14.35 North	Upstream of dam; increased channel width	Silt loam over sand – visible oil – adjust toward shoreline
14.75 A	Cutoff channel	Sand over coarse sand – move location further into cutoff channel and near shoreline
South Mill Pond	Upstream of dam; pond	Silt to 3.3'
19.25 AA	Cutoff channel	Silt loan to 0.7'
21.5	Oxbow	Silt loam to 0.8'
26.0	Increased channel width; man- made area	Loamy fine sand – visible oil – adjust location near shoreline
30.8 South	Increased channel width; tributary input	Silt loam to 1.5'
36.25 A	Outside meander bend; upstream of island	Loamy sand – no visible oil – move to 36.25 C; SEKR3650C0a; Downstream of island
Delta H	Sandy bed in consistent depositional area	Sand over loamy sand – no visible oil – adjust location near shoreline or downstream of island (South)
Delta Z	Soft bed in deposition area	Silt loam to 0.7'
Morrow Lake fan	Near mouth of neck	Silt loam to 0.5"

At three locations---5.75 South A, 21.5 Oxbow, and Morrow Lake Fan-water depths are greater

than 6 inches and shall require collecting a representative sample of the bottom material with a box corer or other device. In this situation, jet tests shall be conducted on the core samples at a nearby location in the field, with minimal disturbance to the surficial layer of the core.

A test completion report shall be prepared, describing actual field methods and materials, site and sample characteristics, test results, evaluations, and conclusions concerning cohesion and erodibility.

4.2.3 Water Velocity Profiling

Existing hydrodynamic data consist of estimated velocity ranges and current-meter point measurements at discrete poling locations throughout the river system during a narrow range of streamflow conditions. Multi-dimensional understanding of velocity distributions and profiles is needed for adequately describing bed shear stresses under a much wider range of streamflow conditions.

An Acoustic Doppler Velocimeter (ADV) or Acoustic Doppler Current Profiler (ADCP) shall be used to measure velocities in the x, y, and z directions. Both types of velocity meter collect 3dimensional data but the ADCP can collect data continuously along transects as a full vertical profile, whereas the ADV measures velocities at a single point. This type and density of data is needed to more accurately estimate shear stress on the bed and banks of the river. The preference shall be to use the ADCP in the Morrow Lake Delta and sediment fan if the water depths are sufficient for its use. Shallow water depths on the Kalamazoo River may require the use of a hand-held or pole-mounted ADV.

Data shall be used to determine migration/transport rates for oil-sediment mixtures, and also for calibration/validation of the hydrodynamic model. Velocity data shall be collected at the following locations and times:

- Horizontal and vertical velocities at cross-sections (at varying river stages) in specific geomorphic areas including:
 - Morrow Lake fan (at least three latitudinal profiles and four longitudinal profiles);
 - Each side of existing containment location E4.5 (if present);
 - Delta channels;
 - o 35th Street Bridge;
 - Neck of delta and downstream of the neck on the sediment fan to determine velocity changes longitudinally; and
 - Kalamazoo River: Representative river reaches to evaluate the flow patterns associated with depositional areas, the thalweg, dam impoundments, meanders, oxbows, cutoff channels, and changes in channel width. Selection of representative reaches shall be coordinated with and approved by U.S. EPA and USGS.

- Horizontal and vertical velocities to evaluate stream-wise changes in velocity along longitudinal transects located at selected, key reaches, including:
 - o 35th Street to the Morrow Lake sediment fan;
 - MP 13.0 to the Dickman Road culverts (North and South Mill Ponds);
 - o MP 3.0 to Ceresco dam; and
 - Other reaches of concern in depositional areas where the number of available velocity readings does not adequately explain the river flow pattern. Selection of these reaches shall be coordinated with and approved by U.S. EPA and USGS representatives.
- At least once each season (Fall 2011, Spring 2012, Summer 2012, and Fall 2012); and/or
- During mean flow conditions;
- During low flow conditions; and
- During high flow conditions (e.g., various flows above median values, including a minimum of two high-flow conditions; high flows are defined as those in the 3rd quartile and 4th quartile of the flow-duration table). High-flow data collection is conditioned upon the actual occurrence of those flow conditions within the study period and task schedule. During high flow events, the ADCP may be used from bridges for compliance with safety policies.

Provisional locations of cross-sectional and longitudinal transects where velocity profiles shall be measured are shown in Attachment C, Figure 3. The USGS shall provide data for velocity profiles and cross sections from discharge measurements made at the existing gauging stations (at bridge locations), if available. Final selection of velocity profile locations shall be made in consultation with (and approval by) U.S. EPA and USGS representatives.

4.2.4 Surficial Streambed Sediment Characteristics

Existing data consist of pre- and post-recovery cores linked with poling data from various locations along the Kalamazoo River, including the Morrow Lake Delta/fan area. Additional cores shall be collected to aid in the determination of submerged oil transport rates, depositional patterns, and submerged oil quantification. Target depth for cores shall be 3 feet below the water-sediment interface.

Additional sediment cores shall be collected and evaluated as follows, consistent with previously used techniques associated with 2011 submerged oil quantification:

- Hand pushed or driven check-valve sampler (given the shallow depths) shall be used.
- Cores shall be advanced to target depth or refusal. (If target depth is achieved and the recovery is less than 80%, a discrete interval sampler shall be used to obtain recovery greater than 80%. If refusal occurs prior to reaching the target depth and recovery is less

than 80%, a second core attempt shall be made, except that at the discretion of the sampler, with concurrence by START/U.S. EPA observer, or by USGS oversight, a second attempt at collection may be omitted in such a case.)

- For in-situ bulk density cores, a second check-valve sample shall be collected as a core similarly advanced to the target depth. This core shall remain intact and shipped for bulk density and particle size analysis.
- Penetration depth and recovery ratios shall be recorded.
- High water-content sediment-water interface (that may contain submerged oil) shall be recovered.
- In the Morrow Lake Delta, the cores shall penetrate into pre-dam floodplain/channel deposits or to refusal.
- Sediment cores shall be collected from the following locations:
 - Sample locations shall be co-located with poling and velocity transects/profiles wherever possible. Sample locations that are not co-located with these data points shall be noted in the sample log.
 - Morrow Lake fan: transects shall be aligned along a contour from North/South and East/West and in the former river channel (adequate number of locations to allow construction of at least three latitudinal profiles and four longitudinal profiles).
 - 35th Street Bridge to Morrow Lake sediment fan and within the Morrow Lake Delta channels.
 - Other locations in key reaches to be determined in consultation with U.S. EPA and USGS representatives, such as Mill Ponds/Ceresco Dam.

Sediment core sample provisional locations are shown in Attachment C, Figure 4. Final selection of sample locations shall be coordinated with (and approved by) U.S. EPA and USGS representatives.

Sediment cores shall be collected at the following times:

- Fall 2011 (post-recovery and pre-ice formation) including chemical analysis;
- Spring 2012 (post-flood; pre-recovery) including chemical analysis for post-spring flood;
- Summer 2012 visual analyses only;
- Fall 2012 (post-recovery) including chemical analysis; and/or
- After large flood events (2-year or longer recurrence interval) in 2012. Coring after multiple floods within a 3-month period shall occur only if the difference in recurrence

interval between flood events is 5 years or greater. If post-flood cores are supplemental to the scheduled coring events, the type(s) of sample analyses to be performed for collected cores shall be determined in consultation with U.S. EPA and USGS representatives.

Onsite core logging shall include the following:

- Stratigraphic logging using the Sediment Logging Standard SOP which includes the Unified Soil Classification System (USCS) and United States Department of Agriculture (USDA) classification system;
- Color assessment using Munsell Color Charts;
- Visual observation of submerged oil with natural light during characterization and documentation of submerged oil depth and sediment profile layers;
- Depth of oil sheen or globules;
- Use of an ultraviolet (UV) illuminator for visual observation of submerged oil indicators;
- Standardized sheen test;
- Photographic documentation; and
- Identification of pre-dam (i.e., before Morrow Dam was constructed) surface mapping in the Morrow Lake sediment fan to calculate sedimentation rates.

During the Fall 2011, Spring 2012, and Fall 2012 coring events, analytical chemistry data shall be obtained from samples secured from the sediment cores. Samples shall be collected from intervals based on lithology throughout the entire length of core. Duplicate and matrix-spike/matrix-spike-duplicate pair samples shall be collected at a frequency of 1 each per 20 samples (i.e., 3 QC samples per 20 primary samples). An equipment blank sample shall be collected prior to each coring event, by coring reference material certified to be free of Total Petroleum Hydrocarbons (TPH) compounds. Samples shall be analyzed for crude oil related constituents, including TPH (DRO and ORO) and PNAs, using the new revised sample preparation process (10 gram aliquot, new drying method – see QAPP for "background" core samples). Samples shall be analyzed for the following:

- Total petroleum hydrocarbons (TPH) consisting of Diesel Range Organics (DRO) and Oil Range Organics (ORO);
- Polynuclear aromatics (PNA's);
- Trace metals of beryllium, molybdenum, nickel, and vanadium;
- Percent moisture and total organic carbon (TOC);
- Bulk density;
- Particle size distribution; and

• Organic matter content (loss on ignition method).

Enbridge shall evaluate the coring results after each sampling event and may modify, with U.S. EPA approval, the number of samples and locations, as appropriate. Modifications to the work plan shall be presented to U.S. EPA for approval.

4.2.5 Sediment Transport

To determine how submerged oil and oil-containing sediment may be transported in various geomorphic settings, additional information shall be collected and evaluated. Existing data consist of turbidity measurements, sediment bed-material types (poling data; cores), and velocity measurements collected over the course of the project to date. Anecdotal evidence suggests that submerged oil migrates in association with fine-grained bedload and/or suspended sediment. This evidence also suggests that the migration is dependent on flow conditions, affected by temperature, possibly atmospheric pressure, and agitation from oil recovery operations. Increased sediment transport also takes place during runoff events (e.g., rain events), but a substantial part of annual load presumably occurs during low-flow conditions (cf. 36-43 percent for Paw Paw River near Paw Paw (USGS 04102320), 1980-82, draining 195 mi²).

To evaluate how submerged oil is transported in various geomorphic settings and the mass of submerged oil transported in suspended and/or bed-load components, Enbridge shall collect the following data to allow for a better understanding of the issues:

- Time-integrated suspended sediment sampling, which shall occur downstream of agitation/recovery areas and silt curtains. Enbridge shall use Walling suspended sediment traps (Phillips et al., 2000) at the following locations and in accordance with the following parameters:
 - Two traps placed upstream of the confluence of Talmadge Creek and the Kalamazoo River to obtain background suspended sediment samples.
 - Morrow Lake: downstream and in the vicinity of E4.5 control point. Three traps shall be placed in 2011 depositional areas.
 - Seven traps shall be located on an approximate North-South transect across the sediment fan in 2011 depositional areas. The traps shall be placed and co-located at poling locations.
 - The Kalamazoo River gauge at Battle Creek: two locations, one upstream and one downstream of the gauge. The upstream location shall be immediately downstream of Dickman Road and the downstream location shall be the Angell Street Bridge. Locations shall be field checked to verify that it is an appropriate location for sampling suspended sediment. If it is not appropriate / representative, another location shall be selected in consultation with U.S. EPA and USGS personnel.

- Ceresco impoundment: Transects shall be located immediately upstream of the dam, in the thalweg and adjacent to the thalweg on each side, and downstream of the former rail road trestle (two to three locations, equally spaced along a transverse transect).
- Traps shall be placed with minimum 8-feet long "T" or "U" shaped channel posts driven into the sediment bed or a cradle system, along with buoy markers along the transect. Traps set in deeper water (>2.5 feet) shall be installed with two Walling samplers to obtain a near streambed sample and a near water surface sample.
- During oil recovery, Enbridge shall check and sample the traps monthly, after storm events, immediately following oil recovery operations, and at other times as directed by the U.S. EPA.
- After oil recovery operations are complete for the field season, Enbridge shall check and sample the traps once a month and at other times as directed by the U.S. EPA. The Walling samplers shall be removed before freeze up or remain in place over the winter, if conditions allow. This decision shall be made in consultation with U.S. EPA and USGS representatives.
- In Spring 2012, the Walling samplers shall be installed as soon as safe work conditions allow. For 2012, the Walling samplers shall be installed, monitored and sampled in the same manner as 2011, except that during periods of high flow, sediment samples may need to be retrieved more frequently than monthly.
- Sediment chemistry data shall be obtained from samples secured from the Walling suspended sediment traps and shall be analyzed for following parameters:
- TPH (DRO, ORO);
- PNA's;
- Trace metals of beryllium, molybdenum, nickel, and vanadium;
- Percent moisture and total organic carbon;
- Particle size distribution; and
- Organic matter content (loss on ignition method).

The proposed suspended sediment sample locations are shown in Attachment C, Figure 5.

4.2.6 Data Results

Enbridge shall provide U.S. EPA, MDEQ, and USGS representatives the results of all data from the hydrodynamic assessment in spreadsheets, maps, model runs, and/or word processing formats. Also included shall be other related data for the following parameters/items: water temperature, turbidity, sediment temperature, water velocity, surface water elevation, depth to

soft sediment, soft sediment thickness, depth to hardpan, core logging information, all other surface water field parameter data collected to date, analytical data, river discharge rates, river stage, and sediment curtain configurations from project inception (Geographical Information System format). Enbridge shall also provide location information (e.g., global positioning system data, latitude/longitude). The evaluation and presentation of the data shall be provided to U.S. EPA within 30 days after field work is complete.

4.3 Hydrodynamic Modeling Strategy and Operational Plans

4.3.1 Introduction

A physical-process model of an environmental system can be a valuable resource for testing the present understanding of a complex system, revealing gaps in knowledge and areas where better detail is needed to provide useful predictions of future scenario outcomes or the effects of system alterations. Such applications of modeling are particularly valued to support several stages of the adaptive management cycle (Figure 4.3.1). A process model can suggest strategies for attaining environmental management goals that planners then formulate as management experiments to be implemented for real-world testing. The model can explore where and when to monitor the system to most sensitively gather metrics on how well the experiment is working. Monitoring data shall allow updates to the model in support of evaluating management experiments, deciding how to proceed further in learning about the system, and achieving management goals.

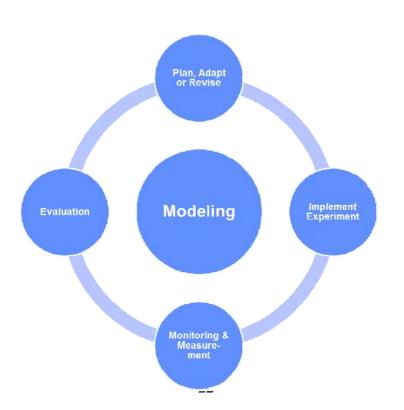


Figure 4.3.1 The Adaptive Management Cycle of Experimentation and Iterative Learning

For an inland riverine ecosystem where sediment-associated contaminant transport is of principal concern, critical data for understanding submerged-oil entrainment, transport, deposition, and recovery include predicted water-surface elevations, velocity magnitudes, flow directions, and bed-shear stresses for a broad range of hydrologic conditions up to the 50-year flood discharge.

4.3.2 Purpose and Scope

The work plan describes tasks and procedures that shall achieve the following objectives of the hydrodynamic modeling study of the fate and transport of submerged oil from the release of heavy crude oil from Enbridge line 6B:

- 1. Successfully calibrate a 3-dimensional hydrodynamic model for unsteady, open-channel flow, capable of simulating with useful accuracy the spatial and temporal variations in river velocities, bed-shear stresses, and consequent sediment entrainment, transport, and deposition of sediment-oil mixtures;
- 2. Gain improved understanding of the transport of submerged oil; specifically, by simulation of the variables in (1) resulting from various regimes of streamflow conditions that include flows ranging from low flows of frequent occurrence to flood flows having an annual exceedence probability (AEP) of 0.02 (50-year recurrence interval);
- 3. Simulate a variety of scenarios for containment, collection, and recovery of submerged oil-laden sediment, and for proposed sediment collection structures and future boom arrangements; and
- 4. Appropriate the findings of this study to assist the planning, design, implementation, monitoring, and evaluation of river management experiments having as their objectives the detection, isolation, and recovery of submerged oil, but subject to approval by U.S. EPA.

The model domain shall extend from the USGS streamflow gauging station on the Kalamazoo River at Marshall (station ID 04103500) at the upstream end, to Morrow Dam on the downstream end. Laterally, the model domain shall include all areas inundated by the peak flow having a 50-year recurrence interval (0.02 AEP). The model shall be calibrated to river stage and velocity measurements, and sediment transport measurements, that were measured for streamflow and sediment discharge rates that represent the present hydroclimatic period, recognized to have begun in North America during the early 1970s (cf. Wolock and McCabe, 1999; Milly et al., 2005; McCabe and Wolock, 2010). Oil-containing sediment collection areas and techniques to be simulated shall be identified in consultation with U.S. EPA and USGS

representatives, shall be approved by U.S. EPA prior to simulation, and shall include such techniques as in-stream silt curtains, booms of various types, and other barriers constructed of natural or artificial materials with a variety of permeability and pore sizes. Submerged oil recovery scenarios to be simulated shall be planned in consultation with U.S. EPA and USGS representatives, shall be approved by U.S. EPA prior to simulation, and shall include such techniques as shallow agitation (~0.5 ft), deep agitation (> 1.5 ft), and low-disturbance alternatives. Early products of the modeling study shall include metadata and maps of the digital elevation model comprising bathymetric and terrain models of the respective sectors of the model domain (e.g., see Figure 4.3.2); graphs showing the goodness-of-fit between measured and simulated values of the calibration targets; and graphs illustrating the sensitivity of simulation results to incremental changes in the calibration parameters. The model shall be verified with additional data collected in 2012 as part of this consolidated work plan.

Figure 4.3.2 -- Example map of digital elevation model showing points where bathymetric and terrain data were collected (from Conaway and Moran, 2004).

4.3.3 Study Area Description

Because of the need to estimate streamflow from ungauged tributaries, including Talmadge Creek, a description of the study area's salient characteristics is critical to the hydrodynamic modeling study. The streamflow of Talmadge Creek and other ungauged tributary streams shall be estimated at each model time increment. Among the longer tributaries (> 4 mi long) downstream from Talmadge are Bear, Minges-Harper, Battle, Wabascon, Sevenmile, Augusta, and Gull Creeks. The modeling study area includes all of the 38 mi of the Kalamazoo River affected by the 2010 oil spill, ending at Morrow Dam, which is about 80 mi upstream from Lake Michigan (Figure 4.3.3). Morrow Dam also is designated as the upstream boundary of the binationally recognized Kalamazoo River Area of Concern (1987 amendment to the 1978 Great Lakes Water Quality Agreement; Kalamazoo River Public Advisory Council, 2000). By previous convention, the point where released crude oil entered Talmadge Creek has been designated to have a river-wise downstream mile-post coordinate (MP) of 0 mi and Morrow Dam is located near MP 40.

Warm to hot summers and severe winters characterize the temperature regime of the humid continental climate in the study area. At a representative climate station (Battle Creek 5 NW) normal monthly mean temperatures range from 23.1°F in January to 71.0°F in July (National Climatic Data Center, 2002). Normal precipitation near Battle Creek is 35.15 in. and monthly means range between 2.4 and 3.6 in. for all months except January (1.7 in.), February (1.5 in.), and September (3.9 in.). Thus there is no pronounced dry season.

The study area lies wholly within the drift plains ecological region of Southern Michigan and Northern Indiana (Omernik, 1987; U.S. Environmental Protection Agency, 2007). The Kalamazoo River near the study area flows through an alluvial valley eroded into glacial deposits and, locally, bedrock units including the Marshall Sandstone and Coldwater Shale (Dorr and Eschman, 1970; WMU, 1981). The river drains a basin characterized by well-drained soils developed on relatively permeable glacial deposits having developable yields of groundwater (Bent, 1971). Consequently, streamflow of the Kalamazoo River largely is groundwater fed. Additional description of the geology and hydrogeologic framework of the study area is provided in Enbridge (2010, p. 11-12).

Within the study area, the Kalamazoo River reaches mostly are sinuous and single-threaded, but numerous islands, bars, and chutes also occur. As a result of historical dam building projects, three impoundments have resulted in upstream deposition of sediment, channel aggradation, and braided delta formation where width is not constrained. In addition to the impounded slackwater, the Kalamazoo River includes a variety of other sluggish backwater and side channels, flood chutes, abandoned or intermittently abandoned oxbows, and floodplain wetlands that are hydraulically connected to the main channel and that have had repeated submerged oil recovery efforts. Many depositional areas are located along channel margins and banks, where the river

channel naturally widens. Some are the result of large wood debris and overhanging trees and branches. Lastly, during 2011 low flow, submerged oil accumulated in areas that were scoured during flooding associated with the initial oil spill. Some of these have been sites of recurring submerged-oil deposition (e.g., "the oxbow" at MP 21.3). Existing observations of depth, velocity, and sheen intensity generally are associated with point data collection (poling method) during safe-boating conditions (not flood flows) and have been inadequate to develop complete, detailed, and accurate predictive capabilities with regard to objectives 2 through 4 as enumerated for this study. Hydraulic flow fields observed during low-flow conditions can be either dampened or intensified when flow rates are higher; consequently, existing data for low-flow hydraulics are an insufficient basis for reliable development of either river-structure design or sediment transport studies (cf. Conaway and Moran, 2004). The modeling work described in this plan provides an expanded scope and methods to obtain information about the riverine system during low- and high-flow conditions to allow the study objectives to be fully addressed.

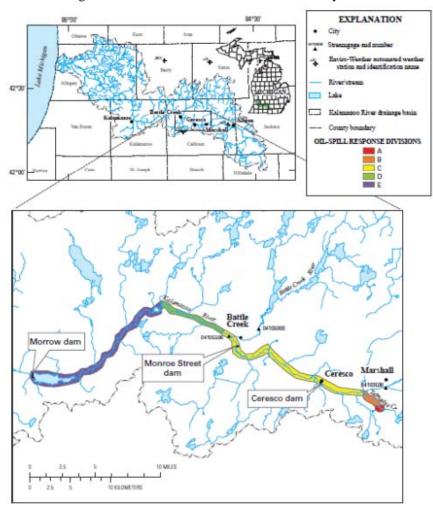


Figure 4.3.3 -- Location of Kalamazoo River study area.

Projection: Lambert Confirmal Comp

North American Datum of 1965 (NADKI)

City senses and locations from U.S. Geological Survey digital networgsphere, Grand Rapids, Mich., 1250,000 (42084–432), and Ravins, Mich., 1250,000 (42084–432) and Ravins, Mich., 1250,000 (42084–432) Hydrologic divides and hydrologic file latters from Stockage and Stockage and

4.3.4 Existing Hydraulic Models of the Kalamazoo River in the Study Area

USGS model: Marshall-to-Battle Creek. Heavy rainfall in the study area during the 3 days preceding the July 2010 crude oil release produced flood conditions that heightened environmental effects of the spill by transporting fresh, buoyant crude into many low-lying areas. The flood peak had an approximate annual exceedence probability of 4 percent on the Kalamazoo River (Hoard et al. 2010). When post-flood attention focused on characterizing the extent of the oil spill, USGS was tasked with constructing a hydraulic model using the U.S. Army Corps of Engineers' Hydrologic Engineering Center River Analysis System (HEC-RAS) (U.S. Army Corps of Engineers, 2002).

USGS crews surveyed stream-channel and bridge geometry, providing data for a 15-mile stretch of the Kalamazoo River from Marshall to Battle Creek to assist with remediation of flood-plain sediment and vegetation affected by the oil spill. Enbridge shall consider the published flood elevations from Hoard et al. (2010) as an independent source of water-level validation targets for the present study. Also Enbridge shall consider the channel bathymetric data for cross sections surveyed in August 2010 by USGS crews, using hydroacoustic instruments for depths and differential GPS receivers to record horizontal position. Water-surface elevations were surveyed at 19 locations along the modeled reach and used to calibrate the HEC-RAS model (Hoard et al. 2010).

AECOM model: Battle Creek-to-Morrow Dam. Subsequently, Enbridge (AECOM, written communication, June 2011) in response to a U.S. EPA letter (dated April 14, 2011) commissioned the expansion of the USGS model from Battle Creek to Morrow Dam; the simulation of flood peaks with recurrence intervals of 10, 25, 50, and 100 years; and the July 25, 2010, flood event. The purpose of the expanded modeling study was to help identify the likely spatial extent of crude oil contamination from the 2010 spill.

New LiDAR data were collected during April 2011 to provide a topographic model in support of this study. Also, channel transects were surveyed at spacing of 2,000 ft or less throughout the area of expanded study and at all bridge crossings of the Kalamazoo River from Battle Creek to Morrow Dam. In addition to transects, a sonar-derived bathymetric map of the bottom of Morrow Lake was constructed. All 8 bridge crossings in the expanded reach were surveyed and measured to describe the location and thickness of each pier, total opening size, and bridge deck elevation.

Additionally, high water marks (HWMs) were identified and their elevation measured using hand-held GPS receivers. Many of these HWMs were oil stain rings on tree trunks, left by the July 2010 flood ongoing at the time spilled oil entered the Kalamazoo River.

4.3.5 Data Collection

Multi-dimensional hydrodynamic models require considerably more hydrologic, topographic, bathymetric, and hydraulic data collection than do one-dimensional models. For this study, advanced hydraulic, bathymetric, and topographic surveying instrumentation shall be used for collection of needed data efficiently and with reliable accuracy. Discharge measurements and/or water-level data shall be obtained from hydrologic data systems of the USGS and Enbridge for all stream gauges actively operating during the study period (Table 4.3.1). Miscellaneous discharge measurements on ungauged tributaries have been made by USGS and Michigan DEQ and DNR; these shall be compiled for potential use in calibrating or estimating contributions of tributaries to the main stem's discharge. The specific method selected for estimation of streamflow of each ungauged tributary shall be described in detail by Enbridge, and is expected to comprise use of available streamflow and weather data with either a numerical rainfall-runoff modeling approach to estimate the streamflow at the mouth of each ungauged tributary, and (or) a statistical modeling approach based on basin characteristics and streamflow records of gauged streams paired with each ungauged tributary; possibly with varying approaches among the various tributaries; and will include methods for evaluating accuracy of the estimates and their contribution to the overall uncertainty of the hydrodynamic model.

All USGS gauging stations have hourly time-series data for water level and discharge. Enbridge's 10 stage-only gauges have only once daily observations of water level, and were operated seasonally, lacking observations for the winter period. All water levels shall be compiled as altitudes referenced to the NGVD of 1988, and shall provide either boundary conditions for model runs, or calibration targets.

Agency	Station identifier	Station name	Start date	End date	Count of daily values
USGS	04103500	Kalamazoo River at Marshall	Oct. 1948	Oct. 2011	15,914
USGS	04105000	Battle Creek at Battle Creek	Oct. 1930	Oct. 2011	28,988
USGS	04105500	Kalamazoo River near Battle Creek	July 1937	Oct. 2011	27,124
USGS	04105700	Augusta Creek near Augusta	Oct. 1964	Oct. 2011	17,196
USGS	04105800	Gull Creek at 37th ST near	Oct.	Feb.	3,065

Table 4.3.1 Stream flow-gauging stations within or adjacent to the study area, with daily streamflow data inventory through October 2011.

Agency	Station identifier	Station name	Start date	End date	Count of daily values
		Galesburg	1964	1973	
USGS	04106000	Kalamazoo River at Comstock	Apr. 1931	Oct. 2011	27,219
Enbridge	MP 2.25	Kalamazoo River at 15 Mile Rd	Apr. 2011	Oct. 2011	155
Enbridge	MP 5.25	Impounded Kalamazoo River near Ceresco	Apr. 2011	Oct. 2011	161
Enbridge	MP 10.0	Kalamazoo River near boat launch C-3.2	Apr. 2011	Oct. 2011	163
Enbridge	MP 15.0	Kalamazoo River at South Mill Pond, Battle Creek	Apr. 2011	Oct. 2011	151
Enbridge	MP 18.75	Kalamazoo River at S Bedford Rd, Springfield	Apr. 2011	Oct. 2011	162
Enbridge	MP 21.5	Kalamazoo River at Custer Drive	Apr. 2011	Oct. 2011	152
Enbridge	MP 27.0	Kalamazoo River at Shady Bend near Augusta	Apr. 2011	Oct. 2011	157
Enbridge	MP 30.0	Kalamazoo River at Fort Custer RA near Augusta	Apr. 2011	Oct. 2011	158
Enbridge	MP 35.0	Kalamazoo River at Galesburg	Apr. 2011	Oct. 2011	143
Enbridge	MP 38.0	Morrow Lake near Galesburg	Apr. 2011	Oct. 2011	158

A survey-grade GPS receiver (e.g., RTK-GPS) interfaced with an echo sounder shall be used for rapid collection of high-resolution and high-density bathymetric data from a moving boat. Operating an ADCP synchronously with these instruments shall generate extensive hydraulic data suitable for model calibration. The ADCP shall be properly calibrated prior to any data collection for this study in accordance with manufacturer's specifications and instructions; this shall include site-specific calibration in relation to speed of sound through the river water, and to account for geo-magnetic field variation that can affect the measured flow-direction results. Daily quality-assurance tests of the ADCP instrument's operational performance (360-degree rotational closure; loop closure; etc.) shall be conducted and results recorded. River cross

sections shall be surveyed with spacing inversely proportional to channel complexity, but as a goal, an overall average cross-section spacing of one-tenth mile would yield about 400 surveyed sections. Additional cross sections shall be calculated as needed via interpolation.

Bathymetric surveys shall be compressed into a minimum number of days to avoid any changes of river stage exceeding 0.7 ft during the survey period. Survey-control stations (SCS) shall be established, surveyed daily as the opening and closing observation by each GPS receiver unit (occupy the SCS for minimum of 15 minutes with data collection at 15-s intervals), and results shall be tabled in the quality assurance (QA) section of the project report, along with daily starting and ending water-surface elevations for the surveyed reach that are either recorded at a stage gauge with properly established gauge datum or surveyed directly in relation to an established gauge datum at nearby stage gauge (e.g., see Table 4.3.2). In addition, to account for a change in stage during each day's survey work, a daily average water-surface elevation and discharge shall be determined. Water-surface elevations surveyed before and after the median time shall be adjusted to the average elevation to account for the changing stage.

Much of the hydraulic and most of the bathymetric data shall be collected from a moving boat. Vertical profiles at a transect point and point-velocity measurements (ADV) shall be collected from either a stationary boat or, if at shallow submerged areas of the channel, shall be surveyed by personnel making wading measurements and co-located with an RTK-GPS unit. An RTK-GPS receiver with data logger shall record data that shall enable determination of the horizontal position and vertical height of each point where data are collected by the echo sounder and ADCP. When used in RTK mode, the GPS receives a position correction that is determined and broadcast by a separate GPS receiver positioned above a survey-control station. Using RTK-GPS, water-surface elevations shall be measured precisely, and ADCP-measured flow magnitude and direction shall be reliably georeferenced. Simultaneously, channel-bathymetry data shall be collected using a 200-kHz echo sounder or similar unit. Channel bathymetry data shall be collected along cross sections, longitudinal profiles, and at random fill points.

Terrain data for areas outside the channel and for subaerially exposed parts of the channel may be collected on a different day than hydraulic and bathymetric data are collected for each reach; however, the same QA procedure for opening and closing observations at a SCS shall be followed for terrain surveys as for bathymetric surveys. Any instrument substitutions shall be approved by U.S. EPA in advance of data collection.

All bathymetric and terrain data shall be compiled as altitudes referenced to the current national geodetic vertical datum (North American Vertical Datum of 1988). Horizontal coordinates shall be referenced to Michigan's State Plane Coordinate System, as specified elsewhere herein. All coordinates shall be expressed in units of the International Foot (1 International Foot = 0.3048 meters).

Table 4.3.2 [Example of] Location of survey control stations and daily water-surface elevations during bathymetric survey, Tanana River near Tok, Alaska (from Conaway and Moran, 2004).

Location (Alaska State P	Location (Alaska State Plane zone 2, NAD 83, NAVD 88 survey feet				
Description	Easting	Northing	Elevation		
ADOT&PF Control point 1	1533071.81	3404825.83	1,627.08		
ADOT&PF Control point 2	1533711.52	3404928.48	1,625.14		
ADOT&PF Control point 3	1534655.68	3405031.25	1,643.88		
ADOT&PF Control point 4	1534942.47	3404923.68	1,672.00		
08-07-02 Starting					
WSELEV	1533724.71	3405027.71	1,609.87		
08-08-02 Starting					
WSELEV			1,610.09		
08-08-02 closing					
WSELEV			1,610.24		
08-09-02 Starting					
WSELEV			1,610.41		
08-09-02 closing					
WSELEV			1,610.48		

[WSELEV, water-surface elevation]

Results from the bathymetric and terrain surveys shall be merged to produce a digital elevation model with sufficient data density and adequate spatial distribution that allows development of an accurate and stable, high-resolution hydrodynamic model. The standard error of the digital elevation model (DEM) shall be no greater than 1.5 ft, as determined in relation to a well distributed 1% subset of surveyed points reserved for this QA test.

For channel cross sections, hydraulic measurements shall include the current velocity components along 3 orthogonal axes oriented such that one component is parallel to the average flow line of the water flux across the surveyed section (usu. named the x axis), and a second component is nearly parallel to a truly vertical line (usu. named the z axis). Unmeasured sections of the water column shall be reported by the ADCP (or determined by the operator when wading with an ADV) and recorded.

4.3.6 Hydrodynamic Model Geometry, Parameterization, and Calibration

Software selection shall support the modeling of as many of the physical river-process mechanics as is practical given present state-of-the-science and practical considerations of needs for data quality, timeliness, and cost-effectiveness. The initial geometry of the model shall be defined using the DEM that merges results of the bathymetric and terrain surveys. Areas of ineffective flow (near shoreline where obstructed or where channel curvature creates secondary

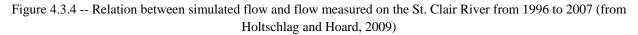
flow patterns) shall be identified where possible using velocity data obtained from ADCP or ADVM measurement sections. The model domain shall extend from sufficiently near the USGS streamflow-gauging station on the Kalamazoo River at Marshall (station ID 04103500) to assume its streamflow record as the inflow at the upstream end, to Morrow Dam on the downstream end. Laterally, the model domain shall include all areas inundated by the peak flow having a 50-year recurrence interval (0.02 AEP).

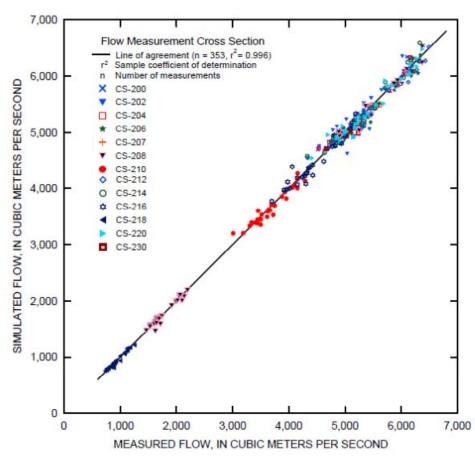
Mesh configuration shall be summarized in tabular form (e.g., see Table 4.3.3) and shown for selected parts of the model domain in Figure 4.3.3. Results from surveyed or as-built engineering data provided for bridges and dams shall be incorporated into the final mesh prior to any model runs.

4.3.6.1 Model parameterization

Some model parameters account for energy losses associated with channel roughness and those associated with expansions and contractions of the hydraulic cross-sectional area. Overbank areas of channel cross sections shall be assigned time-invariant roughness values, but main channel areas shall have bed form roughness values that vary as the dynamic interaction between hydraulics and sediment produces varying bed form states during the course of a simulation run. Expansion and contraction coefficients initially shall be set to 0.1 and 0.3, respectively, for all cross sections in the model domain.

Other model parameters relate to sediment entrainment, transport, and deposition. Among these shall be characteristic metrics of the particle-size distribution (PSD), density and cohesion of the oil-sediment mixture, critical shear stress for entrainment, metrics of bank erodibility, and characteristic settling velocity. Settings for fixed-value parameters and boundary conditions shall be listed in tabular format (e.g., see Table 4.3.3). Water temperature and viscosity also are important considerations for sediment transport and settling, but time-series data from water-temperature monitoring shall be the basis for these.


Hourly water-level data from the Kalamazoo River at Marshall gauging station shall serve as the upstream boundary condition for model runs. Water level data for Morrow Lake from a stageonly gauge (operated by Enbridge) shall provide the downstream boundary condition for model runs, whenever applicable. If data are available from the operator of Morrow Dam, the discharged outflow from Morrow Lake would provide an additional check and downstream condition. Flow augmentations and lateral fluxes for tributary mouths and streambed seepage, respectively, shall be either estimated from tributary streamflow gauging stations (Table 4.3.1) or hydrologic models, as described herein.


4.3.6.2 Model calibration

Boundary conditions and model parameters shall be calibrated to data collected during the hydraulic surveys and available or published data from USGS, State agencies, Enbridge, or other institutions. The drag coefficient for the channel plan form shall be calibrated through an

iterative process where predicted water-surface elevations and current velocity magnitudes are compared to measured values. The lateral eddy viscosity also shall be calibrated though an iterative process and predicted velocity vectors shall be compared to those measured by the ADCP or ADVM. Available data for selected high-water marks (HWMs) of known peak flows shall be compared to predicted water levels for similar, simulated upper-quartile and larger discharges. Other HWMs and published data for flood-inundation simulations of known peak flows may be used either as calibration or validation targets for this hydrodynamic model. If published data from previous simulations are used, differences in model construction and assumptions shall be noted and their effects on comparisons shall be discussed. Graphs shall be prepared showing the relation between measured and simulated values for the calibration targets. Summary statistical metrics shall be calculated to quantify the goodness-of-fit for the calibrated model.

Recorded or measured streamflow at intermediate and downstream sites shall be compared with simulated streamflows to estimate additional metrics for the calibration goodness-of-fit. An example graph showing results of this type for a model of the St. Clair River, Michigan-Ontario, is shown in Figure 4.3.4 (from Holtschlag and Hoard, 2009).

4.3.6.3 Sensitivity Testing

Once a final calibrated model is obtained, Enbridge shall conduct sensitivity testing to evaluate the uncertainty of simulation results related to uncertainty in model-calibration parameters and other input parameters. Adjusted parameter settings shall be increased and decreased from their final settings in the following relative increments: 2, 5, 10, 15, 20, and 25 percent of the final setting used for the calibrated model. For each incrementally adjusted setting, a simulation run shall be used to determine the resultant effect on model sensitivity targets: water levels, velocities, discharge, suspended-sediment concentrations and loads, scour volume, and depositional volume. Effect on each target shall be expressed as a percentage departure from its value in the final, calibrated model.

Table 4.3.3 [Example of] Model parameters and boundary conditions used for simulations of the calibration discharge and the discharge having a 50-year recurrence interval at station Kalamazoo River at xx (after Conaway and Moran, 2004).

Model parameter or boundary condition	Calibration discharge	50-year flood discharge
Number of grid cells	100,000	200,000
Mesh spacing in stream-wise and transverse directions, in feet	5	5
Channel form drag coefficient	.004	.004
Bed form drag coefficient	.008	.006
Grain roughness coefficient	.020	.020
Overbank drag coefficient	.12	.12
Expansion coefficient	0.1	0.1
Contraction coefficient	0.3	0.3
Lateral eddy	4.3	4.3

Model parameter or boundary condition	Calibration discharge	50-year flood discharge		
viscosity, in ft2/s				
Discharge, in ft3/s	3,500	6,000		
Initial water-surface elevation at downstream end, in feet	XX.XX	уу.уу		
Stream gradient, in ft/ft	.00011	.00013		
Sediment median size, in mm	.35	.35		
Sediment d84 size, in mm	XX.X	уу.у		
Density of oil- sediment mixture	X.XXXX	у.уууу		
Cohesion of oil- sediment mixture	X.XX	у.уу		
Critical bed-shear stress for sediment entrainment	X.XX	у.уу		
Bank shear strength	X.XX	у.уу		
Bank tensile strength from roots	X.XX	у.уу		
Characteristic settling velocity	X.XX	у.уу		

4.3.7 Hydrodynamic Simulations Using Calibrated Model

Progress on model development shall proceed from the planning stages forward in a collaborative mode, with frequent, regular consultation with U.S. EPA and USGS representatives, very similar to what was begun with the weekly calls for the hydrodynamic assessment work group. The final, calibrated model shall be used for testing scenarios of various

management strategies. All scenarios shall be compared with a baseline simulation that contains no changes from existing conditions (Fall 2011 [specific date to be determined in consultation with U.S. EPA and USGS representatives]) in terms of geometry, sediment size distribution, sediment loading from upstream, or river management; this baseline simulation shall be referred to as the Fall 2011 Baseline, and shall provide the capabilities indicated in Objective 1, thus demonstrating attainment of that purpose of the study. The Fall 2011 Baseline results shall themselves be valuable for identifying velocity patterns and indicated sediment-depositional areas that correspond to a range of possible streamflow events. However, in the context of adaptive management many other benefits can be provided by simulating contemplated changes or additions to the suite of river management practices implemented in the study area.

Enbridge shall achieve study Objective 2 by simulation of a variety of streamflow conditions that represent the present flow regime, including flows in both below-median quartile of a flowduration table for the Kalamazoo River, each above-median decile of a flow-duration table for the Kalamazoo River in the study area, and high-flow events that contain peak streamflows with return intervals of 1.5, 2, 5, 10, 25, and 50 years. Objective 3 shall be achieved through simulation of specific system scenarios, with the set of scenarios corresponding to varying combinations of streamflow, sediment inputs, oil-sediment temperature, and river-management practices and installations. The following Table 4.3.4 lists some of the scenarios envisioned for testing by use of the calibrated model with, as examples, hypothetical additions of dikes or chevrons to the channel structures, changes in channel roughness caused by introduction of large woody debris (LWD), or construction of sediment collection areas. Selection of actual scenarios shall be made in consultation with U.S. EPA and USGS representatives.

Enbridge shall achieve Objective 4 only through maintaining close coordination with U.S. EPA, MDEQ, MDNR, and USGS representatives, and river management officials with the municipalities, villages, and counties along the study area. Findings from the modeling study shall be communicated to officials working at all phases of the adaptive management cycle. Those planning or designing river-management strategies and experiments shall need to suggest scenarios to be modeled, and modelers shall provide results and interpretations to the planners/designers that inform adjustments to the implementation plans for each experiment. Predictive simulations using the final implementation plan for a river-management experiment shall indicate where deposition and other changes in channel geometry are expected to be the largest, and where sediment transport rates are likely to be at maximum. Those locations become the priority monitoring targets for that experiment. During an extended experiment and after its completion, the collected monitoring data shall be used by modelers to construct an updated version of the hydrodynamic model that represents conditions at the respective time. The updated version shall be re-calibrated using the monitoring data, and used to evaluate the "how?" and "why?" behind the experimental outcomes.

Clearly, achieving the goal of science impact on the adaptive management process shall be an iterative and sometimes lengthy, demanding process. But finding the optimal long-term solutions

for submerged-oil recovery or remediation within constraints of ecologically healthy prescriptions requires prudent application of the modeling results to achieve Objective 4 of the study.

4.3.8 Timeline for Hydrodynamic Simulations [Example]

Time-series data sets shall be compiled and formatted for model input by November 30, 2011. The final configuration of the full-domain model mesh shall be loaded with bathymetric and topographic terrain data by December 7, 2011. Initial values for all model parameters used for calibration shall be determined by December 14, 2011, including those that require Fall 2011 field testing. Model calibration shall be completed by December 23, 2011. Sensitivity testing shall be completed by Jan. 6, 2012. A quarterly progress report shall be prepared summarizing the calibrated model (the Fall 2011 Baseline), its accuracy in simulating values of the calibration targets, the sensitivity testing, and providing an updated schedule for scenario simulations of various management strategies. This report shall be submitted by Jan. 14, 2012.

Simulation of the various targeted streamflow conditions, including those related to forecast spring 2012 snowmelt runoff, shall be completed and compared with the Fall 2011 Baseline, and results thereof shall be reported by February 11, 2012. Scenarios then shall be modified to incorporate various combinations of river management practices and structural control features, as selected through consultations among Enbridge, U.S. EPA, MDEQ, and with other stakeholder input. Simulations of the initially selected set of management scenarios shall be completed by February 23, 2012, to allow review and adaptive management discussions, and runs of modified scenarios by March 8, 2012. Final selection of the Spring 2012 adaptive-management experiments to be implemented can then be made by March 11, 2012. It is expected that adherence to this timeline shall allow final planning, coordination, logistics, and staging for experiments to be completed by the end of March. A quarterly progress report summarizing the simulations of target streamflow conditions and management scenarios shall be prepared and submitted by March 25, 2012.

Question addressed	Stream flow conditions	Sediment conditions	Temperature conditions	River- management practices	Range of dates (if using a recorded flow scenario)
Risk of having sediment transport over Morrow Dam by a frequent winter high-flow pulse	Recorded high-flow event with peak discharge = 3,260 cfs at upstream gauge	Steady input concentration of 100 mg/L at 35 th Street Bridge	Cold – 2 to 4 deg. C. for water; 4 to 7 deg. C. for sediment-oil mixture	No booms, curtains, dikes, chevrons, or sediment traps except existing Morrow Dam	Jan. 2008 [specific range of days to be included to be determined in consultation with USEPA and USGS]
Risk of sediment remobilization by E4.5 double- chevron removal	Uniform flow at above- median rate for Fall season; i.e., discharge = 870 cfs at upstream gauge [Initial, instantaneous concentration of 100 mg/L spread over 40,000 ft ² area immediately upstream of E4.5 control point	Cool – 4 to 6 deg. C. for water; 6 to 9 deg. C for sediment-oil mixture	No booms, curtains, dikes, chevrons, or sediment traps except existing Morrow Dam	

Table 4.3.4 Partial listing of management scenarios to be simulated and compared with the Fall 2011 Baseline simulation.

Effective location	Annual	Use sediment	Use	Include	TBD
of sediment	regime of			scenarios with	IDD
	streamflows	rating curves to estimate	interpolated estimates		
containment areas	for 3		from NWS	only SCA	
		input		traps, others	
	different	concentrations	observation	with SCA traps	
	years: one	at upstream	network	plus	
	in lower	gauges, and		booms/curtains	
	quartile of	estimate sed			
	annual mean	inputs from			
	Q, one near	tributaries			
	median, and				
	one in upper				
	quartile.				
Effects of	Annual	Use sediment	Use	Compare	TBD
different	regime of	rating curves	interpolated	currently used	
agitation/recovery	streamflows	to estimate	estimates	methods with:	
methods, e.g.,	for 3	input	from NWS	deeper, more	
aggressive	different	concentrations	observation	aggressive	
agitation within	years: one	at upstream,	network	agitation; and	
Ceresco dam	in lower	and estimate		perhaps with	
impoundment	quartile of	sed inputs		sonic/ultrasonic	
F	annual mean	from			
	Q, one near	tributaries			
	median, and				
	one in upper				
	quartile.				
	1				
Other scenarios,	TBD	TBD	TBD	TBD	TBD
TBD through					
discussions					
among Enbridge,					
U.S. EPA, and					
USGS					
representatives					
	I				

[Notes: cfs, cubic feet per second; mg/L, milligrams per liter; R.I., recurrence interval; FD%, flow-duration non-exceedence percentage; ft², square feet; --, not applicable; all scenarios shall be simulated using full model domain and constructed as extensions of the fully calibrated Fall 2011 Baseline; TBD, to be determined]

Data from quarterly monitoring activities through the Spring 2012 ice-out and snowmelt runoff periods shall be compiled and used to update the model for further simulations during the April-

June quarter. Those simulations would focus on two goals: (1) understanding the river observations collected during December through March; and (2) predicting likely outcomes of a second series of management experiments (or modifications to pre-existing experiments) that would be planned for implementation during the mid-summer to early-fall period. Unforeseen developments in hydrologic, sediment, or oil conditions could motivate more frequent cycles of incremental scenario formulation, simulation, interpretation, decision making, and management implementation. Nevertheless, a long-term timeline could be constructed on a backbone of semi-annual circuits of the adaptive-management cycle.

4.4 Temperature Effects on Submerged Oil

Enbridge has developed, and U.S. EPA approved a plan to evaluate the effect of temperature on the relative occurrence of oil and/or sheen on the water surface upon agitation of sediment at various temperature ranges. The objectives of this bench-scale study of temperature effects on submerged oil is to enhance the understanding of the effects that water and sediment temperatures have on submerged oil liberation and the subsequent effectiveness of recovery methods. The sections below present a brief overview and the plan objective.

4.4.1 Overview

The fraction of oil that is recoverable by toolbox techniques is released from the sediment underlying the water column by agitation, which causes submerged oil to rise to the water surface where the oil is collected and appropriately disposed. The oil properties (e.g., density and viscosity) that facilitate its movement to the water surface are sensitive to temperature (Kong, 2004; Fingas et al., 2006). As water and sediment temperatures decrease, oil density and viscosity are both expected to increase. The study described in this work plan attempts to evaluate the temperature effects on how much sheen and oil rises to the water surface upon agitation of sediment at various temperature ranges.

4.4.2 Objective

The objective of the study is to identify the lower threshold temperature at which the fraction of oil that is recoverable by toolbox techniques does not readily reach the water surface and sheen upon being mechanically agitated. The oil contaminated sediment behavior shall be observed in ranges of conditions discussed later in the plan. The threshold temperature shall be the temperature at which oil is absent at the surface or has only a light presence. The evaluation of the temperature effect shall be quasi-qualitative because the threshold shall be determined relative to observations at other temperatures. The presence of oil in non-sheening samples shall be confirmed as described herein.

4.4.3 Study Procedures

Sediment and water samples shall be collected from the Kalamazoo River and transported to the field laboratory where the tests shall be conducted. The study design and data collection parameters are presented in Attachment D. The laboratory shall be housed in a field trailer or a

house garage that is ventilated and contains adequate space for the study. Appropriate health and safety procedures shall be followed in accordance with the Site Health and Safety Plan (HASP) (Enbridge, 2010a) and any other approved applicable guidance. U.S. EPA and/or MDEQ observers shall provide oversight for the entire testing process.

4.4.3.1 Sediment Collection

River sediment shall be obtained from a depositional area that is likely to contain heavy oil based upon screening using poling and selected in collaboration with the U.S. EPA. A petite Ponar® sampler or similar device shall be used to collect and place the grab sample of sediment (approximately 6 liters) into each of five 7½-liter plastic containers. The petite Ponar® or alternative sampling method shall be deployed to sample shallow sediments where oil is believed to be present, not greater than 5-inches in depth. Sediment samples in all five containers shall be observed and photographed under natural and ultraviolet (UV) light and the appearance of the sediment, texture, color, debris, and other notable features, shall be described. The general presence of sheen on the sediment shall be noted under visible light and confirmed using a portable UV light viewed under a light blocking hood. The presence, size, and percent abundance of globules under both visible and UV light shall be recorded.

Two of the five sample containers shall be covered with river water in the field by tilting the container at an angle and very gently pouring river water into it before slowly returning it upright being careful not to disturb the sediment. These samples shall be agitated in the field to confirm that the sediment releases sheen upon agitation to ensure that the location selected for sampling contains sheen-generating oil. If the samples do not produce sheen, consideration of river water and sediment temperatures shall guide operational decision to warm these two samples and repeat the agitation and evaluation as described: if the warmed samples still produce no sheen, an alternative area of submerged oil shall be sampled. The three sample containers that are not agitated in the field shall be covered with a lid for transport to the field laboratory for the study and the two agitated samples shall be disposed following proper waste disposal procedures. Samples of sediment and river water retained for the bench study shall be chilled to between 32 degrees Fahrenheit (°F) and 40°F, but not frozen, and retained cold until the sample is used in the bench study. Sample disturbance and movement shall be minimized, and every sample shall be handled in the same way. In addition to the sediment grab samples, approximately 23 liters of river water shall be collected for the study. Sediment in the three containers brought in from the field shall be sampled and analyzed for particle size distribution.

4.4.3.1.1 Sampling Location

The sediment samples for testing shall be collected at a depositional location where sheening and globules released by poling have indicated the presence of "heavy" sheening from submerged oil, which has been presumed to indicate substantial concentration of oil in sediment. The initial location and representative depositional setting shall be selected in consultation with U.S. EPA or USGS personnel to be representative of an agreed upon depositional setting (e.g.,

backchannel, oxbow, cutoff, dam, island, or delta) and sediment type (very fine sand, silt or organic muck). The study design may be applied to different depositional environments and sediment types after completion of the initial study depending on study design effectiveness. One sampling crew comprised of three persons with U.S. EPA or MDEQ oversight shall collect the samples during the course of one day.

4.4.3.1.2 Sampling Methods

Sediment samples shall be collected following the applicable sediment sampling SOP presented in the approved Sampling and Analysis Plan (SAP) as amended (Enbridge, 2011b) particularly Section 6.3.2 (entitled "Ponar[®] or Ekman dredge Sampling") found in SOP EN-202.

4.4.3.2 Controlled Temperature

The sample design includes testing 3 replicate samples at 5 different target temperatures for a total of 15 trial tests as summarized in Attachment D. Each replicate sample shall consist of equal volume aliquots from each of the three remaining undisturbed grab sample containers, for a total replicate sample volume of 400 milliliters (ml). In order to maintain as undisturbed sample as possible, the splits for the lab analysis shall be taken directly from the grab sample. For example, replicate sample #1 at temperature #1 shall consist of approximately 133 ml of sediment taken from each of the 3 grab samples for a total sediment sample volume of approximately 400 ml. The aliquots shall be placed into a 2-liter beaker (7.5-inches tall and 6.25-inches in diameter). A split sample shall then be collected from each of the 3 grab samples using the same sampling methods, and prepared for laboratory analysis of a single composite sample. The split sample shall be homogenized, and the sample shall be analyzed for TPH measured as DRO and ORO, for oil and grease, and organic content. The sediment remaining in the replicate sample beakers shall then be covered by river water, filling the beaker to 1½ liters. Three beakers shall be placed into a temperature controlled, bench top circulating water bath that is set at the desired target temperature.

Target water bath temperatures are 35 °F, 45 °F, 55 °F, 65 °F and 75 °F. Samples shall initially be in storage at temperatures between 32 °F and 40 °F and shall be placed into the water bath and allowed to equilibrate for one hour, then water and sediment sample temperatures shall be monitored using a digital thermometer (e.g., Omega HH11B) and recorded at 15 minute intervals until both water and sediment temperatures are stable and within 4 °F of the target temperature. The water and sediment may equilibrate at different temperatures and at different times given the different heat capacities of the two matrices. Equilibration and monitoring times may be adjusted in response to the time required to achieve stabilization, if warranted. Other changes to sample design or procedures that result from lessons learned during the study shall be documented.

Once the sediment and water temperatures are stabilized within the target temperature range, the initial appearance and percent coverage of sheen and the number of globules on the water surface shall be recorded. The percent of sheen coverage shall be estimated by counting the number of

squares on a clear rigid acetate grid (e.g., 5 by 5 equals 1 inch) that is placed on top of the beaker, which has a surface area of approximately 0.213 square feet.

4.4.3.3 Sediment Agitation

Samples shall be agitated in the temperature controlled environment and the parameters presented in Attachment D shall be recorded. Prior to each agitation, sheen on the surface of the water in the sample container shall be removed with sheen net, wipe or other absorbent device. As the sheen is removed, care shall be taken to reduce motion so that the sediment in the container is not agitated, and also so that the sheen is not further smeared onto the edges of the sample container.

The general appearance of sheen (gray, silver, metallic/transitional) and percent coverage and the presence, size, and abundance of globules on the water surface shall be noted prior to the initial agitation. Using a Nalgene® rod (selected to be representative of poling), the sediment shall be stirred, initially with one complete circle, and a description of the appearance of sheen and globules on the water surface shall be recorded.

Photographs under visible and UV light shall be taken; the angle of incident light shall be adjusted to best reveal the sheen in the image. Following the initial stir and observations, the sheen shall be removed from the surface of the water. The sediment shall then be stirred three more times; this second agitation shall occur within 15 minutes of the initial agitation (otherwise, temperatures of water and sediment would need to be re-measured prior to the second agitation). The three stirs shall start in the middle of the sample and work outwards with each turn. The appearance and percent coverage of sheen and globules shall be noted after completing agitation and photographed under visible and UV light.

For consistency, the same person shall agitate each replicate sample at nearly the same temperatures within the targeted temperature range, while making every effort to follow the exact, same procedures. Similarly, a single observer shall be estimating the percentage surface area coverage for all samples. Photographs of the sheen on the surface of the water shall be taken for each agitation as stated above. For at least 25% of the visual observations of the amount of sheen present, the photographs shall be quantitatively analyzed to confirm the accuracy of visual estimation of percentage cover by sheen.

Water and sediment temperatures shall be re-measured immediately following the recording of all observations and photographs to verify that conditions remained within the target temperature range.

4.4.3.4 Final Warm Agitation

All replicate sample sets shall be warmed by heating the bath to 75 °F and the sediment shall be agitated again with three stirs of the sediment as described above. The sheen shall be removed from the surface of the water prior to heating so that any oil liberated during heating is documented. Agitation at a warm temperature following the bench test shall be used to confirm

that a lack of or a reduced amount of sheen was due to the effects of the lower temperature and not a lack of oil in a sediment aliquot.

4.4.4 Data Evaluation and Reporting

The data on presence or absence of sheen and globules at tested temperatures shall be analyzed to evaluate the effects that temperature has on submerged oil liberation. Consistency between replicate samples within a temperature range shall be assessed to evaluate reliability and uncertainty of the results. This information can be used in the design of any subsequent studies to clarify the results or investigate oil bearing sediment from other depositional environments.

A completion report shall present the experimental results and explain the effects of temperature on the effectiveness of recovery methods. The report shall address the application of the results of this or additional necessary studies to different depositional environments and sediment types, and shall discuss the study design effectiveness. Results and conclusions may be used as a guide in future oil recovery efforts. As appropriate, the report shall provide applicable conclusions based on geomorphic settings and depositional environments that can be classified as similar.

4.4.5 Additional Temperature Effects Studies

The need for additional field or laboratory temperature effects studies shall be evaluated by the SOSG. In addition, water and sediment temperature data shall be collected from established USGS and site-specific staff gauges on an ongoing basis for use in validating current and future temperature effects studies and in other applications, as appropriate.

4.5 Submerged Oil Quantification

A scientifically-based model shall be used to calculate the volume of submerged oil for the entire affected water way. This includes Talmadge Creek and the Kalamazoo River (from the confluence with Talmadge Creek through a location immediately downstream of the Morrow Lake Dam), corresponding to MP 0.0 through MP 40.00.

The model shall be populated with chemical, physical, and geotechnical (i.e. sediment thickness) data obtained from sediment cores collected after submerged oil recovery activities as well as post-recovery poling activities that were completed in 2011. This similar process shall be similar to that used to perform the submerged oil quantification calculated based on Pre-Summer 2011 oil recovery activities. Only data collected under U.S. EPA and/or MDEQ approved work plans shall be used in the proposed evaluation.

4.5.1 Quantification Events

Quantification of submerged oil shall be performed at the following times, and at other time directed by the U.S. EPA:

- Fall 2011- after Summer/Fall 2011 oil recovery activities are complete;
- Spring 2012 prior to performing 2012 oil recovery activities; and

• Fall 2012 – after Summer/Fall 2012 oil recovery activities are complete

4.5.2 Quantification Model

This section describes the numeric model that shall be used to estimate the amount of submerged oil remaining in the Kalamazoo River (including the Morrow Lake Delta and Morrow Lake).

A model was previously developed to quantify the amount of submerged oil in sediment identified during the Spring 2011 reassessment of Talmadge Creek and the Kalamazoo River (including the Morrow Lake Delta and Morrow Lake). This same conceptual model shall be the basis for Fall 2011 (post-2011 oil recovery activities), Spring 2012 (pre-2012 oil recovery activities), and Fall 2012 (post-2012 oil recovery activities) models for submerged oil quantification.

These subsequent models shall use:

- Variable 1 Measured TPH concentration in sediment, adjusted for comparability with results from the Spring 2011 quantification. An alternative to using TPH results may be considered by U.S. EPA in consultation with its SSC Group.
- Variable 2 Sediment bulk density.
- Variables 3 Lateral extent of oil-impacted sediment.
- Variables 4 Vertical extent of oil-impacted sediment.
- Variable 5 Density of released oil, adjusted for weathering.

The models shall utilize a spreadsheet to calculate the volume of impacted sediment. Once calculated, the mass of oil impacted sediment shall be determined from the impacted volume and sediment bulk density. These volume calculations shall be performed separately for different sub-regions of the total oil-impacted river system, where individual sub-regions correspond to (1) subareas of the river designated by similar submerged oil category; heavy, moderate, or light, as determined by poling (i.e., poling-delineated areas), and (2) separate vertical layers or strata within those subareas (e.g., defined by similar sediment type). Subsequently, the mass of oil present in each stratum shall be calculated based on a representative concentration value (either a simple summary statistic or the estimated value from a linear statistical model) of laboratoryreported TPH concentrations and total impacted sediment mass. Finally, the volume of submerged oil shall be calculated from an approximation of the density of the weathered crude. The algorithm used in the model shall be as follows:

Gallons of Oil (gal) in stratum j =

{[D_j (inches) * A_j (acres) * P_j * 4,046.86 (m²/acre) * 0.0254 (m/inch) *P_{Sedj} (g/cm³) * 10⁶(cm³/m³) * TPH_j (mg/kg) * 10⁻⁶(kg/mg)] /P_{Oil}(g/cm³)} * 10⁻³(L/cm³) * (0.2642 gal/L) Where:

 A_j = Total Area of Interest (acres)

 $P_j = \%$ of Area of Interest with TPH Concentration (decimal equivalent)

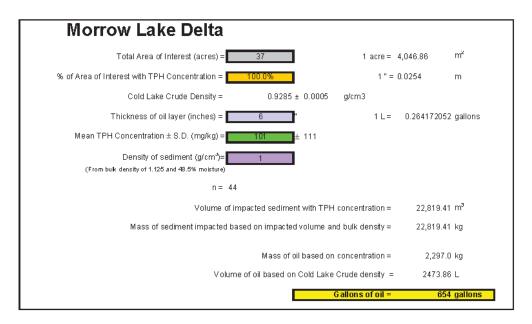
 D_j = Thickness of oil impacted sediment layer (inches)

 $P_{\text{Sed}j} = \text{Dry density} - \text{sediment } (g/\text{cm}^3)$

 P_{Oil} = Density – oil (g/cm³)

 TPH_{j} = Representative concentration (e.g., linear model estimate, arithmetic mean, median, and/or geometric mean) of submerged oil concentration in stratum j (mg/kg) –. Coverage provided for light, moderate, and heavy poling designations with the mean TPH value used to calculate the concentration of each tenth foot interval of the array for sample cores.

Data sources include:


 P_j (% of area of interest with TPH concentration) from poling-delineated areas for "heavy" and "moderate" categories, and either mixing-model or frequency-based analysis for "light" and "none" categories.

 D_j (Depth of oil layer) = from thickness of oil-containing sediments as indicated by analytical chemistry data and/or statistical analysis, and/or supplemental data collected from field sampling.

 $P_{\text{Sed}j}$ (Dry density – sediment) = from stratum mean of estimated bulk density measured in sediment containing submerged oil.

 P_{Oilj} (Density – oil) = from weathering adjustment applied to estimated density of released crude oil, which was assumed to be 0.9285 (g/cm³) <u>http://www.crudemonitor.ca/</u> – 5-year average as defined below.

An example of the model is presented below:

4.5.2.1 Model Architecture

The model shall have an open architecture, whereby it is adaptable and flexible to approximate the amount of oil present in the sediment within specific geomorphic strata, river reaches/lake areas, or broader reaches/lake areas with minimal modifications. It shall be automated and based on the6 specific parameters/variables listed above, or more as directed by the U.S. EPA. Output shall be standardized and list key parameters/assumptions used in the model along with summary statistics and evaluations of uncertainty.

4.5.3 Input Data

4.5.3.1 Variable 1 - Measured TPH Concentration in Bed Sediment

The concentration of submerged oil in the bed sediments as of the fall of 2011shall be estimated using an estimated 100 sediment cores (or other quantity as directed by the U.S. EPA) collected from apparently oil-containing areas of streambed, plus at least 10 additional cores from areas that demonstrated no qualitative indications of oil. Subsequent sediment core collection shall follow the adaptive management principle to assess the submerged oil in the dynamic riverine system. The purpose of the sediment cores shall be to obtain sediment samples which shall be analyzed to evaluate remaining submerged oil in the Kalamazoo River.

Sediment samples from the sediment cores shall be analyzed for TPH that includes DRO and ORO, and other parameters as directed by the U.S. EPA. The total TPH value provides a potential measure of submerged oil present in the sediments. In the absence of specific TPH data for various elevations at a given location, existing TPH data from that location shall be applied to all depth horizons where qualitative evaluation (i.e., UV fluorescence) indicates the presence of oil.

Information regarding location and methodology for sediment core collection is outlined herein related to the hydrodynamic assessment.

Results for TPH and other variables in the model shall be compared between areas delineated by the light, moderate, and heavy poling designations. An analysis of uncertainty shall be performed for all variables in the model, and for the model outputs (volumes of oil) that considers and incorporates all known sources of error and uncertainty. TPH concentrations shall be presented with standard deviations and the statistical confidence interval(s) shall be presented and discussed in accordance with the statistical validation described herein.

4.5.3.1.1 Background TPH

At a total of 36 background sediment sampling locations (collected upstream of the affected portions of the Kalamazoo River, Battle Creek River, and Talmadge Creek), bed-sediment cores have been collected, sampled, and analyzed. Subject to future U.S. EPA approval, the background data may be included in the submerged-oil volume calculator to account for background TPH concentrations and as a comparison to the presumed historical (i.e., pre-release from Enbridge Line 6B at MP 608 in July 2010) TPH present in the portion of the Kalamazoo River affected by the Enbridge 6B incident.

The method for incorporating background TPH is currently being evaluated and may be applied to the Spring 2011 submerged oil quantification; therefore, the same method for incorporating background TPH shall be applied to data collected and used as described herein.

4.5.3.2 Variable 2 - Sediment Bulk Density

As described in the hydrodynamic assessment, bed sediment cores paired with each primary core are being collected in Fall 2011 to determine the sediment bulk density in the Kalamazoo River. Results from these analyses shall be used for quantification of submerged oil as of Fall 2011.

4.5.3.3 Variables 3 and 4 - Lateral and Vertical Extent of Oil-Impacted Sediment

Poling, analytical data, and core logging data shall be analyzed to infer the lateral and vertical boundaries of sediment impacted by submerged oil. The culmination of these factors shall result in a determination of the volume of sediment containing submerged oil, subject to approval by the U.S. EPA.

All determinations for lateral and vertical extent of submerged oil shall extend to locations of "none", and shall not arbitrarily assign an area to the "light" indications category, as was previously performed. As a minimum, the model shall be applied separately to the following three categories: "light", "moderate", and "heavy". The lateral extent of "light" polings shall be determined and mapped similar to the "moderate" and "heavy" categories. Further, categorization and oil-volume modeling by fluvial geomorphic environment types shall also be performed.

This information shall be used in the model to calculate the submerged oil volume from the sediment sample locations.

4.5.3.4 Variable 5 - Density of Released Oil

The density of weathered oil (P_{Oil}) is developed as an adjustment to the assumed density of the crude oil spilled. Based upon a review of Enbridge transportation records and analysis of sampling taken by Enbridge after the pipeline restarted, the release appears to have occurred at or about the time that the latter end of a batch of Western Canadian Select (WCS) was passing through the pipeline near Marshall, Michigan and a batch of Cold Lake (CL) crude had begun.

The composition of the oil released was approximately 77.5% CL and 22.5% WCS. Using this composition (77.5 % CL and 22.5 % WCS), and the 5-yr average density for each (0.9283 g/m³ for CL and 0.9290 g/m³ for WCS from *http://www.crudemonitor.ca/* on August 10, 2011), the estimated combined density for a 77.5 % to 22.5 % mixture would be 0.9285 g/cm³, which is equivalent to the CL 5-year average. As the nature and cause of the release is still under investigation by National Transportation Safety Board, this determination is based on a number of assumptions regarding the nature and timing of the release. The estimated density of oil shall be adjusted for the probable loss of volatile constituents/fractions and any other appropriate weathering effects, and the resulting adjusted density shall be used for oil-volume calculations.

4.5.4 Statistical Evaluation of TPH Data

Sediment TPH data shall be evaluated using empirical and statistical methods to assess data distributions and relationships within TPH concentration data to estimate the submerged oil present within the river system. Only data collected under U.S. EPA and/or MDEQ approved work plans shall be used for this task.

The statistical evaluation shall be used to support the calculation of submerged oil in Talmadge Creek and Kalamazoo River sediment, and shall consist of the following elements:

- Evaluation of the dataset to determine if lithology, depth/thickness, and/or other factors result in specific groupings or populations of data enabling segregation and/or separate statistical evaluation/testing;
- Determining a probability mass function to define the discrete probability distributions of the population(s) identified in the evaluation;
- Calculating interquartile ranges, standard deviation and variance of the populations identified in the evaluation;
- Evaluating the various geomorphic surface types; and
- Developing a statistically-based method for approximating the amount of oil present and confidence interval for this estimate within the Talmadge Creek and Kalamazoo River.

The evaluation shall use collected data in all oil-containing sediment areas (light, moderate, and/or heavy). Depending on the population(s) distributions (i.e., normal vs. not normal or skewed determined by normality tests such as Shapiro-Wilk, Anderson-Darling, or as most appropriate to the dataset), parametric or non- parametric (e.g. Kruskall Wallace, Mann-

Whitney) statistical significance tests shall be conducted, as warranted and as approved by the U.S. EPA. If required based on the outcome of the empirical and/or statistical evaluation, approximation of the amount of oil present and confidence interval for this estimate may vary per river segment, with the total amount of submerged oil being the sum of such individual segments. Descriptive statistics (e.g. mean, median, range, standard deviation, confidence interval) along with quartile plots and other graphical presentations of the data shall be provided.

5.0 OIL RECOVERY

5.1 Submerged Oil Recovery

Submerged oil recovery actions shall be determined by the U.S.EPA FOSC who will consider the results of the studies outlined in this work plan. Potential environmental consequences of implementing specific oil recovery actions shall be evaluated by the U.S. EPA. Evaluations may include considerations of the impacts to the environment of specific remedial actions, such as:

- River bank erosion from boat usage;
- Loss of habitat for aquatic life from large woody debris removal;
- Potential for increased erosion during flood conditions;
- Migration of sediment at an abnormally high rate due to agitation techniques;
- Damage to the benthic community from agitation of the river sediments;
- Injury and death of wildlife due to equipment and boats on the river; and
- Loss of wooded wetland habitat due to excavations.

Submerged oil recovery options that shall be considered by Enbridge include, but are not limited to, the following:

- Dredging of oil-containing sediments;
- Agitation of sediments coupled with oil/sheen collection;
- Installation and maintenance of sediment collection structures/devices; and /or
- No further action.

The need for further active oil recovery shall include an evaluation of ecological considerations, as well as an evaluation of the potential benefits and consequences of active oil recovery, or the lack thereof. This evaluation and decision of adverse ecological risk shall be made solely by the U.S. EPA FOSC following consultation with the U.S. EPA SSC Group.

Submerged oil recovery shall be addressed using a top down approach working upstream to downstream within each of the three defined sections of the river. The first section shall consist of a portion of the river starting at the confluence of the Talmadge Creek and the Kalamazoo River and ending at the Ceresco Dam. The second section begins at the Ceresco Dam and ends at the Battle Creek impoundment. The final section runs from the Battle Creek impoundment to the Morrow Lake Dam.

5.1.1 Winter 2011 Submerged Oil Recovery Actions

Over the winter months, passive recovery locations for submerged oil activities shall be

evaluated by the SOSG. Passive recovery techniques shall be used to collect submerged oil mobilized by natural river flow conditions. The identification of these locations shall be informed by the Hydrodynamic Model, Late Summer Reassessment 2011 results, historic poling data, and fluvial geomorphic observations. Structures designed for collection of submerged oil shall utilize the dynamic nature of the river while minimizing the ecological impact of recovery activities on the river system. Additional discussion of the evaluation, installation, and maintenance of sediment collection devices and locations is provided in Section 7.

Active recovery of submerged oil may occur via the use of approved techniques at select locations as determined by the SOSG, OSCAR, and other advisory groups identified by U.S EPA.

5.1.2 Spring/Summer 2012 Submerged Oil Recovery Actions

Active and/or passive submerged oil recovery actions shall occur throughout Spring/Summer 2012 based on the results of Spring 2012 reassessment activities, SSC Group and SOSG recommendations to the FOSC, and other factors. Submerged oil recovery activities using agitation techniques shall be conducted only while water and sediment temperatures are conducive to submerged oil recovery as determined through the results of the temperature effects studies described in Section 4, and shall be based on techniques presented in the approved Summer 2011 Strategic Work Plan and Dredging Supplement, or approved alternate means and methods. Although work may be conducted pursuant to the U.S. EPA Order, it shall not obviate the need to comply with all federal, state and local permitting, monitoring, and other requirements.

Addenda to this work plan outlining specific active and passive submerged oil recovery locations, activities, equipment, and procedures shall be submitted prior to implementation. Work plan addenda shall take into account all potential environmental impacts as evaluated by the SOSG and SSSC Team when outlining proposed activities.

5.2 Overbank and Shoreline Oil Recovery

Overbank and shoreline oil recovery actions shall be conducted based on OSCAR Group evaluations of reassessment results, location-specific recovery work plans submitted to the U.S. EPA, and based on data obtained from expedited remedial investigation activities pursuant to MDEQ approved work plans.

If the FOSC determines that additional recovery actions at impacted overbank and shoreline locations shall be addressed under the U.S. EPA Order, the appropriate permits shall be obtained prior to the commencement of oil recovery actions. Permit compliance requirements such as water quality monitoring shall be conducted pursuant to applicable SOPs

One or more of the approved overbank and shoreline oil recovery techniques shall be implemented to recover oil, sheen, and impacted soils. The selection of the technique or techniques for each impacted area shall consider: accessibility; ecological sensitivity and benefit/consequence; type of oil impact present; depth of oil in soil; and other factors.

Approved oil recovery techniques for impacted floodplain areas are presented in the *Overbank Oil Recovery SOP* (included as Attachment E to this Work Plan). Other overbank oil recovery procedures and requirements shall follow those presented in Sections 2.0 and 3.0 of the approved Summer 2011 Strategic Work Plan, or via alternative procedures and methods approves by U.S. EPA.

6.0 FALL 2011, WINTER AND SPRING 2012 CONTAINMENT PLAN

The objectives of the containment plan for Fall 2011 and Winter/Spring 2012 are to implement a strategy in the Kalamazoo River/Morrow Lake Delta/Morrow Lake to prevent further migration of oil sheen and/or submerged oil into Morrow Lake and to prevent migration of oil sheen and/or submerged oil from Talmadge Creek into the Kalamazoo River.

Considerations included in accomplishing these objectives are:

- Personnel and public safety;
- Limit impact to downstream receptors such as culverts, bridge structures, and dams in the river;
- Removal of surface containment features prior to winter freeze up in an efficient manner, particularly in the Morrow Lake Delta and Morrow Lake;
- Development, installation, and maintenance of a submerged oil containment plan to enhance sedimentation in the Morrow Lake Delta, and to control further migration of submerged oil into Morrow Lake and potentially over the Morrow Lake Dam.
 Submerged oil containment measures may be implemented at other areas in the Kalamazoo River based on results of Hydrodynamic Modeling;
- Manage any winter containment sites that are left in place; and
- Installation of Spring 2012 containment features according to an addendum to this Work Plan outlining the specific Spring 2012 Containment Plan.

Containment will be removed during Fall 2011on a priority basis and in a controlled systematic manner under the direction and approval of U.S. EPA. Containment deployment in Spring 2012 will be based on weather and site conditions, predictive modeling of Spring submerged oil work sites, and at the direction and approval of U.S. EPA.

This containment plan is based on the current strategies that are to be implemented in the Fall 2011 and Winter/Spring 2012 work seasons. The identified containment removal and deployment strategies may be modified if any changes in the work plan take place based on weather conditions, spring reassessment findings, river characteristics, results of Hydrodynamic Assessment components as detailed in Section 4.2, presence of surface or subsurface oil residuals, or any other factor that could cause a change in the Work Plan.

6.1 Fall/Winter Containment Removal Procedure

Containment removal will be executed in a controlled manner at the recommendation of the Containment Branch and the direction and approval of U.S. EPA. Visual monitoring of sediment and sheen levels downstream of the containment during containment removal will be conducted by field inspectors and from routine over-flights. If visual levels of sediment or sheen are noted during the observations, the conditions will be noted and sheen collection will be performed using sheen sweep boat(s). The addition of temporary downstream containment may be required.

Containment approved for removal shall be decommissioned as follows:

- Non-impacted debris accumulated in the retention area of the boom shall be collected and properly disposed. Residual sheen in the contained area shall be removed with a sorbent sweep. Boom determined to be collecting new sheen shall not be removed without prior approval from U.S. EPA.
- The lines securing the downstream end of the containment shall be released starting with the shoreline protection. The retention area line shall then be slowly released allowing the containment to settle onto the upstream anchor. If excessive levels of sediment or sheen are noted the shoreline retention line can be re-secured to allow them to settle out.
- Any sediment curtain or X-Tex attached to the boom shall then be cut free and loaded into boats and taken for disposal.
- Boom shall be towed to the nearest boat launch where it shall be loaded directly from the water into roll-off bins. Boom shall be taken for decontamination and repairs. Boom shall then be sorted and properly stored for winter to prevent dry rot and UV damage. Any boom that is too damaged shall have the metal fittings removed and then be disposed.

6.2 Removal Priority and Scheduling:

Priority sequence for removal is as follows:

- Removal of containment associated with submerged oil sites;
- Removal of control point containment; and
- Removal of protective containment points associated with O&M sites.

This sequence is based on several factors as listed below:

- Areas with the potential to have ongoing sheen issues should be removed last to prevent additional impact to downstream receptors.
- Control points should be left in place until submerged oil operations are completed.
- Enbridge shall continue consultation with STS Utilities regarding placement and removal schedules for all containment between Morrow Lake and the Delta (35th Street to

Morrow Lake Dam).

- O&M locations should be removed as late as reasonably possible. O&M sites that are in sheltered locations, where ice damage is not anticipated, may be left in place and monitored through the winter.
- Containment shall be removed from O&M sites that have received determination as being consistent with the U.S. EPA Order.
- The presence of frazil ice or dislodged sheet ice flowing within the main river channel.

The schedule for the containment removal plan shall be based on the above priority sequence. The implementation of the containment removal plan is largely dependent on fluctuating weather and river conditions and may be delayed by a down turn in either of these factors. If, due to fluctuations in the weather, the potential for ice or debris dams increases once containment removal has begun, removal activities shall be limited. Additionally, any remaining boom shall be monitored for a potential loss of integrity so that corrective actions can be taken.

6.2.1 Submerged Oil Containment Removal Schedule

Submerged oil containment shall be removed as sites after the U.S. EPA has directed Enbridge to discontinue submerged oil recovery activities due to low water and sediment temperatures and has approved the removal. Removal of submerged oil containment sites shall generally be conducted following the top down approach.

6.2.2 Control Point and Protective Containment Removal Schedule

Control point and protective containment removal shall begin after the completion of submerged oil activities, with the approval of U.S. EPA Operations. High priority sites in the Kalamazoo River, Delta, and Lake that shall require further evaluation for removal are:

- MP 36.6N;
- MP 36.8 N;
- Delta Channel 6;
- MP 37.25; and
- MP 37.75.

Enbridge shall remove all surface containment between 35th Street Bridge and Morrow Dam by November 18, 2011 as per the request of STS Utilities or as otherwise negotiated at the direction of U.S. EPA. The confluence containment point (MP 2.25) shall remain in place throughout the winter. The projected order of removal shall be:

- 1. MP 6.0;
- 2. MP 10.8;

- 3. D 3 (MP 19.25);
- 4. C 6 (MP 15.25);
- 5. E 4.5 (MP 38.25);
- 6. E 4.75 (MP 38.25);
- 7. E 6 (MP 39.75);
- 8. Ceresco (MP 5.75);
- 9. MP 15.75;
- 10. E 4 (MP 37.75); and
- 11. E 5 (MP 38.25).

This sequence is subject to change dependent on site conditions, weather, operational activities and approval or direction from U.S. EPA.

6.2.3 O&M Containment Removal Schedule

O&M containment shall be removed at the direction of the U.S. EPA. Removal of the O&M containment sites shall generally be from upstream to downstream. O&M sites that do not receive a determination as consistent with the U.S. EPA Order will be evaluated by the U.S. EPA for potential to leave containment in place during the winter months.

6.2.3.1 Fall 2011

Site monitoring shall be conducted during Fall 2011 utilizing boats, as well as land and air based observations. During monitoring, crews shall observe river characteristics such as freezing, movement of flowing ice, debris movement (including vegetation/debris dislodged during fall vegetation die back and accumulated organic matter), and visual checking for the presence of surface oil and/or sheen. The information collected during these activities shall be utilized for determining the priority sequence and timing of containment removal.

6.2.3.2 Winter 2011/2012

Site monitoring shall be conducted during the winter, utilizing boats, as well as land and air based observation. During monitoring, sites shall be evaluated for ice buildup, debris accumulation and containment integrity as well as visual checking for the presence of surface oil and/or sheen. The information gathered during monitoring shall be utilized for determining required boom maintenance and adjustment.

6.2.3.3 Spring 2012

Site monitoring shall be conducted during the spring months, utilizing boats as well as land and air based observation. During monitoring, crews shall observe river characteristics such as freezing, movement of flowing ice, debris movement (including vegetation/debris dislodged during spring runoff and accumulated organic matter), and visually checking for the presence oil

and/or sheen. The information collected during these activities along with the Spring 2012 Containment Plan shall be utilized for determining the priority sequence and timing of containment deployment.

6.2.4 Submerged Oil Containment to Prevent Migration of Oil Past Morrow Lake Dam

As directed by the U.S. EPA in a letter to Enbridge (dated November 4, 2011), Enbridge shall prepare a plan for preventing oil from migrating past the Morrow Dam during the Winter 2012. This plan, once approved by the U.S. EPA shall be incorporated as an addendum to the CWP2012. The Plan for Preventing the Migration of Oil Past the Morrow Lake Dam shall describe in detail the necessary actions that Enbridge will take to contain and prevent the migration of oil, sheen, submerged oil, and oil-containing sediments past/downstream of the Morrow Lake Dam. The plan shall describe methods for enhancing submerged oil deposition in the Morrow Lake Delta and shall include options that decrease river velocities and promote and enhance deposition such as installation of bed structures and adjusting the level of the Morrow Dam during flood events to reduce velocities in the Delta and promote deposition and reduce sediment migration.

6.2.5 Winter Maintenance Procedure

Throughout winter operations all locations requiring boom, if any, shall be monitored. Any site that becomes damaged or dislodged by ice or other causes shall be removed, replaced or repaired depending on the potential for downstream impacts versus the potential for additional damage as approved by the U.S. EPA. All locations shall be monitored on a weekly basis to ensure their integrity.

6.2.6 Spring 2012 Containment Plan

6.2.6.1 Control Point Booming

Control point booming is the use of containment boom, curtain boom, silt fence and/or X-Tex boom to prevent the downstream migration of surface and/or subsurface oil. The control point booming, when properly deployed, shall aid in facilitating the recovery of migrating surface and subsurface oil. There are several booming strategies that shall be used in control point booming, including the following:

• Shore to Shore Booming: This strategy involves a single span of boom that is deployed to cover the entire width of the river. The upstream end of the boom is secured to an anchor point on the upstream bank. Hand lines or in stream anchors are used to maneuver the boom at the appropriate angle (dependent on current velocity) down to a recovery area. A small section of boom is then deployed along the downstream shoreline to prevent impact to the river bank (shoreline protection).

- Gate Booming (also referred to as "Open Chevron"): This strategy involves two segments of boom that are deployed across the width of the river to allow for vessel traffic up and down the river. The upstream ends of both booms are secured in an overlapping position using in stream anchors. Hand lines or in stream anchors are used to maneuver the boom at the appropriate angle (dependent on current velocity) down to a recovery area. A small section of boom is then deployed along the downstream shoreline to prevent impact to the river bank (shoreline protection).
- Cascade Booming: The cascade boom system is the deployment of multiple booms across the width of the river to allow for vessel traffic up and down the river or to reduce the strain that current places on individual spans of boom. The upstream boom is secured to the shore at its upstream point. Using hand lines or in stream anchors, the boom is maneuvered at an appropriate angle (dependent on current velocity) to a point in the river where it is secured with an in stream anchor. Each additional segment is then placed downstream in an overlapping position and secured with in stream anchors. The last span of boom is secured on its downstream end to the shore. A small section of boom is then deployed along the downstream shoreline to prevent impact to the river bank (shoreline protection).
- Chevron Booming: The chevron boom system is a single span of boom that is deployed to deflect oil around a sensitive area or to recovery points on both banks. The center of the boom is secured in the middle of the channel using an in stream anchor. Hand lines or in stream anchors are used to maneuver both of the downstream booms at appropriate angles (dependent on current velocity) down to recovery areas. Small sections of boom are then deployed along the downstream shoreline to prevent impact to the river bank (shoreline protection).

Oil collected by control point booming shall be recovered using either hand skimming or by use of absorbent materials. Control point booming location sites shall be selected based on the following criteria:

- River characteristics (current speed, depth, width and bottom material);
- Site access (ease of oil recovery and maintenance);
- Suitable anchor points;
- Distance to upstream control points;
- Distance to upstream sources of impact (identified impacted depositional areas and impacted overbank areas); and
- Access control to prevent impact to the public.

Currently, control points have been identified as likely locations for installation of surface containment. The number of control points to be deployed shall be dependent on information

gathered during spring monitoring activities, the Spring 2012 reassessment, and potential river reopening activities. The likely control point locations for Spring 2012 are:

- MP 2.25 (confluence of Talmadge and Kalamazoo);
- MP 5.75 (Ceresco Dam);
- MP 15.75, C 6 (Battle Creek Dam); and
- Morrow Lake Delta and Morrow Lake.

Due to the increase in water levels associated with spring runoff, all control points shall be installed at a greater angle. This shall lessen the force applied to them by the increased current velocity and reduce the risk of containment failure.

Subsurface containment may also be installed based on the monitoring and reassessment activities. The locations of these sites shall be based on the observations made by the monitoring team as well as the locations of any identified subsurface concerns.

All control points shall be monitored for ice buildup. If there is significant ice buildup, the boom shall be released to prevent an unsafe condition or uncontrolled containment failure.

6.2.6.2 Sediment Trap Containment

During winter operations, engineered sediment traps (passive sediment collectors) may be installed within the Kalamazoo River as detailed in Section 7. During the Spring and Summer 2012 seasons, dependent on site conditions and the presence of surface or subsurface oil, additional containment shall be installed immediately downstream of each sediment trap if directed by the U.S. EPA. This containment, if necessary, would potentially consist of surface and subsurface containment.

6.2.6.3 Protective Containment

Protective containment is the use of surface and subsurface containment to prevent impact to a sensitive area or to prevent impact to the river from a small impacted area. Containment is deployed between a source of impact and the selected area or river to shield the area from impact. Protective containment can also be used to isolate impacted areas until recovery methods have been completed and regulatory sign off has been received. The containment shall usually be deployed:

- At the mouth of an inlet;
- Around the entire area; and
- In a chevron (see control point booming) configuration upstream of the area.

The selection of locations for protective containment shall be based on the following criteria:

- Areas that have the potential to cause impact to downstream receptors; and
- Areas of significant ecological value.

Deployment at these locations will be dependent on information gathered during monitoring activities and may vary pending the results of those activities. Additional areas may be added based on inspection results and the identification of unknown areas of impact.

6.2.6.4 Oil Recovery

Oil recovery involves the removal of oil from the surface of the water. All containment locations shall be monitored for the accumulation of oil and impacted debris. When identified, this material shall be recovered and disposed of according to the accepted waste handling practices. Several recovery methods are listed below but are not limited to:

- Hand Skimming: Hand skimming is the removal of oil by physical labor. Personnel shall utilize hand tools such as dip nets, strainers, and pitchforks to lift the oil and debris out of recovery areas and place it into a container for disposal.
- Rotary Skimming: Rotary skimming is the removal of oil by a mechanical rotary skimmer. There are several types of rotary skimmers including drum, mop skimmers and brush skimmers. All rotary skimmers work by rotating a surface with oil adhering qualities. The oil is then mechanically removed from the surface and collected into a container for disposal.
- Vacuum Truck: Utilizing a vacuum unit to remove oil or impacted sediment out of a containment area.

Due to the low volume of oil expected to accumulate during operations, hand skimming shall be the preferred method of oil recovery.

6.3 Deployment Priority and Scheduling:

Priority sequence for deployment is as follows:

- Deployment of surface containment from downstream to upstream;
- Deployment of protective containment at areas of high ecological value;
- Deployment of protective containment from upstream to downstream; and
- Deployment of submerged oil containment (not including submerged oil work sites) from downstream to upstream.

The schedule for the Spring 2012 containment plan shall be based on the above priority sequence. The deployment of containment in spring conditions is largely dependent on fluctuating weather and river conditions and may be delayed by either of these factors. Due to the potential for the formation of ice and or debris dams, booming activities shall be triggered by the absence of the potential for migration of ice and or debris to downstream areas. If, due to fluctuations in the weather the potential for ice or debris dams increases once deployment has begun, booming activities may be limited. Additionally, any deployed boom shall be monitored for a potential loss of integrity so that corrective actions can be taken.

During all work in the river, special consideration shall be given to the following:

- The safety of personnel working in, around, and on the water,
 - Boat traffic shall be kept to a minimum to reduce the risk to workers;
 - If personnel are working in the water from the shoreline a tag line shall be required for any work completed in water greater than waist depth; and
 - Boats working in the vicinity of containment shall do so under a no wake restriction with the exception of crossing the boom. Boom crossing shall be done on step at the top end of the boom in the channel marked by marker buoys. Airboats shall cross the boom off step.
- The safety of the public.
 - All sites that are accessible to the public shall be clearly marked with signage warning of the dangers associated with site.

7.0 PASSIVE SEDIMENT COLLECTION AREAS AND DEVICES

Installations of passive sediment collection devices, or sediment traps, in key areas can help to more efficiently recover remaining submerged oil. Sediment traps shall be designed to take advantage and enhance existing flow and depositional patterns in the river. They may be standalone traps, a series of traps, or a combination of flow directing techniques and trap or series of traps. Results from the 2011 LSR and mid- and post- recovery poling activities shall help guide locations. The hydrodynamic model shall be used to help guide selection of locations and test the designs.

Geomorphic settings along the active channel and off channel areas of the Kalamazoo River where lowered velocities promoted deposition of submerged oil globules and oil-containing sediment during low flows and floods were identified through repeated poling activities, submerged oil recovery operations, and the OSCAR process. Some settings, such as riparian wetlands, oxbows, and flood chutes receive deposition during floods. In the active channel, areas that may be scoured during floods are depositional during low flows. Ice jams also play a factor in determining flow obstructions during winter and spring melts. The location and function of the depositional settings change depending on whether the river is in flood stage or sustained low flow. Oil deposits in off channel/overbank areas from the July 2010 flood may later become sources of oil to channel margins during subsequent floods or as seeps if hydrologically connected during low flows.

The development, design, and location of the enhanced sediment collection techniques shall begin in Fall 2011 and continue into 2012 in consultation with U.S. EPA and USGS representatives. Sediment traps may be installed during the winter months under frozen conditions if appropriate. Structures shall be designed, permitted, and installed for longer term maintenance and presence. Devices will not harm benthic organisms, mussels, fish, amphibians, turtles, mammals, or birds (including diving ducks) nor will they cause a barrier to fish passage. Devices may not obstruct boat traffic or be a navigation hazard. Devices may provide habitat diversity and bank protection.

Prioritization of locations for the sediment collection techniques shall be guided by the following:

- Prone to re-deposition of submerged oil after 2011 recovery;
- Close proximity to existing access paths for cleanout and monitoring;
- Upstream end of major depositional areas;
- Upstream of sensitive habitat areas;
- Safety of the public and workers; and

• Utility for eventual habitat improvement.

Preliminary results from the 2011 LSR poling indicate the uneven distribution of remaining submerged oil along the Kalamazoo River from MP 2.25 to MP 29 (Figure 7.1). Reaches with significant remaining moderate and heavy accumulations are MP 4 to 6, MP 10 to 11, MP 14 to 15, MP 18 to 20, and MP 21 to 22. Significant accumulations are present downstream of MP 29 but were not included in the 2011 LSR poling. Sediment collection areas within and immediately downstream of these reaches will help keep oil from recontaminating areas that were agitated in 2011.

Passive sediment collection devices for areas with "light" indications of submerged oil sheen/globules may be different than those areas with moderate and heavy indications of submerged oil sheen/globules.

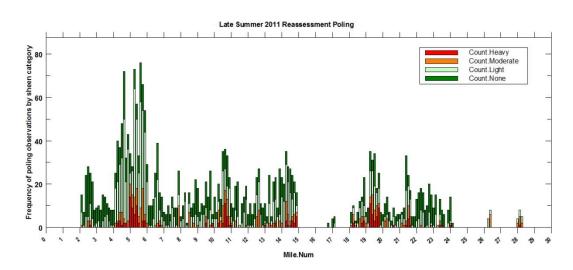


Figure 7.1. Results from the 2011 LSR poling, showing frequency of occurrence of none, light, moderate, and heavy oil indications.

Potential examples of active channel locations (not all inclusive):

- Immediately downstream of Talmadge Creek confluence, tributary fan;
- Downstream of Talmadge Creek, including:
 - o Left channel margins at MP 2.35 South, MP 2.80 South
 - o Right side channel at MP 3.25 R1
- Upstream of Ceresco dam including:
 - o Transverse bar at MP 4.15 South;
 - Upstream side of left tributary fan at MP 4.3 South;
 - o Mid-channel or right at MP 5.25 North, channel widening;

- Right upstream side railroad embankment MP 5.55 North; and
- Left side of impoundment at MP5.75 South.
- Downstream of Ceresco dam including:
 - Left side channel at MP 7.75;
 - Mid-channel longitudinal bar at Historic Bridge Park at MP 9.5;
 - Left side channel at MP 10.75; and
 - Right side channels at MP 10.85 and MP 12.5.
- Upstream of Battle Creek Mill Ponds, above sensitive habitats
 - MP 13.8 South left channel margin;
 - MP 14.25 South channel margin;
 - MP 14.35 North right channel margin;
 - MP 14.75 right side channel; and
 - MP 14.8 South left downstream of island.
- MP 19.15 South
- MP 19.25 South
- MP 19.6 South
- Meander cutoff/oxbow at MP 21.5
- Side channels at MP 36.25A, 36.25C and 36.50T
- Meander cutoffs and flood chutes in the vicinity of MP 38.3 38.5
- Upstream end of Morrow Lake Delta Delta A, Delta B, and Delta H
- Morrow Lake Delta Delta Z, Delta EE, Delta O
- Morrow Lake Northeastern shoreline

Additional locations in off channel /overbank areas shall be identified that are likely to capture oil-containing sediment during floods.

Potential designs for the sediment traps include:

- Backwater and side-channel excavations, hydraulic dredge, or vacuum. (Examples of traps include *http://lacoast.gov/reports/gpfs/MR-12.pdf* for example of Mississippi River trap design; or *http://www.streamsidessystems.com/Environmental/* for example of commercially available traps for small channels.)
- Flow training devices used in stream restoration designs that enhance deposition (used for

bank and channel stabilization, shallow-water habitat creation, and for channel training).

- Partial closure of secondary channels;
- Multiple roundpoint structures;
- Notched wing dikes;
- o Dike fields;
- Chevron dikes (may provide needed sand bar habitats as well as enhanced submerged oil deposition, similar to what has been designed for Upper Mississippi River habitat improvements); and
- o Bioengineered log jams and dikes.
- Excavations and/or dredging.

A work plan addendum shall be provided to U.S. EPA and USGS representatives that outlines the location and design of each sediment trap. The addendum should specify any additional field investigation or modeling work deemed necessary to complete the location evaluation and/or the design, and should include a schedule for completing the evaluation and design tasks.

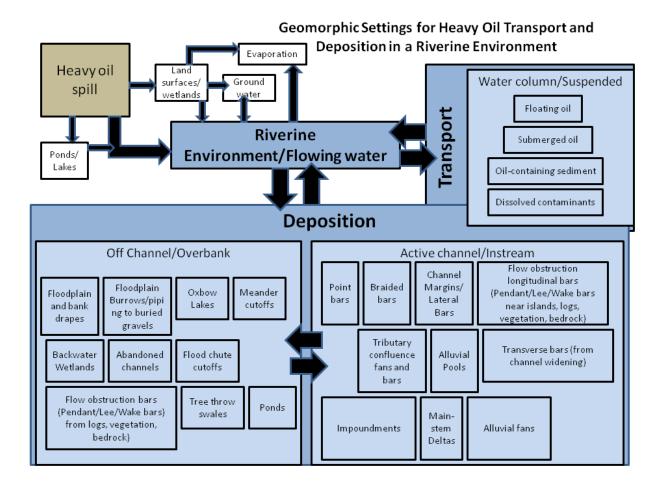
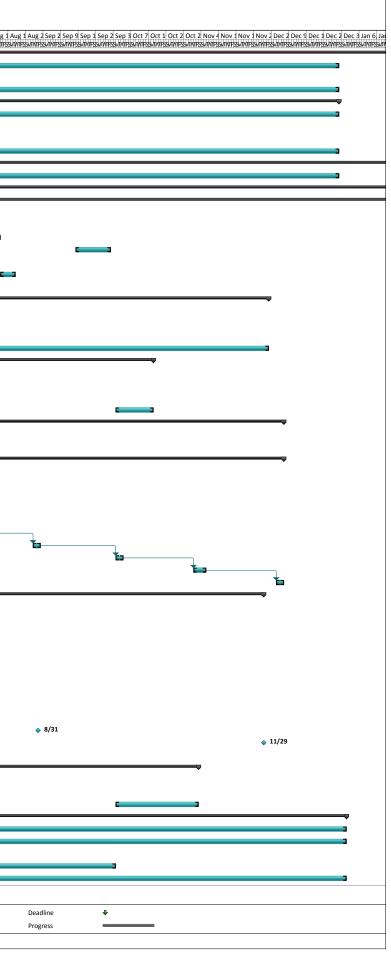


Figure 7.2 Geomorphic Settings for Heavy Oil Transport and Deposition in a Riverine Environment

8.0 SCHEDULE

A schedule is presented (Attachment F) for general scheduling purposes only and shall be modified based on numerous factors including river conditions, access, permitting, reprioritization of areas and U.S. EPA approval. Updates to the schedule shall be ongoing throughout the project and shall be presented to the U.S. EPA and MDEQ as needed to indicate significant change.


9.0 REFERENCES

- AECOM, 2011, Kalamazoo River flood inundation mapping, hydraulics: Grand Rapids, Mich., AECOM unpublished Technical Memorandum (June 2011), 9 p.
- Bent, P.C., 1971, Influence of surface glacial deposits on streamflow characteristics of Michigan streams: U.S. Geological Survey Open-File Report 72-34, 37 p.
- Conaway, J.S., and Moran, E.H., 2004, Development and calibration of a two-dimensional hydrodynamic model of the Tanana River near Tok, Alaska: U.S. Geological Survey Open-File Report 2004-1225, 13 p.
- Dorr, J.A., Jr., and Eschman, D.F., 1970, Geology of Michigan: Ann Arbor, Univ. of Michigan Press, 485 p.
- Enbridge Energy, 2010, Line 6B incident, Marshall, Michigan—Conceptual site model: Submitted to U.S. EPA, Nov. 30, 2010, 54 p.
- Hoard, C.J., Fowler, K.K., Kim, M.H., Menke, C.D., Morlock, S.E., Peppler, M.C., Rachol, C.M., and Whitehead, M.T., 2010, Flood-inundation maps for a 15-mile reach of the Kalamazoo River from Marshall to Battle Creek, Michigan. : U.S. Geological Survey Scientific Investigations Map 3135, 6 p., 6 sheets, scale 1:100,000.
- Holtschlag, D.J., and Hoard, C.J., 2009, Detection of conveyance changes in St. Clair River using historical water-level and flow data with inverse one-dimensional hydrodynamic modeling: U.S. Geological Survey Scientific Investigations Report 2009–5080, 39 p.
- Kalamazoo River Public Advisory Council, 2000, The Kalamazoo River—Beauty and the Beast—Remedial and preventative action plan for the Kalamazoo River watershed area of concern: [Portage, Mich.] Kalamazoo River Watershed Council, 56 p.
- McCabe, G.J., and Wolock, D.M., 2010, Long-term variability in Northern Hemisphere snow cover and associations with warmer winters: Climatic Change, v. 99, p. 141-153.
- Milly, P.C.D., Dunne, K.A., and Vecchia, A.V., 2005, Global pattern of trends in streamflow and water availability in a changing climate: Nature, v. 438, p. 347-350.
- National Climatic Data Center, 2002, Monthly station normals of temperature, precipitation, and heating and cooling degree days, 1971-2000, Michigan: Asheville, N.Car., National Climatic Data Center, Climatography of the United States, no. 81, part 20, 33 p.
- Omernik, J.M. 1987. Ecoregions of the conterminous United States: Annals of the Association of American Geographers 77(1):118-125. 1 pl., scale 1:7,500,000.

- U.S. Army Corps of Engineers, 2002, HEC-RAS, River Analysis System, hydraulic reference manual, version 3.1: Davis, Calif., U.S. Army Corps of Engineers, Hydrologic Engineering Center, 350 p.
- U.S. Environmental Protection Agency, 2007, Level III ecoregions of the Continental United States: Corvallis, Ore., U.S. EPA National Health and Environ. Effects Research Lab., 1 sheet, scale 1:7,500,000, accessed April 20, 2010, at http://www.epa.gov/wed/pages/ecoregions/level_iii.htm.
- Western Michigan Univ. (WMU), 1981, Hydrogeologic atlas of Michigan—Hydrogeology for underground injection control in Michigan: Kalamazoo, WMU, 35 pls.
- Wolock, D. M., and G. J. McCabe, 1999, Effects of potential climatic change on annual runoff in the conterminous United States: J. Am. Water Resour. Assoc., v. 35, p. 1341–1350.

Attachment F Schedule

0			TESSVTWTESSVTWTESSVTWTESSVTWTESSVTWTESSVTWTESSVTWTESSVT	
	Consolidated Work	Sat 10/1/11 Mon 6/29/1	5 🤟	
	Scientific Support Coordination Group with FOSC	Mon 11/28/11 Fri 12/28/12		
	OSCAR Process	Mon 11/28/11 Fri 12/28/12		
	Assessment	Mon 11/28/11Fri 12/28/12		
	Overbank	Mon 11/28/11 Fri 12/28/12		
_	Spring 2012 Overbank Reassessment	Sun 4/1/12 Fri 5/4/12	_	
	Spring 2012 Submerged Oil Reassessment	Sun 5/13/12 Fri 6/15/12		
_	Data Analysis	Mon 11/28/11 Fri 12/28/12		
	Submerged Oil Characterization	Sat 10/1/11 Mon 6/29/1		
	Submerged Oil Science Group Consultation	Mon 11/28/11 Fri 12/28/12		
_	Hydrodynamic Assessment	Mon 11/28/11Mon 6/29/1		÷
_	Morrow Lake Polling	Tue 5/1/12 Mon 6/29/1		· · · · · · · · · · · · · · · · · · ·
_	Poling Morrow Lake	Tue 5/1/12 Tue 5/15/12		
	Flood #1 (>2-year event)-Assumed	Mon 6/15/15 Mon 6/29/1		
_	Poling Morrow Lake	Wed 8/1/12 Wed 8/15/12	2	
	Flood #X (> 2-year event)-Assumed	Sat 9/15/12 Fri 9/28/12		
_	Poling Downstream of Morrow Lake	Wed 5/16/12 Sat 5/19/12		
	Poling Downstream of Morrow Lake	Thu 8/16/12 Tue 8/21/12		
	Cohesion Erodability Testing	Mon 11/28/11 Fri 12/2/11		
)	Water Velocity Profiling	Mon 11/28/11Fri 11/30/12		
	Fall 2011	Mon 11/28/11 Fri 3/30/12	_	
2	Spring 2012	Sun 4/1/12 Thu 5/31/12		
	Summer 2012	Fri 6/1/12 Fri 7/27/12		
•	Fall 2012	Wed 8/1/12 Fri 11/30/12		
5	Sediment Characterization Coring/Analyses	Sat 10/1/11 Mon 10/15/		
5	Fall 2011	Sat 10/1/11 Wed 11/30/2		
7	Spring 2012	Sun 4/1/12 Sun 4/22/12		
3	Summer 2012	Fri 6/1/12 Fri 6/29/12	_	
9	Fall 2012	Mon 10/1/12 Mon 10/15/		
2	Sediment Transport/Walling Tubes	Sat 10/1/11 Thu 12/6/12		
L	Set Walling Tubes	Sat 10/1/11 Tue 11/15/1	1	a
2	Reinstall Walling Tubes Post Ice-out	Thu 3/15/12 Fri 3/30/12		
3	Inspection & Sampling	Mon 4/23/12 Thu 12/6/12		₽
1	Monthly Sampling (minimum)	Mon 4/23/12 Wed 4/25/12		
	Monthly Sampling (minimum)	Mon 4/23/12 Wed 4/25/12		
5	Monthly Sampling (minimum)	Mon 4/23/12 Wed 4/25/12		
7	Monthly Sampling (minimum)	Thu 5/24/12 Mon 5/28/12		
	Monthly Sampling (minimum)	Tue 6/26/12 Thu 6/28/12		
•	Monthly Sampling (minimum)	Fri 7/27/12 Tue 7/31/12		l l l l l l l l l l l l l l l l l l l
)	Monthly Sampling (minimum)	Wed 8/29/12 Fri 8/31/12		
1	Monthly Sampling (minimum)	Mon 10/1/12 Wed 10/3/12		
2	Monthly Sampling (minimum)	Thu 11/1/12 Mon 11/5/12		
;	Monthly Sampling (minimum)	Tue 12/4/12 Thu 12/6/12		
ł	Hydrodynamic Modeling	Tue 11/1/11 Thu 11/29/1		
_	Compilation of Time-series Data Sets	Tue 11/1/11 Wed 11/30/2		
	Full-domain Model Configuration	Tue 11/1/11 Wed 12/7/12		
·	Model Calibration	Thu 12/8/11 Wed 12/14/2	1	
3	Sensitivity Testing	Wed 12/14/11 Fri 1/6/12		
	Quarterly Update Report Due	Sat 1/14/12 Sat 1/14/12		\$ 1/14
	Develop Scenarios/Various Simulations	Tue 1/17/12 Sat 2/11/12		
	Completion of Simulation	Sat 2/11/12 Thu 2/23/12		
	Run Modified Scenarios	Fri 2/24/12 Thu 3/8/12		
	Quarterly Update Report Due	Sun 3/25/12 Sun 3/25/12		♦ 3/25
	Quarterly Update Report Due	Fri 6/22/12 Fri 6/22/12		♦ 6/22
5	Quarterly Update Report Due	Fri 8/31/12 Fri 8/31/12		
5	Quarterly Update Report Due	Thu 11/29/12 Thu 11/29/1		
	Temperature Effects Study	Mon 11/28/11 Thu 12/22/1	1	
3	Submerged Oil Quantification	Sat 10/1/11 Fri 11/2/12	ψ	
	Fall 2011	Sat 10/1/11 Mon 10/31/2	1 2	
	Spring 2012 (pre-recovery)	Tue 5/1/12 Mon 6/4/12		
	Fall 2012 (post-recovery)	Mon 10/1/12 Fri 11/2/12		
	Oil Recovery	Mon 11/28/11 Mon 12/31/	1	Ψ
	Sediment Trap Installations	Mon 11/28/11 Mon 12/31/2	1	
-	Sediment Trap O&M	Mon 11/28/11 Mon 12/31/2	1	
	Overbank	Mon 11/28/11 Mon 4/30/12		C
5	Submerged Oil	Tue 5/1/12 Sun 9/30/12		
7	Containment	Sat 10/1/11 Mon 12/31/2		
			1 I	

