

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION III

STATEMENT OF BASIS

SOLVAY USA INC. (Formerly RHODIA INC.) 2300 SOUTH PENNSYLVANIA AVENUE MORRISVILLE, PENNSYLVANIA

EPA ID NO. PAD002336410

Prepared by
Office of Pennsylvania Remediation
Land and Chemicals Division
June 2016

Table of Contents

Section 1: Introduction	1
Section 2: Facility Background	1
Section 3: Summary of Environmental Investigations	4
Section 4: Corrective Action Objectives	
Section 5: Proposed Remedy	9
Section 6: Evaluation of Proposed Remedy	11
Section 7: Financial Assurance	14
Section 8: Public Participation	
Section 9: Index to Administrative Record	16

List of Acronyms

AOC	Areas of Concern
AR	Administrative Record
AST	Above Ground Storage Tank
COI	Contaminants of Interest
EPA	Environmental Protection Agency
FDRTC	Final Decision Response to Comments
GPRA	Government Performance and Results Act
MCL	Maximum Contaminant Level
RAO	Remedial Action Objective
RCRA	Resource Conservation and Recovery Act
RSL	Regional Screening Level
SB	Statement of Basis
UST	Underground Storage Tank
VOC	Volatile Organic Compound

Section 1: Introduction

The United States Environmental Protection Agency (EPA) has prepared this Statement of Basis (SB) to solicit public comment on its proposed remedy for the Solvay USA Inc. (Solvay) Morrisville Plant located in Morrisville, Pennsylvania (hereinafter referred to as the Facility or Site). EPA's proposed remedy for the Facility consists of the following components: 1) Installing a vegetated soil cover over Area 5; 2) Installing a permeable liner and one foot of clean fill over the settling pond; 3) Excavating the arsenic-impacted soil from sample location A6-01; 4) compliance with and maintenance of ground water and land uses restrictions to be implemented through institutional controls; and 5) inspection and maintenance of engineering controls. This SB highlights key information relied upon by EPA in proposing its remedy for the Facility.

The Facility is subject to EPA's Corrective Action program under the Solid Waste Disposal Act, as amended, commonly referred to as the Resource Conservation and Recovery Act (RCRA), 42 U.S.C. §§ 6901 et seq. The Corrective Action program requires that facilities subject to certain provisions of RCRA investigate and address releases of hazardous waste and hazardous constituents, usually in the form of soil or groundwater contamination, that have occurred at or from their property. Pennsylvania is not authorized for the Corrective Action Program under Section 3006 of RCRA. Therefore, EPA retains primary authority in the State of Pennsylvania for the Corrective Action Program.

EPA is providing a thirty (30) day public comment period on this SB. EPA may modify its proposed remedy based on comments received during this period. EPA will announce its selection of a final remedy for the Facility in a Final Decision and Response to Comments (Final Decision) after the public comment period has ended.

Information on the Corrective Action program as well as a fact sheet for the Facility can be found by navigating https://www3.epa.gov/reg3wcmd/ca/correctiveaction.htm. The Administrative Record (AR) for the Facility contains all documents, including data and quality assurance information, on which EPA's proposed remedy is based. See Section 8, Public Participation, below, for information on how you may review the AR.

Section 2: Facility Background

The Facility is located at 2300 South Pennsylvania Avenue in Morrisville, Falls Township, Bucks County, Pennsylvania, and occupies approximately 90 acres. Prior to 1948. the Facility was undeveloped. The Facility operated as a production plant of inorganic chemicals from 1948 through 2001.

The Facility can be accessed from the west by 10th Street, which is located along Pennsylvania Avenue, approximately 800 feet south of the intersection of Pennsylvania Avenue and East Post Road. The location of the Facility is shown on Figure 1 (Attachment #1). The

Statement of Basis

Solvay June 2016 Facility is bordered to the north by commercial properties, to the south by Biles Creek and vacant property, to the east by the Delaware River, and to the west by wooded areas and Pennsylvania Avenue and is fenced to restrict access. The surrounding properties are depicted on Figure 2 (Attachment #2). The Facility Plan is presented on Figure 3 (Attachment #3), and a more detailed presentation of the layout of the operations area is presented on Figure 4 (Attachment #4). The Facility is zoned for mixed commercial/residential use.

On August 5, 1980, the owner of the Facility submitted a Notification of Hazardous Waste to the EPA for its generation and treatment/storage/disposal of hazardous wastes D000, D001, D002, D003, U135, and U189. In November 1980, the Facility submitted a Notification of Hazardous Waste for the outside phosphorous pentasulfide drum storage area, U189, D001, D003, and D007 wastes; the acid waste tanks, D004 waste; and the settling pond, D002 and D004 wastes.

The Facility was operated as an inorganic chemical production facility from 1948 until December 2001 and has had several different owners/operators, beginning with Victor Chemical in 1948. Stauffer Chemical (Stauffer) bought the Facility in the mid-1960s and subsequently sold it to Rhône-Poulenc Basic Chemicals (Rhône-Poulenc) in 1987. In 1997, Rhône-Poulenc transferred its chemical assets, including the Morrisville Facility, to Rhodia Inc. and spun Rhodia Inc. off as a separate company in 1998. Operations were discontinued at the Facility in late 2001 and, in early 2002, Rhodia Inc. began to demolish buildings down to concrete slabs. The Facility remained dormant from late 2002 through 2008. In 2008, demolition was reinitiated and the remaining buildings were razed. The only building currently remaining onsite is the former office building. Rhodia Inc. changed its name to Solvay USA Inc. effective October 1, 2013. Solvay continues to provide personnel for oversight of the Facility.

Throughout its operations history, numerous inorganic chemical products were produced at the Facility for use in a variety of products, including food additives, dental paste, household cleaners, water treatment, dyes, flame retardants, and desiccants.

The primary chemical produced at the Facility was phosphoric acid. The main raw material for the production of phosphoric acid is phosphorus, which contains trace amounts of arsenic. During the phosphoric acid manufacturing process, trace amounts of arsenic were precipitated out of the phosphoric acid in the form of arsenic sulfide. The phosphoric acid was then filtered through diatomaceous earth to separate and collect the arsenic sulfide precipitate. A 165-foot-deep industrial water supply well (PW-1, depicted on Figure 3) was used onsite for various manufacturing processes throughout its operations history.

The waste management areas units and Areas of Concern (AOCs) identified at the Facility include:

A. Waste Management Areas:

Statement of Basis

Solvay June 2016 Page 2

- 1. Area 1/Landfill No.2 (10 by 50 feet): Burial area for phosphorus pentasulfide (P2S5); closed in 1962; approximately 95 tons of P2S5 were buried in Area 1.
- 2. Area 2/ Landfill No. 3 (50 by 100 feet): Burial area for various sodium phosphates; closed in 1973.
- 3. Area 3 (75 by 100 feet): Acid waste pond; received decanted liquor from the arsenic sulfide settling ponds (Area 5); not in service since 1971.
- 4. Area 4: Two arsenic sulfide settling tanks, contained within a 20- by 60-foot diked area; tanks contained arsenic sulfide and diatomaceous earth; concentrated slurry was removed for offsite disposal; replaced Areas 3 and 5 beginning in 1971; closed in 1987 when a new filter process was introduced. This area is located within the Industrial Area discussed below.
- 5. Area 5 (two 50 by 100 feet and two 100 by 200 feet): Arsenic sulfide settling ponds; solids within these ponds were periodically dredged and moved to Area 6; out of service since 1971; ponds were backfilled upon closure.
- 6. Area 6/Landfill No. 1(75 by 100 feet): Arsenic sulfide burial area; received dredged solids from the arsenic sulfide settling ponds (Area 5) from 1950 to 1971; capped with clay and seeded in 1979.
- 7. Area 7/Landfill No. 4 (70,000 square feet): Landfill consisting of clean fill, furnace brick containing residual arsenic, and trash; closed in 1972 and paved with asphalt; approximately 20 tons of arsenic sulfide were buried in Area 7.
- 8. Area 8 (20 by 100 feet): Storage area for P2S5 waste material in 55-gallon drums prior to offsite disposal. After closure of Area 8, drums stored in Area 8 were moved to the indoor storage location (P2S5 scrap and still residue drum storage area, discussed below) until shipped for offsite disposal. The storage area was closed in 1987.
- 9. Area 9/Landfill No. 5 (20 by 75 feet): Burial area for P2S5; closed in 1960 and paved with asphalt; approximately 95 tons of P2S5 were buried in Area 9.
- 10. Area 10 (100 by 250 feet): Settling pond for both stormwater runoff and process waste streams (also known as the Equalization Basin or Surface Impoundment). This pond was once regulated under RCRA Part A, due to the corrosive nature of the influent. Beginning in January 1983, discharge from the pond was controlled manually to maintain an effluent pH between 6.0 and 9.0. In 1990, the pond was closed under RCRA. By December 1990, the pond only received non-process wastewater. By late December 2001, the pond received stormwater only.
- 11. P2S5 scrap and still residue drum storage area: Waste materials (phosphorus pentasulfide and sodium bicarbonate) were stored in 55-gallon drums, until shipped for offsite disposal. The area was certified closed in 1987.

Statement of Basis

12. Acid Filter Cake Storage Area: Beginning in the early 1980s, the arsenic sulfide waste was removed by filtration. Waste materials from the filtering process were stored in 55-gallon drums in the Acid Filter Storage Area until shipped for offsite disposal. The Acid Filter Cake Storage Area was certified closed in 1987.

B. Areas of Concern (AOCs)

- Oil and gasoline storage areas: During the removal of one 1,000-gallon Number 2 heating oil tank, small holes were observed in the tank. The soil around the tank had a slight odor. The contaminated soil was sampled, excavated, stockpiled, and removed offsite (Donnelly Contracting, Inc., 1995).
- Waste Pipeline: An "underground waste pipeline" that appears to facilitate the transfer of 2. decanted liquor from Area 3 to Area 5. During the remedial investigation, only portions of the pipeline were located.
- Industrial Area A general area that includes contiguous locations of the various operations completed in the industrial portion of the Facility. The industrial area includes the Area 7/Landfill No. 4, Area 4, AOC Acid Filter cake Storage, AOC Former 1,000 gallon #2 Fuel Oil UST, and AOC Scrap and Still Residue Storage Area. The boundaries of this area are shown on Figure 5 (Attachment #5)

Section 3: Summary of Environmental Investigations

3.1 Environmental Investigations

For all environmental investigations conducted at the Facility, groundwater concentrations were screened against federal Maximum Contaminant Levels (MCLs) promulgated pursuant to Section 42 U.S.C. §§ 300f et seq. of the Safe Drinking Water Act and codified at 40 CFR Part 141, or if there was no MCL, EPA Region III Screening Levels (RSL) for tap water for chemicals. Soil concentrations were screened against EPA RSLs for residential soil and industrial soil. EPA also has RSLs to protect groundwater and soil concentrations were also screened against these RSLs.

The main focused of the remedial investigation was the identified waste management areas and AOCs.

3.1.1 Groundwater Investigation

Groundwater investigation was conducted at the Facility from 1979 to 2012. Groundwater flows east and south toward Biles Creek and Delaware River. Groundwater in shallow aquifer underneath the Facility is contaminated with arsenic. Arsenic was not detected in the deep aquifer, due to a confining layer between the shallow and deep aquifers. Dissolved

Statement of Basis

Solvay June 2016 arsenic was detected in onsite wells at concentrations as high as 29,400 micrograms per liter (ug/l), above the MCL and PADEP MSC of 10 ug/l.

The shallow aquifer is encountered from approximately 14 to 60 feet below ground surface and exhibits a limited saturated thickness (20 to 40 feet). Shallow aguifers like this one are vulnerable to many types of contaminant sources, such as road runoff, leaking sewers and pipelines, industrial spills and agricultural chemical infiltration. In addition, its limited thickness makes it unreliable as a potable source during droughts. The aquifer is characterized by naturally occurring concentrations of iron and manganese that exceed EPA's Secondary Maximum Contaminant Levels for these constituents, which affect taste and color and may cause staining and corrosion. Combined, these factors make the shallow, unconfined aquifer beneath the Facility unsuitable as a municipal supply.

A deep aquifer is present at the Facility from approximately 130 to 170 feet below ground surface. Sampling results from the deep aquifer indicate that it is not contaminated within the Facility boundaries. The two aquifers are separated by continuous confining clay layers, approximately 30 feet thick, which act as a barrier between the contaminated groundwater in the shallow aquifer and the deep aquifer.

In 2001, PADEP approved a non-use aquifer designation for the shallow aquifer beneath the Facility, as well as three adjacent properties owned by USX Corporation (former steel mill under redevelopment) and WMI Properties (solid waste landfill). The approval for the Facility means that there are no private domestic wells on the Facility property or within 1,000 feet downgradient of the Facility property boundaries. The local water authority, Falls Township Water Authority, has stated that they have no plans for future use.

In 1998, surface water samples were taken from the Delaware River and Biles Creek by the Facility owner. Arsenic was not detected in the upgradient and downgradient surface water samples taken from both the Delaware River and Biles Creek. The effect of arsenic infiltrating into the Delaware River and Biles Creek from the Facility groundwater was evaluated in accordance with PADEP protocols. The evaluation demonstrated that concentrations of arsenic in shallow groundwater discharging to the Delaware River and Biles Creek are below the PADEP Surface Water Quality Criteria of 10 ug/l and therefore the discharge of groundwater contamination from the Facility into the surface water is not anticipated to impact surface water.

The April 2, 2002 Act 2 Final Report for the Facility was approved by PADEP in a letter dated May 22, 2002.

Groundwater sampling of Site wells was recently conducted in 2012. The groundwater sampling results indicated that the levels of arsenic in the groundwater are decreasing overtime. Concentrations of arsenic in the groundwater at the source area decreased from 29,400 ug/l (December 1979) to 8,700 ug/l (April 2012). Concentrations of arsenic at the Facility boundary wells are also decreasing. Given that the source of arsenic groundwater contamination, the

Statement of Basis

Solvay June 2016

former arsenic trisulfide burial site, was out of service since 1971 and closed in 1979 (clay capped and clay walled). EPA expects groundwater concentrations of arsenic will continue to decline due to natural attenuation.

3.1.2 Soil Investigations

Soil investigations at the Facility was conducted from February 2012 through April 2015. Areas of soil investigations include Area 1/Landfill No. 2, Area 2/Landfill No. 3, Area 3/ Acid Waste Pond, Area 5/Arsenic sulfide settling ponds, Area 6/Arsenic sulfide burial area, Area 9/Landfill No. 5, Area 10/Settling pond for storm water runoff and process waste streams, Former Manufacturing Area, and non-residential area. Sediment samples were collected from the former settling pond (Area 10). Surface and sub-surface soil samples were collected from the remaining areas. The analytical results of the samples collected revealed that arsenic is the only constituent of concern (COC). EPA and PADEP determined that the Site required remediation to the PADEP non-residential direct contact MSC of 53 mg/kg, within the EPA's allowable range of 3.6 mg/kg-360 mg/kg, for non-residential use and to residential direct contact MSC of 12 mg/kg, within the EPA's allowable range of 0.77 mg/kg- 77 mg/kg, for residential use for arsenic in soils.

The following summarizes the soil investigations:

- 1. Areas 1, 2, and 9 Analytical results of the April 2012 sampling event indicated that the arsenic was detected in Area 1, 2, and 9 at concentrations below the residential direct contact MSC of 12 mg/kg. Areas 1, 2, and 9 met the residential use standard.
- 2. Areas 5 and 6 Analytical results of the sampling events indicate that arsenic was detected in areas 5 and 6 at concentrations as high as 920 mg/kg, above the residential direct contact MSC of 12 mg/kg and non-residential direct contact MSC of 53 mg/kg.
- 3. Areas 3 Analytical results of the sampling events indicate that arsenic was detected at concentrations as high as 29 mg/kg, above the residential direct contact MSC of 12 mg/kg, but below the non-residential direct contact MSC of 53 mg/kg.
- 4. Area 10 Analytical results of the sampling events indicate that arsenic was detected at concentrations as high as 740 mg/kg, above the residential direct contact MSC of 12 mg/kg and non-residential direct contact MSC of 53 mg/kg. Ecological Risk Assessments (ERA) was conducted at the Site in 2013 and 2015. The ERA determined that constituents were not present at unacceptable levels to ecological receptors.
- 5. Former Manufacturing Area Includes Area 4, Area 7/Landfill No. 4, Area 8/Storage area for P2S5 waste material, AOC Acid Filter Cake Storage, AOC Fomer 1,000 gallon #2 fuel oil UST, and AOC P2S5 scrap and still residue storage area.

Statement of Basis

June 2016 Solvay

- Analytical results from the Former Manufacturing Area demonstrated that soil concentrations are below residential direct contact MSC of 12 mg/kg.
- 6. Non-Residential Area Non-Residential Area is shown on Figure 10 (Attachment #6). Analytical results of the sampling events indicated that arsenic was detected at concentrations as high as 690 mg/kg (sample A6-01). Analytical results from the Non-Residential Area, however, demonstrated that soil concentrations are below the non-residential direct contact MSC of 53 mg/kg if contaminated soil from A6-01 was removed from the site.

Sample locations and sample results are presented on Figure 8 (Attachment # 7), Figure 9 (Attachment #8), Table 1 (Attachment # 9), and Table 2 (Attachment # 10).

3.2 Cleanup Plan

On December 7, 2015, EPA approved the Facility's Remedial Investigation Report Addendum and Cleanup Plan (Cleanup Plan) dated July 16, 2015. The Cleanup Plan calls for remediation to residential use for Areas 5, 6, and Area 10 and to Non-Residential use for Non-Residential Area. No further remedial action required for Areas 1, 2, 9 and the Former Manufacturing Area as they met the residential use standard. Figure 2 of the July 16, 2015 Cleanup Plan (Attachment #11) shows the areas considered for residential and non-residential use.

3.3 Environmental Indicators

Under the Government Performance and Results Act ("GPRA"), EPA has set national goals to address RCRA corrective action facilities. Under GPRA, EPA evaluates two key environmental clean-up indicators for each facility: (1) Current Human Exposures Under Control, and (2) Migration of Contaminated Groundwater Under Control. The Facility met both of these indicators on March 16, 2015.

Section 4: Corrective Action Objectives

EPA's Corrective Action Objectives (CAOs) for the specific environmental media at the Facility are the following:

1. Soils

a. Non-Residential Area (see Attachment #11) – EPA's corrective action objective for soils is to attain the PADEP arsenic non-residential direct contact MSC of 53 mg/kg for the Non-residential Area.

Statement of Basis

Solvay

- b. Area 5 EPA's corrective action objective for soil in Area 5 is to eliminate human exposure to arsenic contaminated soils at concentrations above the PADEP residential direct contact MSC of 12 mg/kg.
- c. Area 6 EPA's corrective action objective for soil in Area 6 is to eliminate human exposure to arsenic contaminated soils at concentrations above the PADEP residential direct contact MSC of 12 mg/kg.
- d. Area 10 EPA's corrective action objective for contaminated sediment in Area 10 is to eliminate human exposure to arsenic contaminated media at concentrations above the PADEP residential direct contact MSC of 12 mg/kg.
- e. Areas 1, 2, and 9 EPA's corrective action objective for soils is to attain the PADEP residential direct contact MSC of 12 mg/kg. Sampling results demonstrate this residential standard has been met.
- f. Former Manufacturing Area EPA's corrective action objective for soils is to attain the PADEP residential direct contact MSC of 12 mg/kg. Sampling results demonstrate this residential standard has been met.

2. Groundwater

EPA expects final remedies to return groundwater to its maximum beneficial use within a timeframe that is reasonable given the particular circumstances of the project. For projects where aquifers are either currently used for water supply or have the potential to be used for water supply, EPA will use the National Primary Drinking Water Standard Maximum Contaminant Levels (MCLs) promulgated pursuant to Section 42 U.S.C. §§ 300f et seq. of the Safe Drinking Water Act and codified at 40 C.F.R. Part 141.

Because the aquifer under the Facility is unable to be used for drinking water purposes, EPA has determined that maximum beneficial use of the shallow aquifer is recharge flow to the Delaware River and to Biles Creek. Therefore, EPA's corrective action objective for Facility-related groundwater is to prevent recharge flow to the Delaware River and to Biles Creek with hazardous constituents at levels above PADEP's Surface Water Quality Criteria and to control human exposure to the hazardous constituents remaining in the groundwater by requiring compliance with and maintenance of groundwater use restrictions at the Facility.

Solvay June 2016

1. Introduction

Under this proposed remedy, some contaminants remain in the soil and groundwater at the Facility above levels appropriate for residential uses. Because some contaminants remain in the soil and groundwater at the Facility at levels which exceed residential use, EPA's proposed remedy requires the compliance with and maintenance of soil and groundwater use restrictions. EPA proposes to implement the land and groundwater restrictions necessary to prevent human exposure to contaminants at the Facility through an enforceable mechanism such as a permit, order, or environmental covenant.

2. Soils

EPA's proposed remedy for the Facility soils consists of:

A. Area 5

- a. Capping Area 5 by installing a vegetated soil cover over the extent of the area.
- Maintenance and inspections of the vegetated soil cover in order to assure continued protection of human health and the environment at the Facility.
- c. Solvay will develop a Post-Remediation Care Plan (Plan) to verify that the vegetated soil cover remains effective in preventing exposure to soil contaminants beneath the cover. The Plan will include an annual inspection of the vegetated cover to ensure that the integrity and protectiveness of the vegetated cover is maintained. The property owner will report the findings of the inspection to EPA and PADEP.

B. Area 6

- Maintenance and inspections of the existing engineered clay cap in order to assure continued protection of human health and the environment at the Facility.
- b. Solvay will develop a Post-Remediation Care Plan (Plan) to verify that the engineered clay cap remains effective in preventing exposure to soil contaminants beneath the cap. The Plan will include an annual inspection of the clay cap to ensure that the integrity and protectiveness of the cap is maintained. The property owner will report the findings of the inspection to EPA and PADEP.

C. Area 10

Capping Area 10 by installing a cover consisting of a permeable liner and one foot layer of clean fill over the pond.

Statement of Basis

D. Non-Residential Area

- a. Remove the arsenic-impacted soil around sample A6-01
- Compliance with and maintenance of land use restrictions to prohibit residential uses of the area.

E. Land Use Restrictions

EPA is proposing that the following activities and land use restrictions be implemented at the Facility:

- a. Non-Residential Areas shall be restricted to commercial and/or industrial purposes and shall not be used for residential purpose unless it is demonstrated to EPA that such use will not pose a threat to human health or the environment or adversely affect or interfere with the selected remedy and the Facility provides prior written approval from EPA for such use;
- b. All earth moving activities, including excavation, drilling, and construction activities, in the areas at the Facility where any contaminant remains in soil above EPA's screening levels for residential use shall be prohibited unless it is demonstrated to PADEP and EPA that such activity will not pose a threat to human health or the environment or adversely affect or interfere with the selected remedy and EPA/PADEP provides prior written approval for such use;

3. Groundwater

Monitoring at the Facility has shown that arsenic concentrations in groundwater discharge to the Delaware River and Biles Creek are below the PADEP Surface Water Quality Criteria of 10 ug/l and therefore the discharge of groundwater contamination from the Facility into the surface water is not anticipated to have unacceptable impacts to surface water. Moreover, arsenic concentrations are declining or stable over time. Given that the sources that degraded groundwater have been controlled, EPA anticipates that the remaining contamination in groundwater will not impact surface water quality of the Delaware River and the Biles Creek without further treatment. Therefore, the proposed remedy for groundwater consists of compliance with and maintenance of groundwater use restrictions.

EPA is proposing that the following activities and groundwater use restrictions be implemented at the Facility:

- a. Groundwater at the Facility shall not be used for potable purposes.
- b. No new wells shall be installed on Facility property in areas where caps or building foundations acting as caps are required by this remedy decision. A survey of those areas will be prepared and attached to the institutional control.

Statement of Basis

Solvay June 2016

4. Additional Requirements

Because arsenic concentrations remain above MCLs, EPA is proposing that the following activities be implemented at the Facility:

- A. On an annual basis and whenever requested by EPA, the then current owner shall submit to EPA a written certification stating whether or not the groundwater and land use restrictions are in place and being complied with;
- B. EPA, PADEP and/or their authorized agents and representatives, shall have access to the Facility property to inspect and evaluate the continued effectiveness of the final remedy and if necessary, to conduct additional remediation to ensure the protection of the public health and safety and the environment upon the final remedy selection in the FDRTC.

In addition, the Facility owner shall provide EPA with a coordinate survey as well as a metes and bounds survey, of the Facility boundary. Mapping the extent of the land use restrictions will allow for presentation in a publicly accessible mapping program such as Google Earth or Google Maps.

Section 6: Evaluation of Proposed Remedy

This section provides a description of the criteria EPA used to evaluate the proposed remedy consistent with EPA guidance. The criteria are applied in two phases. In the first phase, EPA evaluates three decision threshold criteria as general goals. In the second phase, for those remedies which meet the threshold criteria, EPA then evaluates seven balancing criteria.

Threshold Criteria	Evaluation			
1) Protect human health and the environment	With respect to soil, the non-residential area meets PADEP's non-residential direct contact MSC. EPA's proposed remedy for the Facility protects human health and the environment by eliminating, reducing, or controlling potential unacceptable risk through the implementation and maintenance of use restrictions. EPA is proposing to restrict land use to commercial or industrial purposes in the Non-Residential Area at the Facility.			
	With respect to groundwater, while arsenic remains in the groundwater beneath the Facility, the concentrations of arsenic in in the groundwater are decreasing and it was determined that the concentrations of arsenic discharging from the Facility to the Delaware River and the Biles Creek are below the			

Statement of Basis

June 2016 Solvay

	PADEP Surface Water Quality Criteria and therefore the discharge of groundwater contaminant from the facility into the surface water is not anticipated to have unacceptable impacts to the receiving surface water. Groundwater at the site cannot be used as a source of drinking water. On August 14, 2001, Solvay (formerly Rhodia) received PADEP's approval of the non-use aquifer designation request. Consequently, the Facility is already being provided with potable water from the public water supply system. With respect to future uses, the proposed remedy requires groundwater use restrictions to minimize the potential for human exposure to contamination and protect the integrity of the remedy.
2) Achieve media cleanup objectives	EPA's proposed remedy meet the media cleanup objectives based on assumptions regarding current and reasonably anticipated land and water resource use(s). The remedy proposed in this SB is based on the current and future anticipated land use at the Facility as mixed use, residential and commercial or industrial. Arsenic contaminated soils were either removed or are capped to prevent exposure to soil contaminant. EPA's proposed remedy requires compliance with the inspection and maintenance of the existing caps and compliance with and maintenance of land use restrictions.
	The groundwater plume appears to be stable (not migrating); although arsenic is above MCL, it is declining over time. In addition, groundwater at the site is not used as a source of drinking water. The Facility meets EPA risk guidelines for human health and the environment. EPA's proposed remedy requires the implementation and maintenance of use restrictions to ensure that groundwater beneath Facility property is not used for any purpose except to conduct the operation, maintenance, and monitoring activities required by EPA.
3) Remediating the Source of Releases	In all proposed remedies, EPA seeks to eliminate or reduce further releases of hazardous wastes and hazardous constituents that may pose a threat to human health and the environment and the Facility met this objective.

Statement of Basis

The source of contaminants have been removed from the soil at the Facility and/or have been/will be capped, thereby eliminating, to the extent practicable, further releases of hazardous constituents from on-site soils as well as the source of the groundwater contamination.

Arsenic in groundwater is declining. Groundwater at the site is not used as a source of drinking water. Groundwater is not used for potable purposes at the Facility or at neighboring facilities. The Facility and surrounding area are already being provided with potable water from the public water supply system. Therefore, EPA has determined that this criterion has been met.

Section 6: Evaluation of Proposed Remedy (continued)

Balancing Criteria	Evaluation				
1) Long-term effectiveness	Groundwater is not used on the Facility for drinking water, and no down gradient users of off-site groundwater exist. In addition, the shallow aquifer contamination does not impact surface waters of either the Delaware River or Biles Creek. Therefore, the long term effectiveness of the groundwater remedy for the Facility will be maintained by the implementation of use restrictions.				
	The proposed remedial actions will eliminate any potential long-term exposure associated with impacted soils. The clean fill will eliminate the potential for direct contact with soils and sediments. Additionally, the long term effectiveness of the proposed remedy will be maintained through the implementation of the institutional controls.				
2) Reduction of toxicity, mobility, or volume of the Hazardous Constituents	The reduction of toxicity, mobility and volume of hazardous constituents will continue by attenuation at the Facility. Reduction has already been achieved, as demonstrated by the data from the groundwater monitoring. The reduction of toxicity, mobility, and volume of hazardous constituents has already achieved as the source of contaminants have been removed from the soil at the facility and/or capped.				

Statement of Basis

3) Short-term effectiveness	During implementation of the remedy, potential exposure to impacted soils may occur for construction workers. Construction workers will follow appropriate health and safety procedures and utilize proper personal protective equipment. Therefore, these activities would not pose short-term risks to workers.				
4) Implementability	EPA's proposed remedy is readily implementable. Solvay (formerly Rhodia) already has a schedule in place for implementing the proposed remedial action. EPA's proposed remedy is cost effective. The costs associated with this proposed remedy are mainly for one time remedy construction. The cost associated with implementation of ICs is minimal.				
5) Cost					
6) Community Acceptance	EPA will evaluate community acceptance of the proposed remedy during the public comment period, and it will be described in the Final Decision and Response to Comments.				
7) State/Support Agency Acceptance	PADEP has reviewed and concurred with the proposed remedy for the Facility.				

Section 7: Financial Assurance

EPA has evaluated whether financial assurance for corrective action is necessary to implement EPA's proposed remedy at the Facility. Given that EPA's proposed remedy does not require any further engineering actions to remediate soil and groundwater after construction of the proposed remedy completed and given that the costs of implementing institutional controls (estimated cost of less than \$1000.00 per year) at the Facility will be minimal, EPA is proposing that no financial assurance be required.

Section 8: Public Participation

Interested persons are invited to comment on EPA's proposed remedy. The public comment period will last thirty (30) calendar days from the date that notice is published in a local newspaper. Comments may be submitted by mail, fax, or electronic mail to Ms. Tran Tran at the contact information listed below.

A public meeting will be held upon request. Requests for a public meeting should be submitted to Ms. Tran Tran in writing at the contact information listed below. A meeting will not be scheduled unless one is requested.

The Administrative Record contains all the information considered by EPA for the proposed remedy at this Facility. The Administrative Record is available at the following location:

Statement of Basis

June 2016 Solvay

U.S. EPA Region III 1650 Arch Street Philadelphia, PA 19103

Contact: Ms. Tran Tran (3LC30)

Phone: (215) 814-2079 Fax: (215) 814 - 3113 Email: tran.tran@epa.gov

Attachments:

- 1. Attachment 1 Figure 1
- 2. Attachment 2 Figure 2
- 3. Attachment 3 Figure 3
- 4. Attachment 4 Figure 4
- 5. Attachment 5 Figure 5
- 6. Attachment 6 Figure 10
- 7. Attachment 7 Figure 8
- 8. Attachment 8 Figure 9
- 9. Attachment 9 Table 1
- 10. Attachment 10 Table 2
- 11. Attachment 11 Figure 2
- 12. Attachment 12 Table F-4

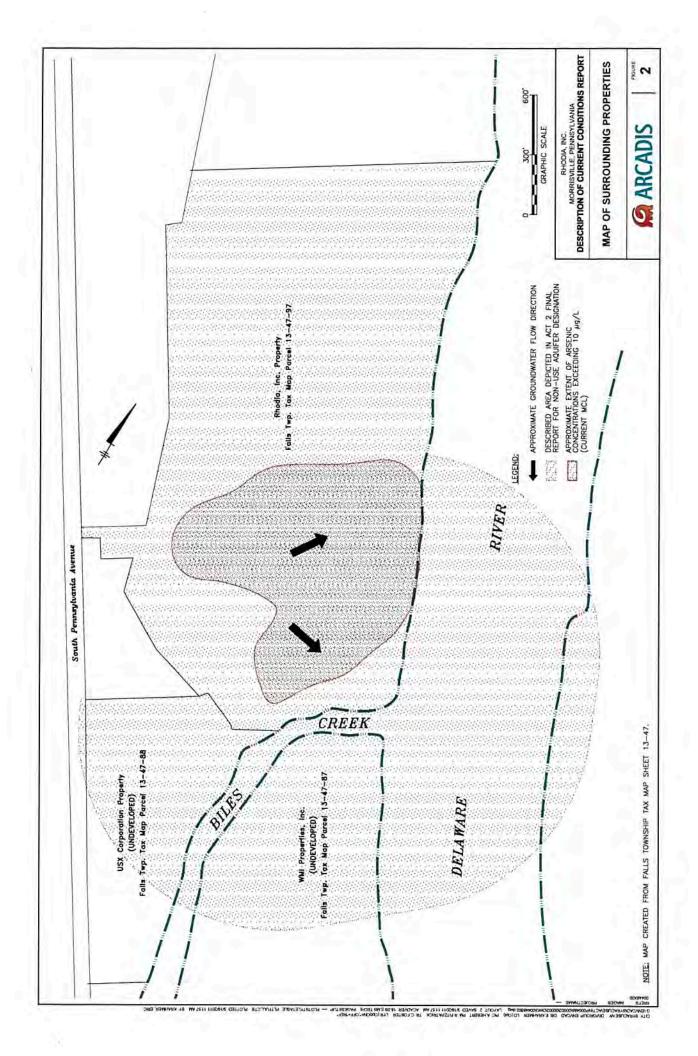
Date: 6, 23.16

John A. Armstead, Director Land and Chemicals Division US EPA, Region III

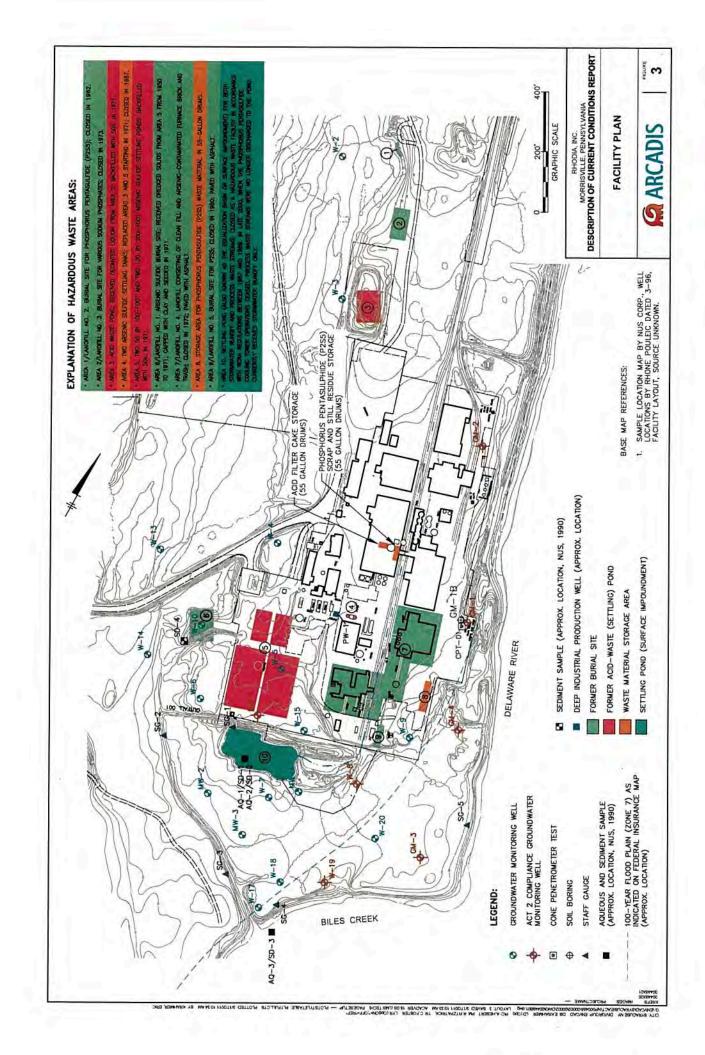
Section 9: Index to Administrative Record

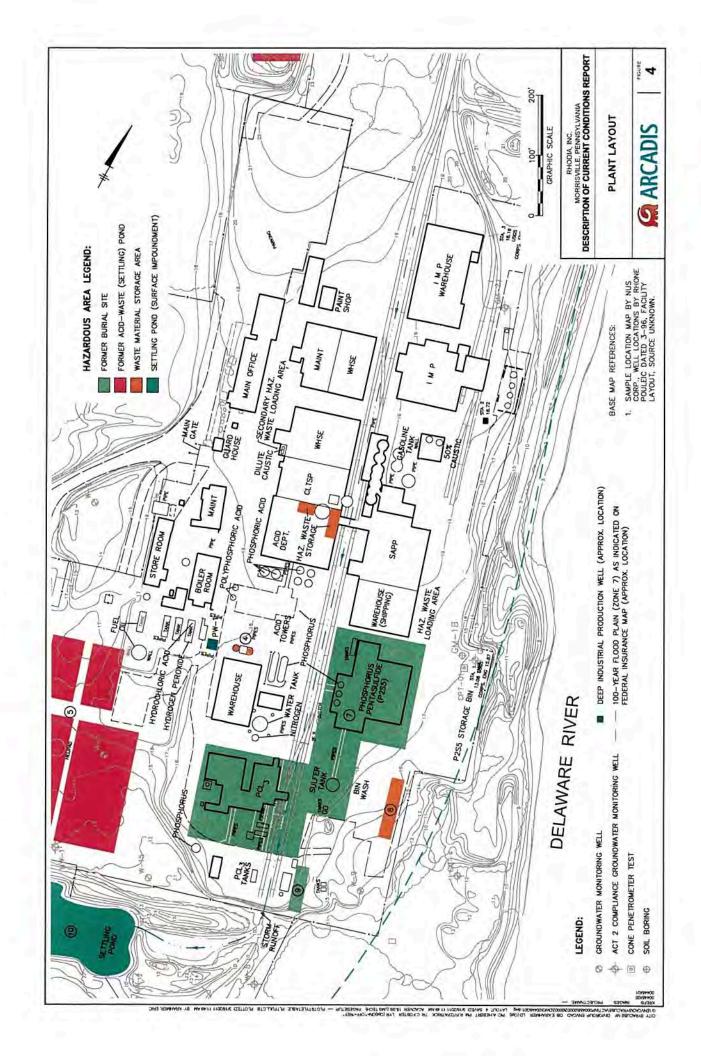
- 1. Remedial Investigation Report Addendum and Cleanup Plan, July 15, 2015
- 2. Remedial Investigation Report, August 2012
- 3. Description of Current Condition Report, March 2011
- 4. PADEP's October 6, 2015 Letter- Approval of Remedial Investigation Report Addendum and Cleanup Plan, July 2015
- 5. Non-Use Aquifer Determination

Statement of Basis

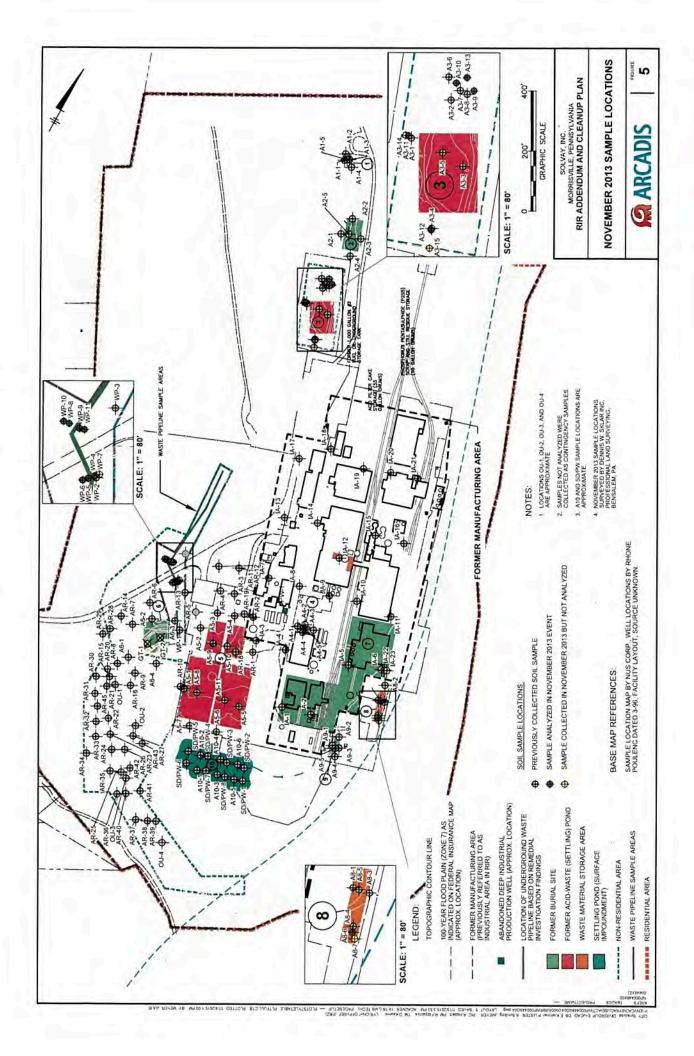

Solvay June 2016

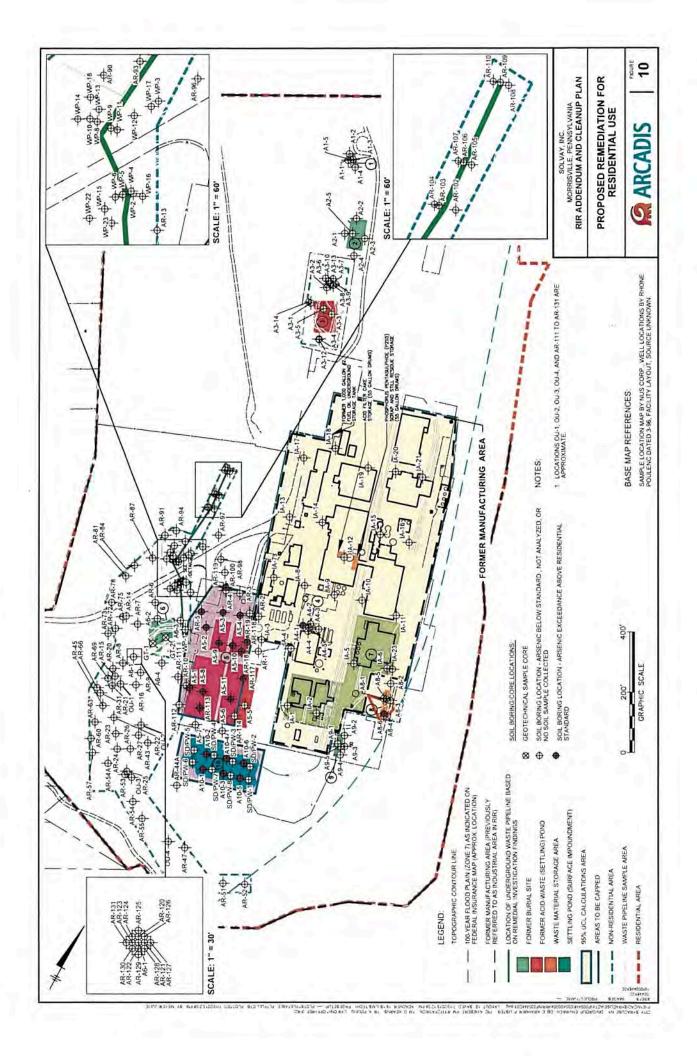
Statement of Basis

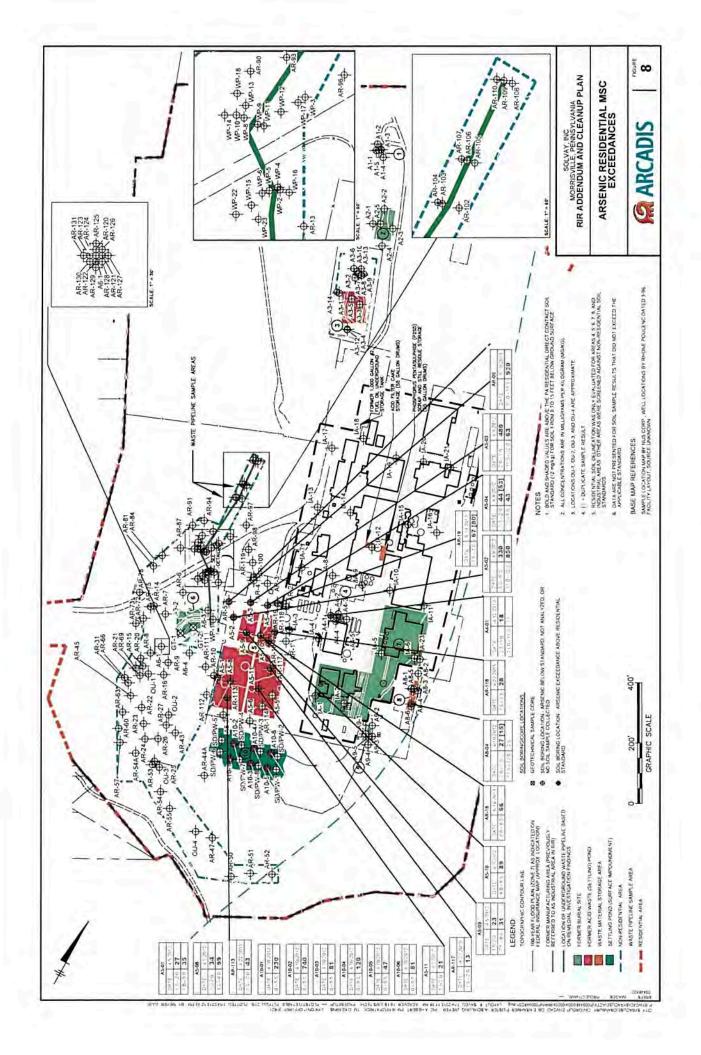

Solvay June 2016 Page 17

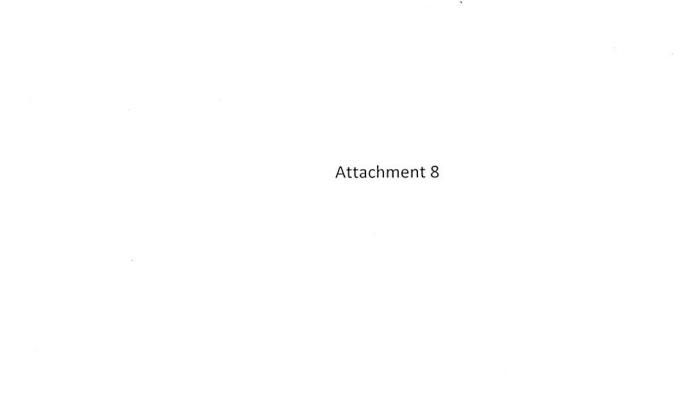

						(4)
8						
	×					
8/						
					19	
		N.				
				9		

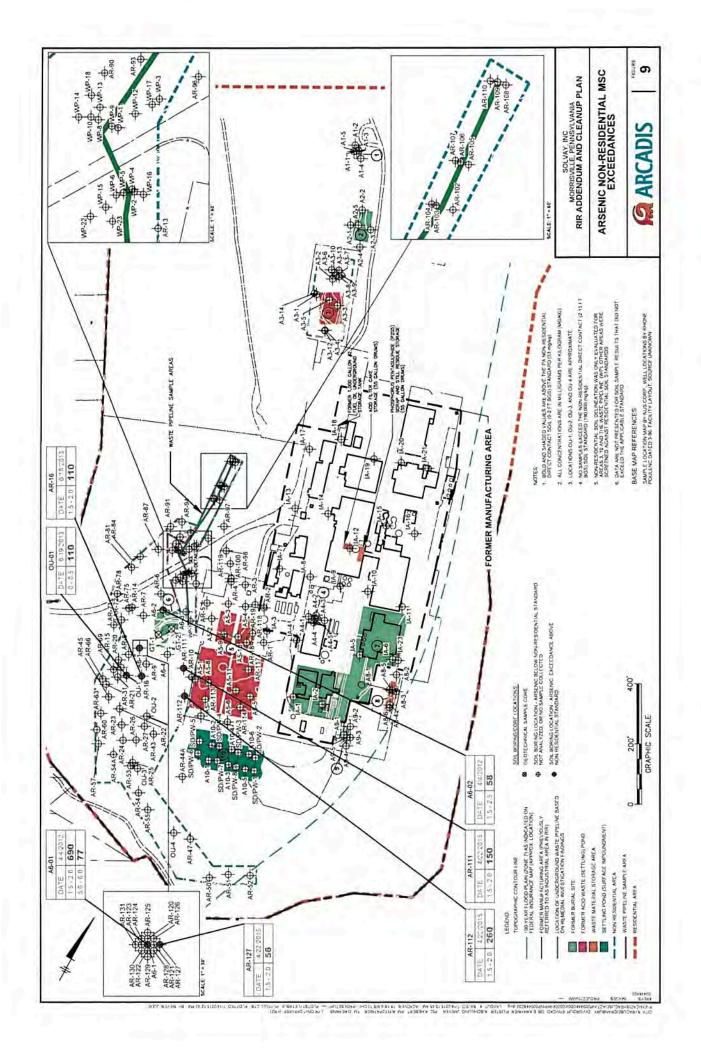












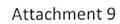


Table 1. Soil Analytical Results for Areas 4.5, 6, 8, 10 and Former Manufacturing Area - Compared to Residential MSC

Hitea 4			Commence of the second of the			Control of the last of the las		
	D. Contraction of	44	Location ID	AA	-0.1	A4-02	A4-03	A4-04
	Direct Contact		Sample Date	4/12/	72012	4/13/2012	4/12/2012	4/12/201
inalyte	MSC (0-15')	Unit	Sample Depth	25.30	H10-115 75	75-80	120-125	70-80
	43	market and		**	**		.,	

Bacok	Sential	Location	D AS	-01	A5-C	72	AS-D	13	A5-04	54	A5-05	.9.	A5-06	18	AS-07	20	A5-0B	96	A5-09	6	45-1	0	A5-11	
Direct	Contact	Sample Dat	te 4/50	2012	4/9/2	212	4/9/26	112	4/9/2012	212	4/5/201	112	4/4/2	3/4/2012	4/4/201	012	4/5/2012	312	4/5/2012	12	4/5/2012	12	4/5/2012	12
MSC	(C-151) Uni	t Sample Dept	15-20	70-80	60-65	110-120	70-75	115-120	15-20	75-80	15-23	45.50	05-15	120-125	10-20	58-63	15-20	35.40	15-70	75.80	15.20	ROLRS	18.26	25.40
	2 mg/s	10	12	35	330	650	480	63	44 [53]	43	4.8	62	1.6.	5.2	62257	4.1	N	96	23		5.8	80		4.4

AR-97 AR-98 AR-100 AR-113 AR-114 AR-117	5/20/2014 5/20/2014 5/20/2014 4/22/2015 4/22/2015	
AH-44A	5/19/2014	
AR.19	£/19/2013	
AR-18	6/19/2013	
AR-13	6/16/2013	
AR-05	6/19/2013	
AR-04	6/19/2013	
AR-03	6/19/2013	
AR-02	6/19/2013	
AR-01	6/19/2013	
A5-03	2102/5/1	
A	4/5	
46-01	14/2012	
D A	ate 47	
Location	Sample Da	
100	pal	Contact
100	Residen	Direct Co.

C	Secretarial.		Location ID A	AR-118	AR-119
Dir	ect Contact		Sample Date	4/22/2015	4/22/2015
Analyte M	SC (0-15')	Und	Start Depth	15.2	15-2
Arsenic	12	make		28	5.5

1	Residental	Ī	Location ID	AB	-01	AB	1-02	ď	8-03	A.B.	A8-04	AB	A8-05	A8-06
	Direct Contact		Sample Date	4/10/	2012	4/10	42012	4/1/	3/2012	4/10/	2012	ANDV	2012	13/26/2013
Analyse	MSC (0-15)	Unit	Sample Depth	45	115-120	45-50	110-120	60 - 65	110-120	70-75	115-120	45.53	100:1:0	70:75
Arsens	4.5	major		5.4	26	4.1	+7.1	47	0.4	27.00	26	6.1	4 2 4	123

Area 10

Ī	Residential	-	Location ID	A10-01	A10-02	A10-03	A10-04	A10-05	A10-05
	Direct Contact		Sample Date	4/10/2012	4/10/2012	4/10/2012	4/10/2012	4710/2012	4/10/2012
ayle	MSC (0-15)	Unit	Depth (ft bgs)	50-0	0-05	0.05	0.05	0.05	50-0
Suc	12	ma/kg	1	230	740	81	120	17	81

Former Manufacturing Area

	Residential		Location ID	14-01	IA-01	IA-03	(A.	3	A)	05.	A	15	1A-07	IA-08	P-09	-A	10
	Direct Contact		Sample Date	4/9/2012	4/9/2012	4/3/2012	ANGL	9012	ALTIC	11/2012	4717	11/2012	4/3/2012	4/3/2012	4/3/2012	4/3/2	3/2012
Analyte	MSC (0-151)	Unit	Depth (ft bgs)	3.5	115-120	115-120	50-55	95.100	25-30	40-50	25-35	65-73	120-125	135-145	105-115	30-35	130-140
Arsenic	- 42	mg/kg	The second	9.9	7.6	4.5	12	in in	33	4.7	5.4	450	3.4	3.9	16	3.8	62
BAP	0.57	mg/kg		0.040.0	U 950 0	0.0410	200	0.038 U	0.037-U	0.038 U	0.63	L 6700 0	0.037.3	0.036 U	0.039.0	0.0410	0.040.0
	Residential		Location ID	Ā	16	-A	17.	IA-18	IA-16	IA-19	IA.	14-20	14.21				
1 1 6	Direct Contact		Sample Date	4/2/2	72/2012	4/3/201	210	4/2/2012	4/13/2012	4/2/2012	4727.	2012	4/2/2012				
Analyte	MSC (0-15')	Unit	Depth (ft bgs)	35-40	45-50	20-30	110-120	55-60	125-130	45-50	20-25	110-125	145-150				
Arsenic	12	DIA/PIE		27	4.9	4.7	3.8	5	43	10	5.1	19	4.4				
GTB	150	100/1000		0.000	1.000.0	70000	0.036.11	1 5000 C	0.036.11	TIMEDO	117500	110200	11 MIN W				

Hobes.

It bys. test below ground surface.

II. inclusions concentration detected in diplicate sample.

BAP - bench objective.

II. inclusions concentration above the lateral corp method detection limit but below the reporting limit.

II. onlying and detected above the specified limit.

III. Analyse that concentration above the lateral corp method below the reporting limit.

III. Analyse the Contest ACC (p. 16): proving MACC on soft should be a soft should be a soft whether a second contest ACC on soft should be a soft should be a soft should be a soft should be a soft from II. If it bys.

And it exceeds the respective all MSC could be modile of the Fromer Manufacturing area and when of require delineation.

And it exceeds the acceptability.

Table 2. Soil Analytical Results for Area 3, Non-Residential Area, and Waste Pipeline - Compared to Non-Residential MSC

The State of	Section Contract of		Location ID	A3-01	A3-01	A3-02	A3-04	A3-09	A3-10	A3-11	A3-12	A3-13
Orect Contact	Direct Contact		Sample Date	4/11/2012	4/11/2012	4/12/2012	4/11/2012	11/26/2013	11/26/2013	11/26/2013	11/26/2013	11/26/2013
MSC (0-27)	MSC (2-151)	Unit	Depth (# bgs)	10-15	15.20	15-20	15.20	15-20	15.20	15-20	15-20	15.20
53	190,000	Da/Out		50	15	15 [15]	29	36 1441	53	6.6	11	43.3

	0.00	Anna Comment	0	A6-02	2	46	46-04	ARIOG	AR-07	20	AR-DB	.08	AR-US	409	AR	AR-10	AR-14	AR-15	5	
j	Direct Contact	Drect Contact	1	414/2012	12	ACTUA.	4/13/2012	6/18/2013	6/18/2013	2102	6/18/2013	2013	6/19/2013	2013	56190	6/19/2013	6/18/2013	6/15/2013	013	
Analyte	MSC (0-2)	MSC (2-15)	Unic	15-25	40-45	15-20	40-45	15-2	1.5-2	5-5.5	15.2	3	15.2	5.53	15.2	35.4	15.2	15-2	45-5	
Arsenc	- 53	190,000	phygm	5.8	536	121101	1.5	18	- 21	.23	48	30	36	39	92	23	4.1	5	17	
				40.15	100	AB 20	100.71	20.04	FT 04	AG 74	AG 36	20.04	40.37	100	40.43	24 04	1704	AD CA	19 04	
	Non-Residential	Non-Residential	Ý	THOUSE	11	aparonta.	4040411	THUCKUD	THUCKUD.	2000000	CHUCKER	Grant a	STANDARD	000000	t-horong	1100100	Eugines.	SHOOM I	ELIDERIA.	
Analyte	MSC (0-2)	MSC (2-15)	Unit	15.2	5.55	05.1	1.15	15.3	15-0	45.9	1.15	1.45	16.7	18.2	18.3	18.3	14.0	14.7	15.3	
Arsenic	53	190,000	mg/kg	110	2.6	19[21]	- 53	23	7.6	17	20	25	52	0 05 ×	63	7	47 47	12	13	
				AR 52	AR-53	AR-54	ARSAA	AR-55	AR-57	AR-60	AR-63	63	AR-56	AR-69	AR-72	AR-75	AR:78	AR-81		
	Non-Residential Direct Contact	Non-Residential Direct Contact		\$20/2014	5/21/2014	5/20/2014	5/20/2014	5/20/2014	5/20/2014	5/20/2014	5/20/2014	\$102	5/20/2014	5/20/2014	5/20/2014	5/20/2014	5/21/2014	5/20/2014		
Analyte		MSC (2-15)	Unit	15-2	15-2	15-2	15.2	15.2	15.2	15.2	15.7	-2	15-2	15.2	15:2	15.2	15.2	15.2		
Arsenic	53	190,000	- mg/kg	31	18	18	n	12	3.6	99	9 8 8 8	5 61	11	7.8	7.2	9.7	87	10		
				AR-64		AR 87	AR-90	AR-91	AR.93	AR-94	AR.111	AR/112	AR-120	AR-121	AR-122	AR-123	AR-124	AR-125		
ij	Deed Cented	Desct Contact	ij	5/20/2014	114	5/20/2014	5/20/2014	5/20/2014	5/20/2014	5/21/2014	47222015	A/22/2015	4/22/2015	4/22/2015	4/22/2015	4/22/2015	4/22/2015	4/22/2015		
Analyte		MSC (2:15')	Unit	15-2	2	15-2	15.2	15.2	1.5-2.0	15-20	15.2	15.2	15.2	15.2	15.2	15.2	15.2	15-2		
Arsenic		190,000	mp/kg:	7.97	2)	6.9	Œ.		61.	7.8	150	260	52	41	. 44	31	48	Я		
) 1	Non-Residential	Nan-Residential	ì	AR-126	AR-127	ARTIZE	AR-129	AR-130	AR-131	20001	200-02	500.00	0000							
	Dred Contact	Dred Contact	1	0103030	4.6.7	44464013		100000	C102024	STATE OF STA	0.00000	20000	2000							
Arseric	53	190,000	mg/kg		26	24	100	77	25	110	31	70	10							
Waste Pipeline	Selline	1000		Location ID	WP.01	WP-02	-02	WE	WP-03	WP-04	WP-05	WP-06	WP-08	-08	WP-09	W	WP-10	WP-11		W
	Direct Contact	Direct Contact		Sample Date	4/5/2012	A/5/2	4/5/2012	4/5/	4/5/2012	11/26/2013	11/26/2013	11/26/2013	11/26/2013	(2013	11/25/2013	11/26	11/26/2013	11/26/2011	2013	5721
	MSC (0-2")	MSC (2:15)	Chris	Depth (R bgs)	15.20	10-20	65-70	10-20	30-40	15.20	15-20	15.20	15.20	35.40	15.20	15-20	35-40	15-20	35.40	15-20
Arsenic	22	190,000	mp/kg		6.6	13	ý,	19	23	5.4	9	44	25	18	16	13	5.6	12	15	13
				The management		CA DAY		1475	A 200		A.D. 16	1.5			24 D/V		14 E 47	87 500		Se divi
Ē	Non-Residential	Nan-Residentia		Sample Date		5/21/2014		5/21	5/21/2014		5/21/2014	2014			5/21/2014		5/21/2014	5/21/2014		5/21/2014
Analyte	MSC (0-2')	MSC (2-15)	Chit	Depth (# bgs)	15-20	35-40	55-60	15-20	35-40	15-20	35-40	55-60	75-80	15-20	35.40	55.60	15-20	15-20	15.20	35-40
Arseroc	53	190,000	- By6w		28	15	10	34,56]	46	16	22	14	69	5.6	12	6.9	10	9.2	17	16
	Action Statement			Location ID	W.	WP.23	AR.96		AR.102			AR-103			AR-104		49.104		48.106	۱
ŀ	Non-Residential	Non-Residential	Į	Sample Date	573)	5/23/2014	5/20/2014		5/22/2014			5/22/2014			5/22/2014		\$722/2014		5/22/2014	
Analyte	MSC (0-21	MSC (2-15)	Und	Depth (# bgs)	15-20	75-80	15-20	15-20	25-30	35.40	16.20	25-30	35.40	15.20	25.30	35.40	15-70	15-20	25-30	35-40
Arsenc	53	190,000	mp/kg	100	10	5.3	14	18	1.6	9.4	23 [26]	14	8.7	16	18	11	10	74	. 24	52
				To the second		1														
	Non-Residential	Non-Residential		Location ID		AR-107		AR	AR-108		AR-109			AR-110						
	Direct Cantact	Deect Contact	1	Sample Date	40.00	5/22/2014	40.00	5/22	5/22/2014	44	5/22/2014			5/22/2014						
Arcene	MSC 10-23	190 000	move	Deficial in plant	25.20	20	35:40	29	2.5	17 1161	27	30	15.20	14	35.40					

Unit

Arsenc

Nation in byte fest below ground surfixe.

11 - industrial concentration detected in duplicate sample.

12 - industrial concentration detected in duplicate sample.

13 - industrial pression detected in duplicate sample.

14 - industrial pression detected in duplicate sample.

15 - industrial pression detected (0.27) - Permisylvana Non-Residential Diest Contact Medium Specific Concentration Standard for soil from 0..2 it byte.

15 - industrial bress Contact MSC (2.15) - Permisylvana Non-Residential Diest Southern Specific Contact MSC (2.15) - Permisylvana Non-Residential Diest Contact Contact NSC (2.15) - Permisylvana Non-Residential Diest Contact WSC (2.15) are 100 and 30 and 30 action of 30 and 30 action of 30

Attachment 11

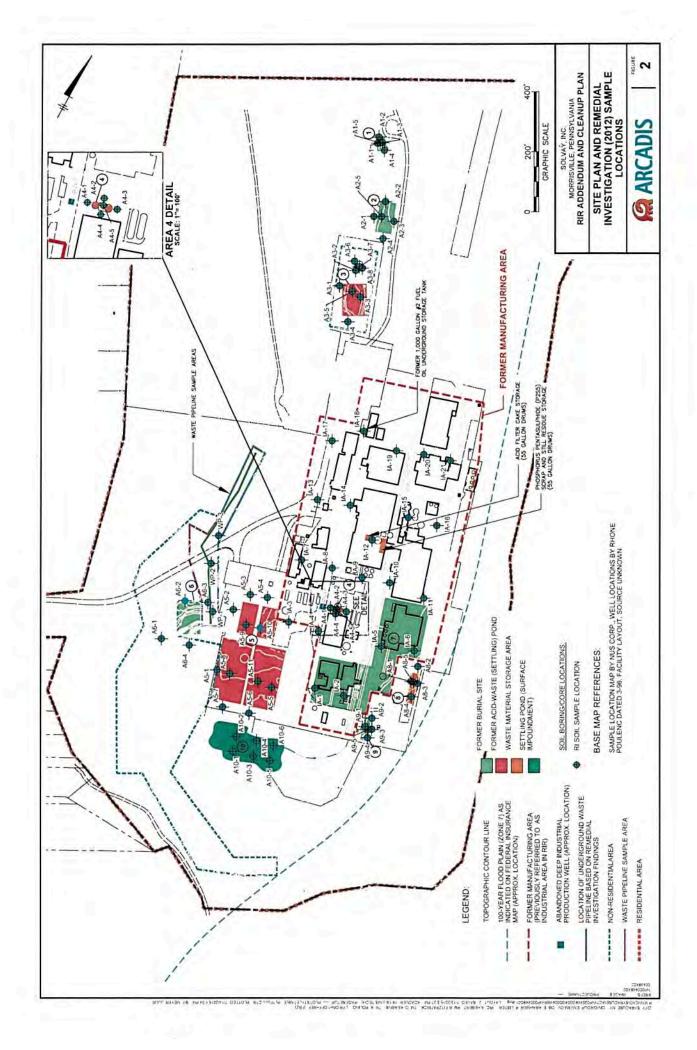


Table F-4 Complete Analytical Summary of Groundwater Samples - April 2012 Remedial Investigation Report Rhodia Morrisville Facility

																100																										Metals			
Thallium	Sodium	Sodium	Silver	Silver	Selenium	Selenium	Potassium	Potassium	Nickel	Nickel	Mercury	Mercury	Manganese	Manganese	Magnesium	Magnesium	Lead	Lead	Iron	Iron	Cr (Hexavalent)	Copper	Copper	Cobalt	Cobalt	Chromium	Chromium	Calcium	Calcium	Cadmium	Cadmium	Beryllium	Beryllium	Barium	Barium	Arsenic	Arsenic	Antimony	Antimony	Aluminum	Aluminum		Constituent (ug/L)		
D	1	0	7	D	T	D	1	D	7	0	T	0	Т	D	Т	D	7	D	7	D	Т	T	0	Т	0	7	D	T	D	Т	D	1	D	7	D	7	D	1	D	7	D		Fraction		
2	1	1	71	71	50	50	ď	1	300	300	2	2	320	320	ı	1	15	15	11000	11000	0.031	1300	1300	4.7	4.7	100	100	1	ı	5	5	4	4	2000	2000	10	10	6	6	16000	16000		EPA MCL (or RSL)		
2	-	-	100	100	50	50	1	1	100	100	2	2	300	300		1	5	5	300	300	1	1000	1000	31	31	100	100	•	-	5	5	4	4	2000	2000	10	10	6	6	200	200		PADEP Non-Res Used Aquifer MSC	Sample Date	Location ID
< 10 U	54000	60000	2.1 J	2.0 J	9.7 J	< 40 U	3600 J	3700 J	6.8 J	2.3 J	< 0.70 U	< 0.70 U	430	92	26000	27000	2.7 J	< 4.0 U	1500	< 280 U	< 25 U	6.0 J	2.6 J	0.50 J	< 20 U	2.1 J	0.58 J	30000 B	31000 B	7.8 B	7.9 B	< 4.0 U	< 4.0 U	12 JB	0.47 J	220	230	< 12 U	< 12 U	1300	< 180 U			e 4/12/2012	GM-01
< 10 U	28000	32000	1.6 J	1.5 J	9.4 J	< 40 U	4300 J	4700 J	3.3 J	0.90 J	< 0.70 U	< 0.70 U	330	53	12000	12000	< 4.0 U	< 4.0 U	2600	< 280 U	< 25 U	5.2 J	1.6 J	1.0 J	< 20 U	1.7 J	< 50 U	27000 B	27000 B	1.2 JB	< 3.5 U	< 4.0 U	< 4.0 U	85 B	70	12	8.7	< 12 U	< 12 U	1100	< 180 U			4/12/2012	GM-02 (DUP)
< 10 U	30000	31000	1.6 J	1.8 J	< 40 U	< 40 U	4600 J	4500 J	2.8 J	< 50 U	< 0.70 U	< 0.70 U	340	49	12000 B	12000	2.9 J	< 4.0 U	2600	< 280 U	< 25 U	5.2 J	1.1 J	0.60 J	< 20 U	1.7 J	< 50 U	26000 B	26000 B	<3.5 U	<3.5 U	0.48 JB	< 4.0 U	84	66	8.9	7.1 J	< 12 U	< 12 U	1100	< 180 U			4/12/2012) GM-02
< 10 U	17000	13000	< 20 U	0.76 J	< 40 U	< 40 U	1100 J	970 J	1.9 J	1.1 J	< 0.70 U	< 0.70 U	350	350	-	5300 B	16	< 4.0 U	3600	3200	< 25 U	240	1.6 J	< 20 U	< 20 U	< 50 U	< 50 U	Н	-	< 3.5 U	< 3.5 U	0.36 JB	0.31 JB	28 J	20 J	3.7 J	<7.5 U	< 12 U	< 12 U	210	< 180 U			4/11/2012	GM-03
4.8 J	12000	12000	< 20 U	< 20 U	< 40 U	< 40 U	1200 J	1200 J	57	60	< 0.70 U	< 0.70 U	1100	1100	4400 B	4600 B	< 4.0 U	< 4.0 U	22000	21000	< 25 U	5.7 J	1.6 J	48	51	2.1 J	0.97 J	8000 B	8400 B	<3.5 U	<3.5 U	0.44 JB	0.34 JB	40 J	26 J	15	17	< 12 U	< 12 U	490	< 180 U			4/11/2012	GM-04
< 10 U	22000	24000	1.7 JB	1.4 JB	< 40 U	< 40 U	1000 J	C 086	3.4 J	1.9 J	< 0.70 U	< 0.70 U	1100 B	1000 B	11000 B	12000 B	4.1	2.7 J	7500	3300	< 25 U	5.4 JB	4.3 JB	5.1 JB	4.7 JB	4.4 JB	1.7 JB	16000 B	17000 B	2.5 JB	2.6 JB	1.7 JB	1.7 JB	8.3 JB	2.3 JB	33 B	32 B	< 12 U	< 12 U	410 B	< 180 U			4/13/2012	MW-01
< 10 U	21000	21000	1.6 J	1.6 J	< 40 U	< 40 U	2000 J	2000 J	< 50 U	< 50 U	< 0.70 U	< 0.70 U	120	4.2 J	14000 B	14000 B	< 4.0 U	< 4.0 U	1100	< 280 U	< 25 U	2.3 J	1.1 J	1.7 J	< 20 U	1.5 J	< 50 U	30000 B	30000 B	< 3.5 U	< 3.5 U	0.37 JB	0.29 JB	38 J	26 J	<7.5 U	<7.5 U	< 12 U	< 12 U	430	< 180 U			4/11/2012	MW-02
< 10 U	22000	22000	1.8 J	1.7 J	< 40 U	< 40 U	2300 J	2100 J	2.8 J	< 50 U	< 0.70 U	< 0.70 U	120	3.5 J	15000 B	15000 B	4.5	< 4.0 U	1700	< 280 U	< 25 U	4.1 J	1.7 J	1.2 J	< 20 U	1.6 J	< 50 U	30000 B	31000 B	<3.5 U	< 3.5 U	0.39 JB	0.32 JB	33 J	20 J	3.2 J	<7.5 U	< 12 U	< 12 U	1200	< 180 U			4/11/2012	MW-03
< 10 U	22000	21000	2.1 J	2.0 J	< 40 U	< 40 U	1900 J	1300 J	9.1 J	< 50 U	< 0.70 U	< 0.70 U	480	240	22000 B	20000 B	6.1	< 4.0 U	7500	< 280 U	< 25 U	9.0 J	1.5 J	1.4 J	< 20 U	11 J	< 50 U	40000 B	37000 B	1.5 J	1.1 J	0.53 JB	0.31 JB	42 J	< 50 U	29	25	< 12 U	< 12 U	2900	< 180 U			4/11/2012	MW-04

Be	Be		В									4-Chk		4-Ct	4,6-D		3,3	3				2-1		2-(2	2		2.	2,	2,4	2,4	2,3,4	1,2	1,2,4,		SVOCs						Metals Continued	C		
Benzo[g,h,i]perylene	Benzo[b]fluoranthene	Benzo[a]pyrene	Benzo[a]anthracene	Benzaldehyde	Atrazine	Anthracene	Acetophenone	Acenaphthylene	Acenaphthene	4-Nitrophenol	4-Nitroaniline	4-Chlorophenyl-phenylether	4-Chloroaniline	4-Chloro-3-methylphenol	4,6-Dinitro-2-methylphenol	3-Nitroaniline	3,3'-Dichlorobenzidine	3&4-Methylphenol	2-Nitrophenol	2-Nitroaniline	2-Methylphenol	2-Methylnaphthalene	2-Chlorophenol	2-Chloronaphthalene	2,6-Dinitrotoluene	2,4-Dinitrotoluene	2,4-Dinitrophenol	2,4-Dimethylphenol	2,4-Dichlorophenol	2,4,6-Trichlorophenol	2,4,5-Trichlorophenol	,3,4,6-Tetrachlorophenol	1,2-Diphenylhydrazine	1,2,4,5-Tetrachlorobenzene	1,1'-Biphenyl		Zinc	Zinc	Vanadium	Vanadium	Thallium	tinued	Constituent (ug/L)		
NA	NA	NA	NA	NA	AN	AN	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		1	0	Т	0	T		Fraction		
1	0.029	0.2	0.029	1500	3	1300	1500	1	400	1	3.3	1	0.32	1100	1.2	1	0.11	140	1	150	720	27	71	550	15	0.2	30	270	35	3.5	890	170	0.067	1.2	0.83		4700	4700	1	1	2		EPA MCL (or RSL)		
0.26	1.2	0.2	3.6	-	3	66	10000	6100	3800	60	130	1	13	510	10	31	5,8	•	820	310	5100	410	40	8200	100	8.4	200	2000	20	100	10000	_		31	5100		2000	2000	720	720	2		PADEP Non-Res Used Aquifer MSC	Sample Date	Location ID
< 2.0 U	< 2.0 U	< 0.020 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 0.51 U	< 2.0 U	< 10 U	< 2.0 U	< 2.0 U	< 0.51 U	< 2.0 U	< 2.0 U	< 0.51 U	<2.0 U	< 2.0 U	<2.0 U	<2.0 U	< 2.0 U	< 10 U	< 2.0 U	< 2.0 U	<2.0 U	< 2.0 U	< 2.0 U	< 0.051 U	< 2.0 U	<2.0 U		110 B	57	11 J	11 J	< 10 U			4/12/2012	GM-01
<2.0 U	<2.0 U	< 0.020 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	<2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	N 05'0 >	< 2.0 U	N 01 >	< 2.0 U	< 2.0 U	O 05.0 >	< 2.0 U	< 2.0 U	< 0.50 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	<2.0 U	< 10 U	<2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 0.050 U	< 2.0 U	< 2.0 U		13 JB	< 50 U	6.9 J	4.2 J	< 10 U			4/12/2012	GM-02 (DUP)
< 2.0 U	< 2.0 U	< 0.020 U	< 2.0 U	< 2.0 U	<2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 0.50 U	< 2.0 U	< 10 U	< 2.0 U	< 2.0 U	< 0.50 U	< 2.0 U	< 2.0 U	< 0.50 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 10 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 0.050 U	< 2.0 U	< 2.0 U		13 JB	< 50 U	6.1 J	2.3 J	< 10 U			4/12/2012) GM-02
<2.0 U	< 2.0 U	_	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 0.51 U	< 2.0 U	< 2.0 U	< 2.0 U	_	< 0.51 U		< 2.0 U	< 0.51 U	< 2.0 U	<2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 10 U	< 2.0 U	<2.0 U	<2.0 U	< 2.0 U	<2.0 U	< 0.051 U	<2.0 U	<2.0 U		170 B	54 B	3.2 J	3.5 J	< 10 U			4/11/2012	GM-03
< 2.1 U	$\overline{}$		< 2.1 U	<2.1 U	<2.1 U	<2.1 U	< 2.1 U	< 2.1 U	< 2.1 U	< 2.1 U	< 2.1 U	< 2.1 U	< 0.52 U	<2.1 U	<2.1 U	<2.1 U	<2.1 U	< 0.52 U	<2.1 U	< 2.1 U	< 0.52 U	<2.1 U	<2.1 U	<2.1 U	<2.1 U	<2.1 U	< 10 U	< 2.1 U	<2.1 U	<2.1 U	<2.1 U	< 2.1 U	< 0.052 U	<2.1 U	< 2.1 U		250 B	200 B	2.3 J	< 50 U	< 10 U			4/11/2012	GM-04
. < 2.0 U	< 2.0 U	< 0.020 U	< 2.0 U	< 2.0 U	<2.0 U	< 2.0 U	<2.0 U	<2.0 U	< 2.0 U	< 2.0 U	<2.0 U	< 2.0 U	< 0.51 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 0.51 U	< 2.0 U	< 2.0 U	< 0.51 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 10 U	< 2.0 U	<2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 0.051 U	< 2.0 U	< 2.0 U		16 J	4.9 J	6.0 J	5.2 J	< 10 U			4/13/2012	MW-01
<2.1 U	<2.1 U	< 0.021 U	< 2.1 U	< 2.1 U	<2.1 U	<2.1 U	<2.1 U	< 2.1 U	< 2.1 U	<2.1 U	<2.1 U	<2.1 U	< 0.52 U	<2.1 U	< 10 U	<2.1 U	<2.1 U	< 0.52 U	<2.1 U	< 2.1 U	< 0.52 U	<2.1 U	<2.1 U	< 2.1 U	< 2.1 U	< 2.1 U	< 10 U	<2.1 U	< 2.1 U	<2.1 U	<2.1 U	<2.1 U	< 0.052 U	< 2.1 U	< 2.1 U		15 JB	8.6 JB	7.8 J	4.6 J	< 10 U			4/11/2012	MW-02
<2.1 U	<2.1 U	< 0.021 U	<2.1 U	<2.1 U	<2.1 U	< 2.1 U	<2.1 U	< 2.1 U	<2.1 U	< 2.1 U	<2.1 U	< 2.1 U	< 0.52 U	<2.1 U	< 10 U	< 2.1 U	< 2.1 U	< 0.52 U	<2.1 U	< 2.1 U	< 0.52 U	<2.1 U	<2.1 U	< 2.1 U	<2.1 U	< 2.1 U	< 10 U	< 2.1 U	<2.1 U	<2.1 U	<2.1 U	<2.1 U	< 0.052 U	<2.1 U	<2.1 U		23 JB	13 JB	12 J	8.4 J	< 10 U			4/11/2012	MW-03
< 2.0 U	<2.0 U	< 0.020 U	<2.0 U	< 2.0 U	<2.0 U	< 2.0 U	<2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	<2.0 U	< 2.0 U	< 0.50 U	< 2.0 U	< 10 U	< 2.0 U	< 2.0 U	< 0.50 U	< 2.0 U	< 2.0 U	< 0.50 U	< 2.0 U	< 2.0 U	< 2.0 U	<2.0 U	< 2.0 U	< 10 U	< 2.0 U	< 2.0 U	< 2.0 U	<2.0 U	< 2.0 U	< 0.050 U	< 2.0 U	< 2.0 U		60 B	9.7 JB	10 J	5.7 J	< 10 U			4/11/2012	MW-04

Table F-4 Complete Analytical Summary of Groundwater Samples - April 2012 Remedial Investigation Report Rhodia Morrisville Facility

Constituent (upil.)		_		< 0.020 U	< 0.020 U	< 0.020 U	< 0.020 U	0.05	0.05	NA	1,2-Dibromoethane
Contributed Cont	^1.0 U	-	<1.0 U	<1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	0.2	0.2	NA	1,2-Dibromo-3-chloropropane
Constituent (ugil.) Fraction EPA MCL (or RSL) Sample Date 4172/0172	<1.0 U		<1.0 U	<1.0 U	1.2	1.2	< 1.0 U	70	70	NA	1,2,4-Trichlorobenzene
Constituent(ug/L)	< 1.0 U	_	< 1.0 U	_	2.3	2.6	< 1.0 U	1	5.2	NA	1,2,3-Trichlorobenzene
Constituent (gg/L)	< 1.0 U		< 1.0 U	< 1.0 U	< 1.0 U	<1.0 U	<1.0 U	7	7	NA	1,1-Dichloroethene
Constituent(ug/L)	< 0.57 U		< 1.0 U	< 1.0 U	< 1.0 U	<1.0 U	<1.0 U	160	2.4	NA	1,1-Dichloroethane
	\dashv		< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	<1.0 U	5	5	NA	1,1,2-Trichloroethane
	<1.0 U	_	< 1.0 U	<1.0 U	< 1.0 U	< 1.0 U	<1.0 U	170000	53000	NA	1,1,2-Trichloro-1,2,2-trifluoroethane
Constituent (igit) Fraction	< 0.75 U		< 1.0 U	< 1.0 U	< 0.75 U	< 0.75 U	< 0.75 U	4.3	0.066	AN	1,1,2,2-Tetrachloroethane
Constituent (ug1)	<1.0 U	_	<1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	<1.0 U	200	200	NA	
		- 1									VOCs
Constituent (ugit) Fraction EPA MCL (or RSL) Sample Date 4172012	<2.0 U	1	<2.1 U	< 2.0 U	< 2.0 U	<2.0 U	<2.0 U	1	1	NA	4-Bromophenyl Phenyl Ether
Constituent (ugit)	<2.0 U	7	<2.1 U	< 2.0 U	< 2.0 U	< 2.0 U	<2.0 U	130	87	NA	Pyrene
Constituent (ugl.)	<2.0 U		<2.1 U	<2.0 U	< 2.0 U	< 2.0 U	<2.0 U	2000	4500	NA	Phenol
Epa MCL (or RS1) Epa MCL (or	< 2.0 U		<2.1 U	< 2.0 U	< 2.0 U	< 2.0 U	<2.0 U	1100	1	NA	Phenanthrene
EPA MCL (or RSL) PADEP Non-Res Used Cap U Cap	< 0.20 U		< 0.21 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	1	1	NA	Pentachlorophenol
Denzilphinhalate NA Doze Doze Denzilphinhalate NA Doze Doze	< 2.0 U		<2.1 U	< 2.0 U	<2.0 U	< 2.0 U	< 2.0 U	530	10	NA	N-Nitrosodiphenylamine
Constituent (ug/L)	< 0.51 U		< 0.52 U	< 0.51 U	< 0.50 U	< 0.50 U	< 0.51 U	0.37	0.0093	NA	N-Nitroso-di-n-propylamine
Demandphinalate NA Diberacolinoberacene NA Diber	< 2.0 U		<2.1 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	200	0.12	NA	Nitrobenzene
Digitify pith balate NA 1100 Digity pith balate NA 1200 12	< 0.51 U		< 0.52 U	< 0.51 U	< 0.50 U	< 0.50 U	< 0.51 U	100	0.14	NA	Naphthalene
Constituent(ug/L)	< 2.0 U		<2.1 U	< 2.0 U	< 2.0 U	< 2.0 U	<2.0 U	100	67	NA	Isophorone
Constituent (ug/L)	<2.0 U		< 2.1 U	<2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	3.6	0.029	NA NA	Indeno[1,2,3-cd]pyrene
Constituent (ug/L)	< 0.020 U < 0.021 U	٨	< 0.021 U	< 0.020 U	< 0.020 U	< 0.020 U	< 0.020 U	-	0.79	NA	Hexachloroethane
Constituent (ug/L)	< 2.0 U		<2.1 U	<2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	50	50	NA.	Hexachlorocyclopentadiene
Constituent (ug/L)	< 0.020 U < 0.021 U	۸	< 0.021 U	< 0.020 U	< 0.020 U	< 0.020 U	< 0.020 U	33	0.26	NA	Hexachlorobutadiene
Constituent (ug/L)	-	٨	< 0.021 U	< 0.020 U	< 0.020 U	< 0.020 U	< 0.020 U	-	_	NA NA	Hexachlorobenzene
Constituent (ug/L)	< 2.0 U	۸	< 2.1 U	<2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	1900	220	NA	Fluorene
Constituent(ug/L)	2.0 U	٨	<2.1 U	<2.0 U	< 2.0 U	< 2.0 U	<2.0 U	260	630	AN	Fluoranthene
Constituent (ug/L)	< 2.0 U	,	<2.1 U	<2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	3000	1	NA	Di-n-octylphthalate
Constituent (ug/L)	< 0.51 U	^	< 0.52 U	< 0.51 U	< 0.50 U	< 0.50 U	< 0.51 U	10000	670	NA	Di-n-butylphthalate
Constituent (ug/L) Fraction PAMCL (or RSL) PAMCL	< 2.0 U	٨	<2.1 U	<2.0 U	<2.0 U	< 2.0 U	< 2.0 U	1	-	. NA	Dimethylphthalate
Constituent (ug/L)	< 2.0 U	٨	<2.1 U	<2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	82000	11000	NA	Diethylphthalate
Constituent (ug/L)	< 0.51 U	٨	< 0.52 U	< 0.51 U	< 0.50 U	< 0.50 U	< 0.51 U	100	5.8	NA	Dibenzofuran
Constituent (ug/L)	< 2.0 U	^	<2.1 U	<2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	0.36	0.0029	NA	Dibenzo[a,h]anthracene
Constituent (ug/L)	2.0 U	٨	<2.1 U	<2.0 U	< 2.0 U	<2.0 U	< 2.0 U	1.9	2.9	NA	Chrysene
Constituent (ug/L) Fraction EPA MCL (or RSL) PADEP Non-Res Used M-02 (DUP) GM-02 M-02 (DUP) GM-02 M-03 GM-04	2.0 U	٨	<2.1 U	<2.0 U	<2.0 U	< 2.0 U	< 2.0 U	130	•	NA	Carbazole
Constituent (ug/L) Fraction EPA MCL (or RSL) PADEP Non-Res Used M-02 (DUP) GM-02 M-02 (DUP) GM-02 M-02 (DUP) GM-02 M-03 GM-04 M-02 (DUP) GM-02 M-02 (DUP) GM-02 M-02 (DUP) GM-02 M-02 (DUP) GM-02 M-02 (DUP)	2.0 U	٨	<2.1 U	< 2.0 U	<2.0 U	< 2.0 U	< 2.0 U	1	7700	NA	Caprolactam
Constituent (ug/L) Fraction EPA MCL (or RSL) Aquifer MSC Constituent (ug/L) Fraction EPA MCL (or RSL) Aquifer MSC Constituent (ug/L) Fraction EPA MCL (or RSL) Aquifer MSC Constituent (ug/L) Aquifer MSC Constituent (ug/L) Fraction EPA MCL (or RSL) Aquifer MSC Constituent (ug/L) Aquifer MSC Constituent (ug/L) Constituent (ug/L) Fraction EPA MCL (or RSL) Aquifer MSC Constituent (ug/L) Constituent	:2.0 U	٨	<2.1 U	<2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	1400	14	NA	Butylbenzylphthalate
Constituent (ug/L) Fraction Fraction FPA MCL (or RSL) MACE MACE	2.0 U	^	<2.1 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	6	6	NA	bis(2-Ethylhexyl)phthalate
Constituent (ug/L) Fraction FPA MCL (or RSL) PADEP Non-Res Used	2.0 U	۸	<2.1 U	<2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	300	0.31	NA	bis(2-Chloroisopropyl)ether
Constituent (ug/L) Fraction NA 0.29 0.39 0.39 0.55 0.50	0.51 U	٨	< 0.52 U	< 0.51 U	< 0.50 U	< 0.50 U	< 0.51 U	0.76	0.012	NA	bis(2-Chloroethyl)ether
Constituent (ug/L) Fraction NA 0.29 0.55 0.50 0.5	2.0 U	۸	<2.1 U	< 2.0 U	<2.0 U	< 2.0 U	< 2.0 U	310	47	NA	bis(2-Chloroethoxy)methane
Location ID GM-01 GM-02 (DUP) GM-02 GM-03 GM-04	2.0 U	٨	< 2.1 U	< 2.0 U	<2.0 U	< 2.0 U	< 2.0 U	0.55	0.29	NA	Benzo[k]fluoranthene
Location ID GM-01 GM-02 (DUP) GM-02 GM-03 GM-04											SVOCs Continued
GM-02 (DUP) GM-02 GM-03 GM-04 4/12/2012 4/12/2012 4/11/2012 4/11/2012								PADEP Non-Res Used Aquifer MSC	EPA MCL (or RSL)	Fraction	Constituent (ug/L)
GM-01 GM-02 (DUP) GM-02 GM-03 GM-04	4/13/2012 4/11/2012	4		4/11/2012	4/12/2012	4/12/2012	4/12/2012	Sample Date			
GM-01 GM-02 (DIIB) GM-02 GM-03	I O-AAIA		CWITCH	GW-02		Chiede (DOL)		Focanonio			
	10/0/04	_	2000	21.03		יפוים יסוום		I position ID			

Xylenes (Total)	Vinyl chloride	Trichlorofluoromethane	Trichloroethene	trans-1,3-Dichloropropene	trans-1,2-Dichloroethene	Toluene	Tetrachloroethene	Styrene	o-Xylene	Methyl-t-butyl ether	Methylene chloride	Methylcyclohexane	Methyl Acetate	m&p-Xylenes	Isopropylbenzene	Ethylbenzene	Dichlorodifluoromethane	Dibromochloromethane	Cyclohexane	cis-1,3-Dichloropropene	cis-1,2-Dichloroethene	Chloromethane	Chloroform	Chloroethane	Chlorobenzene	Carbon tetrachloride	Carbon disulfide	Bromomethane	Bromoform	Bromodichloromethane	Bromochloromethane	Benzene	Acetone	4-Methyl-2-pentanone	2-Hexanone	2-Butanone	1,4-Dioxane	1,4-Dichlorobenzene	1,3-Dichlorobenzene	1,2-Dichloropropane	1,2-Dichloroethane	1,2-Dichlorobenzene	VOCs Continued	Constituent (ug/L)		
NA	NA	AN	NA	NA	AN	AN	AN	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA A	NA.	NA	NA	NA	NA	NA.	AN	AN		Fraction		
10000	2	1100	5		100	1000	5	100	190	12	5	1	16000	1	390	700	190	80	13000	1	70	190	80	21000	100	5	720	7	80	80	83	5	12000	1000	34	4900	0.67	75		5	ۍ	600		EPA MCL (or RSL)		
10000	2	2000	5	1	100	1000	5	100	1	20	5	1	100000	-	3500	700	1000	80	53000		70	30	80	900	100	5	6200	10	80	80	90	5	92000	8200	44	4000	32	75	600	5	5	600		PADEP Non-Res Used Aquifer MSC	Sample Date	Location ID
< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 0.50 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 0.50 U	< 10 U	< 1.0 U	<1.0 U	<1.0 U	< 5.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 0.50 U	< 1.0 U			4/12/2012	GM-01
< 1.0 U	< 1.0 U	<1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	<1.0 U	< 1.0 U	< 0.50 U	<1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 0.50 U	< 10 U	< 1.0 U	< 1.0 U	< 1.0 U	< 5.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 0.50 U	< 1.0 U	AND SECURE OF THE		4/12/2012	GM-02 (DUP)
< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 0.50 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 0.50 U	< 10 U	< 1.0 U	< 1.0 U	< 1.0 U	< 5.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 0.50 U	< 1.0 U			4/12/2012) GM-02
< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 0.50 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 0.50 U	< 10 U	< 1.0 U	< 1.0 U	<1.0 U	< 5.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 0.50 U	< 1.0 U			4/11/2012	GM-03
< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 0.50 U	< 1.0 U	<1.0 U	< 1.0 U	<1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 0.50 U	< 10 U	< 1.0 U	< 1.0 U	<1.0 U	< 5.0 U	< 1.0 U	<1.0 U	< 1.0 U	< 0.50 U	< 1.0 U			4/11/2012 4/11/2012	GM-04
< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 0.50 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U							< 1.0 U	<1.0 U	<1.0 U	< 5.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 0.50 U	< 1.0 U			4/13/2012	MW-01
< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 0.50 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	<1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	<1.0 U	_				< 0.50 U		< 1.0 U	<1.0 U	<1.0 U	< 5.0 U	< 1.0 U	<1.0 U			\neg			4/13/2012 4/11/2012 4/11/2012	MW-02
< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 0.50 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	<1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	<1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 0.50 U	< 10 U	< 1.0 U	< 1.0 U	<1.0 U	< 5.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 0.50 U					MW-03
< 1.0 U	< 1.0 U	< 1.0 U	<1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 0.50 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	<1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	<1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 0.50 U	< 10 U	< 1.0 U	<1.0 U	< 1.0 U	< 5.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 0.50 U	< 1.0 U		57	4/11/2012	MW-04

Table F-4
Complete Analytical Summary of Groundwater Samples - April 2012
Remedial Investigation Report
Rhodia Morrisville Facility

																	STATE OF THE STATE						2			2.00		1														Metals			
Thallium	Sodium	Sodium	Silver	Silver	Selenium	Selenium	Potassium	Potassium	Nickel	Nickel	Mercury	Mercury	Manganese	Manganese	Magnesium	Magnesium	Lead	Lead	Iron	Iron	Cr (Hexavalent)	Copper	Copper	Cobalt	Cobalt	Chromium	Chromium	Calcium	Calcium	Cadmium	Cadmium	Beryllium	Beryllium	Barium	Barium	Arsenic	Arsenic	Antimony	Antimony	Aluminum	Aluminum		Constituent (ug/L)	T8	<
D	Т	0	Т	D	Т	D	Т	0	7	D	Т	0	1	D	T	D	1	D	1	D	1	1	D	T	D	T	0	Т	D	T	D	Т	0	Т	0	T	D	Т	D	Т	D		Fraction		
2	-	-	71	71	50	50	1	1	300	300	2	2	320	320	•	-	15	15	11000	11000	0.031	1300	1300	4.7	4.7	100	100	1		5	5	4	4	2000	2000	10	10	6	6	16000	16000		EPA MCL (or RSL)		
2	1	-	100	100	50	50	1	-	100	100	2	2	300	300	•		5	5	300	300	_	1000	1000	31	31	100	100	1		5	5	4	4	2000	2000	10	10	6	6	200	200		PADEP Non-Res Used Aquifer MSC	Sample Date 4/12/2012	Location ID
< 10 U	20000	23000	2.0 J	2.1 J	9.5 J	£ 5.8	1800 J	2100 J	< 50 U	< 50 U	< 0.70 U	< 0.70 U	58	43	13000	14000	<4.0 U	2.8 J	240 J	< 280 U	< 25 U	2.3 J	1.7 J	< 20 U	< 20 U	< 50 U	< 50 U	32000 B	34000 B	1.2 JB	<3.5 U	< 4.0 U	< 4.0 U	60 B	64	<7.5 U	5.5 J	< 12 U	< 12 U	240	< 180 U			4/12/2012	W-02
< 10 U	28000	31000	2.5 J	2.4 J	8.7 J	L 0.8	8600	9600	< 50 U	< 50 U	< 0.70 U	< 0.70 U	40	39 J	16000	17000	< 4.0 U	< 4.0 U	< 280 U	< 280 U	< 25 U	2.7 J	2.3 J	< 20 U	< 20 U	< 50 U	< 50 U	37000 B	40000 B	1.2 JB	0.92 JB	< 4.0 U	<4.0 U	72 B	78	8.4	6	< 12 U	< 12 U	57 J	< 180 U			4/12/2012	W-03
< 10 U	10000	11000	L 96.0	0.71 J	< 40 U	< 40 U	370 J	240 J	1.9 J	1.2 J	< 0.70 U	< 0.70 U	30 JB	6.6 JB	1100 JB	1000 JB	<4.0 U	< 4.0 U	810	< 280 U	< 25 U	2.5 JB	1.9 JB	0.83 J	< 20 U	3.1 JB	1.3 JB	2600 B	2600 B	1.9 JB	1.9 JB	0.89 JB	0.87 JB	13 JB	9.0 JB	<7.5 U	2.8 J	< 12 U	< 12 U	670	72 J			4/10/2012	W-04
< 10 U	6600	7200	2.0 JB	1.8 JB	14 J	9.3 J	1400 J	1500 J	8.0 J	8.9 J	< 0.70 U	< 0.70 U	7.1 JB	5.8 JB	14000 B	15000 B	< 4.0 U	3.2 J	L 091	< 280 U	< 25 U	7.2 JB	6.1 JB	0.47 JB	0.46 JB	1.8 JB	1.7 JB	24000 B	26000 B	6.9 B	7.1 B	1.7 JB	1.7 JB	7.1 JB	6.2 JB	200 B	220 B	< 12 U	< 12 U	130 JB	< 180 U			4/13/2012	W-05
< 10 U	7400	8000	2.3 JB	2.3 JB	< 40 U	< 40 U	1400 J	1500 J	9.5 J	9.9 J	< 0.70 U	< 0.70 U	3300 B	3500 B	18000 B	19000 B	2.8 J	4.0 J	3300	3200	< 25 U	4.1 JB	4.1 JB	6.0 JB	5.3 JB	2.6 JB	1.4 JB	34000 B	36000 B	3.4 JB	3.5 JB	1.7 JB	1.7 JB	10 JB	7.9 JB	77 B	88 B	< 12 U	< 12 U	270 B	49 JB			4/13/2012	W-06
< 10 U	5800	6600	2.4 J	2.3 J	< 40 U	< 40 U	940 J	L 098	1.4 J	< 50 U	< 0.70 U	< 0.70 U	37 J	0.73 J	41000 B	49000 B	3.8 J	4.8	1600	< 280 U	< 25 U	3.9 J	2.6 J	< 20 U	< 20 U	1.6 J	< 50 U	46000 B	49000 B	<3.5 U	0.74 J	0.37 JB	0.30 JB	18 J	3.3 J	35	46	< 12 U	< 12 U	1100	< 180 U			4/11/2012	W-07
< 10 U	48000	48000	2.7 J	2.8 J	12 J	11 J	2200 J	2100 J	6.0 J	1.9 J	< 0.70 U	< 0.70 U	1100 B	180 B	17000 B	17000 B	3.5 J	3.1 J	670	< 280 U	< 25 U	4.1 JB	2.9 JB	10 J	1.1 J	2.2 JB	< 50 U	42000 B	41000 B	3.7 B	3.7 B	0.85 JB	0.82 JB	32 JB	10 JB	45	45	< 12 U	< 12 U	260	53 J			4/10/2012	W-08
< 10 U	69000	81000	1.5 J	1.3 J	< 40 U	< 40 U	840 J	£ 058	3.2 J	2.9 J	< 0.70 U	< 0.70 U	1100	1200	55000	60000	< 4.0 U	< 4.0 U	2300	1800	< 25 U	L 0.8	1.3 J	2.1 J	2.2 J	C 06.0	< 50 U	18000 B	18000 B	3.6 B	3.8 B	<4.0 U	< 4.0 U	2.6 JB	< 50 U	99	110	< 12 U	< 12 U	130 J	< 180 U			4/12/2012	W-09 (DUP)
< 10 U	74000	83000	1.4 J	1.2 J	< 40 U	10 J	910 J	J 086	3.3 J	3.2 J	< 0.70 U	< 0.70 U	1200	1200	57000	61000	3.3 J	< 4.0 U	2500	1800	< 25 U	9.3 J	2.4 J	2.3 J	2.4 J	0.96 J	0.56 J	18000 B	18000 B	3.9 B	4.0 B	< 4.0 U	< 4.0 U	3.6 JB	0.82 J	110	110	< 12 U	< 12 U	210	< 180 U			4/12/2012	W-09

Benzo[g,h,i]perylene	Benzo[b]fluoranthene	Benzo[a]pyrene	Benzo[a]anthracene	Benzaldehyde	Atrazine	Anthracene	Acetophenone	Acenaphthylene	Acenaphthene	4-Nitrophenol	4-Nitroaniline	4-Chlorophenyl-phenylether	4-Chloroaniline	4-Chloro-3-methylphenol	4,6-Dinitro-2-methylphenol	3-Nitroaniline	3,3'-Dichlorobenzidine	3&4-Methylphenol	2-Nitrophenol	2-Nitroaniline	2-Methylphenol	2-Methylnaphthalene	2-Chlorophenol	2-Chloronaphthalene	2,6-Dinitrotoluene	2,4-Dinitrotoluene	2,4-Dinitrophenol	2,4-Dimethylphenol	2,4-Dichlorophenol	2,4,6-Trichlorophenol	2,4,5-Trichlorophenol	2,3,4,6-Tetrachlorophenol	1,2-Diphenylhydrazine	1,2,4,5-Tetrachlorobenzene	1,1'-Biphenyl	SVOCs	Zinc	Zinc	Vanadium	Vanadium	Thallium	Metals Continued	Constituent (ug/L)		
NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	AN	NA	NA	NA	NA	NA	NA	NA	NA	AN	NA	NA	NA	NA	NA	NA	NA	NA	NA		1	0	Т	0	Т		Fraction	(0)	100000000000000000000000000000000000000
-	0.029	0.2	0.029	1500	3	1300	1500	1	400	1	3.3	1	0.32	1100	1.2	ı	0.11	140	1	150	720	27	71	550	15	0.2	30	270	35	3.5	890	170	0.067	1.2	0.83		4700	4700	1	1	2		EPA MCL (or RSL)		
0.26	1.2	0.2	3.6	1	3	66	10000	6100	3800	60	130	-	13	510	10	31	5.8	1	820	310	5100	410	40	8200	100	8.4	200	2000	20	100	10000	-		31	5100		2000	2000	720	720	2		PADEP Non-Res Used Aquifer MSC	Sample Date 4/12/2012	Location ID
< 2.0 U	< 2.0 U	< 0.020 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	<2.0 U	< 2.0 U	< 2.0 U	< 0.50 U	< 2.0 U	< 10 U	< 2.0 U	< 2.0 U	< 0.50 U	<2.0 U	< 2.0 U	< 0.50 U	< 2.0 U	< 2.0 U	<2.0 U	<2.0 U	< 2.0 U	< 10 U	<2.0 U	< 2.0 U	<2.0 U	< 2.0 U	< 2.0 U	< 0.050 U	< 2.0 U	< 2.0 U		5.8 JB	2.6 J	4.6 J	3.8 J	< 10 U			4/12/2012	W-02
< 2.0 U	< 2.0 U	< 0.020 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 0.50 U	< 2.0 U	< 10 U	< 2.0 U	< 2.0 U	< 0.50 U	< 2.0 U	< 2.0 U	< 0.50 U	<2.0 U	<2.0 U	<2.0 U	<2.0 U	< 2.0 U	< 10 U	<2.0 U	< 2.0 U	<2.0 U	< 2.0 U	< 2.0 U	< 0.050 U	< 2.0 U	< 2.0 U		8.1 JB	5.0 J	5.6 J	6.1 J	< 10 U			4/12/2012	W-03
<2.0 U	<2.0 U		< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	<2.0 U	< 2.0 U	< 2.0 U	<2.0 U	< 2.0 U	< 0.50 U	<2.0 U	< 10 U	< 2.0 U	< 2.0 U	< 0.50 U	< 2.0 U	< 2.0 U	< 0.50 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	<2.0 U	< 10 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 0.050 U	< 2.0 U	< 2.0 U		13 JB	12 JB	2.6 J	2.2 J	< 10 U			4/10/2012	W-04
< 2.0 U		< 0.020 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	<2.0 U	< 2.0 U	<2.0 U	< 0.50 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 0.50 U		< 2.0 U	< 0.50 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 10 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 0.050 U	< 2.0 U	< 2.0 U		26 J	19 J	7.8 J	7.9 J	< 10 U			4/13/2012	W-05
< 2.0 U	-	< 0.020 U	< 2.0 U	-	Н	H	< 2.0 U	Н	< 2.0 U	-	<2.0 U	-	< 0.51 U	-	Н	< 2.0 U	< 2.0 U	\vdash	Н	<2.0 U	< 0.51 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	<2.0 U	< 10 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 0.051 U	< 2.0 U	< 2.0 U		17 J	6.2 J	6.9 J	6.9 J	< 10 U			4/13/2012	W-06
<2.1 U	<2.1 U	< 0.021 U	< 2.1 U	< 2.1 U	< 2.1 U	< 2.1 U	<2.1 U	\vdash	-	+	<2.1 U	1	< 0.52 U		\vdash	<2.1 U	<2.1 U	< 0.52 U	<2.1 U	<2.1 U	< 0.52 U	<2.1 U	< 2.1 U	<2.1 U	<2.1 U	<2.1 U	< 10 U	<2.1 U	<2.1 U	<2.1 U	< 2.1 U	< 2.1 U					12 JB	8.1 JB	11,	11,	< 10 U			4/11/2012	W-07
< 2.0 U	< 2.0 U	< 0.020 U	-	< 2.0 U	< 2.0 U	< 2.0 U	Н	-	< 2.0 U	╆	< 2.0 U	1	< 0.50 U	_	< 10 U	<2.0 U	< 2.0 U	< 0.50 U	< 2.0 U	< 2.0 U	< 0.50 U	<2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 10 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U		_	< 2.0 U		10 JB	8.4 JB	13 J	11,	< 10 U			4/10/2012	80-W
< 2.0 U	< 2.0 U		\vdash	Н	Н	-	-	Н	<2.0 U	\vdash	<2.0 U	T	\vdash		< 10 U	< 2.0 U	< 2.0 U	< 0.50 U	<2.0 U	< 2.0 U	t	T	< 2.0 U	<2.0 U	<2.0 U	<2.0 U	< 10 U	<2.0 U	<2.0 U	<2.0 U	< 2.0 U	< 2.0 U			< 2.0 U		19 JB	< 50 U	9.0 J	9.6 J	< 10 U			4/12/2012	(AND) 60-M
<2.0 U	⊢	١.	⊢	_	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	<2.0 U	< 2.0 U	< 2.0 U	<2.0 U	< 0.51 U	< 2.0 U	< 10 U	< 2.0 U	< 2.0 U	< 0.51 U	<2.0 U	< 2.0 U	< 0.51 U	< 2.0 U	< 2.0 U	<2.0 U	<2.0 U	< 2.0 U	< 10 U	<2.0 U	<2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 0.051 U	< 2.0 U	< 2.0 U		12 JB	3.2 J	9.2 J	8.9 J	< 10 U			4/12/2012	W-09

Table F-4 Complete Analytical Summary of Groundwater Samples - April 2012 Remedial Investigation Report Rhodia Morrisville Facility

< 0.020 U	< 0.020 U	< 0.020 U	< 0.020 U	< 0.020 U	< 0.020 U	< 0.020 U	< 0.020 U	< 0.020 U	0.05	0.05	NA	1,2-Dibromoethane
< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	<1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	0.2	0.2	AN	1,2-Dibromo-3-chloropropane
< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	70	70	NA	1.2,4-Trichlorobenzene
< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	L 56.0	< 1.0 U	-	5.2	NA	1,2,3-Trichlorobenzene
< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	7	7	NA	1,1-Dichloroethene
< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 0.57 U	< 0.57 U	<1.0 U	< 1.0 U	< 1.0 U	160	2.4	NA	1,1-Dichloroethane
< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	<1.0 U	< 1.0 U	<1.0 U	< 1.0 U	55	5	NA	1,1,2-Trichloroethane
< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	<1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	170000	53000	NA	1,1,2-Trichloro-1,2,2-trifluoroethane
< 0.75 U	< 0.75 U	< 1.0 U	< 1.0 U	< 0.75 U	< 0.75 U	< 1.0 U	< 1.0 U	< 1.0 U	4.3	0.066	NA	1,1,2,2-Tetrachloroethane
< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	200	200	NA	1,1,1-Trichloroethane
												VOCs
< 2.0 U	< 2.0 U	< 2.0 U	<2.1 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	_	1	NA	4-Bromophenyl Phenyl Ether
< 2.0 U	<2.0 U	< 2.0 U	<2.1 U	< 2.0 U	< 2.0 U	<2.0 U	< 2.0 U	<2.0 U	130	87	NA	Pyrene
< 2.0 U	< 2.0 U	< 2.0 U	<2.1 U	<2.0 U	< 2.0 U	<2.0 U	<2.0 U	< 2.0 U	2000	4500	NA	Phenol
< 2.0 U	< 2.0 U	< 2.0 U	<2.1 U	< 2.0 U	< 2.0 U	< 2.0 U	<2.0 U	< 2.0 U	1100	1	AN	Phenanthrene
< 0.20 U	< 0.20 U	< 0.20 U	< 0.21 U	< 0.20 U	1	1	NA	Pentachlorophenol				
< 2.0 U	< 2.0 U	< 2.0 U	<2.1 U	<2.0 U	< 2.0 U	< 2.0 U	<2.0 U	< 2.0 U	530	10	NA	N-Nitrosodiphenylamine
< 0.51 U	< 0.50 U	< 0.50 U	< 0.52 U	< 0.51 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	0.37	0.0093	NA	N-Nitroso-di-n-propylamine
< 2.0 U	< 2.0 U	< 2.0 U	<2.1 U	< 2.0 U	< 2.0 U	< 2.0 U	<2.0 U	< 2.0 U	200	0.12	NA	Nitrobenzene
< 0.51 U	< 0.50 U	< 0.50 U	< 0.52 U	< 0.51 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	100	0.14	NA	Naphthalene
< 2.0 U	< 2.0 U	< 2.0 U	< 2.1 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	<2.0 U	100	67	NA	Isophorone
< 2.0 U	< 2.0 U	< 2.0 U	< 2.1 U	< 2.0 U	< 2,0 U	< 2.0 U	< 2.0 U	< 2.0 U	3.6	0.029	NA	Indeno[1,2,3-cd]pyrene
< 0.020 U	< 0.020 U	< 0.020 U	< 0.021 U	< 0.020 U	1	0.79	NA	Hexachloroethane				
< 2.0 U	< 2.0 U	< 2.0 U	<2.1 U	-	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	50	50	NA	Hexachlorocyclopentadiene
< 0.020 U	< 0.020 U	< 0.020 U	< 0.021 U	_		< 0.020 U	< 0.020 U	< 0.020 U	33	0.26	AN	Hexachlorobutadiene
< 0.020 U	< 0.020 U	< 0.020 U	< 0.021 U	< 0.020 U	-	< 0.020 U	< 0.020 U	< 0.020 U	1	1	N.	Hexachlorobenzene
< 2.0 U	< 2.0 U	< 2.0 U	<2.1 U	< 2.0 U	< 2.0 U	<2.0 U	< 2.0 U	<2.0 U	1900	220	NA	Fluorene
< 2.0 U	< 2.0 U	<2.0 U	<2.1 U	< 2.0 U	<2.0 U	< 2.0 U	<2.0 U	<2.0 U	260	630	NA A	Fluoranthene
< 2.0 U	< 2.0 U	< 2.0 U	<2.1 U	< 2.0 U	< 2.0 U	<2.0 U	< 2.0 U	<2.0 U	3000	-	NA	Di-n-octylphthalate
< 0.51 U	< 0.50 U	< 0.50 U	< 0.52 U	< 0.51 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	10000	670	NA	Di-n-butylphthalate
<2.0 U	<2.0 U	<2.0 U	<2.1 U	< 2.0 U	<2.0 U	< 2.0 U	<2.0 U	<2.0 U		1	NA	Dimethylphthalate
< 2.0 U	< 2.0 U	< 2.0 U	<2.1 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	82000	11000	NA	Diethylphthalate
< 0.51 U	< 0.50 U	O 05.0 >	< 0.52 U	< 0.51 U	< 0.50 U	O 05.0 >	O 05.0 >	< 0.50 U	100	5.8	NA	Dibenzofuran
< 2.0 U	< 2.0 U	< 2.0 U	<2.1 U	< 2.0 U	< 2.0 U	< 2.0 U	<2.0 U	< 2.0 U	0.36	0.0029	NA	Dibenzo[a,h]anthracene
< 2.0 U	< 2.0 U	<2.0 U	<2.1 U	<2.0 U	<2.0 U	< 2.0 U	<2.0 U	<2.0 U	1.9	2.9	NA	Chrysene
< 2.0 U	<2.0 U	<2.0 U	< 2.1 U	<2.0 U	<2.0 U	< 2.0 U	< 2.0 U	<2.0 U	130	ı	NA	Carbazole
<2.0 U	<2.0 U	<2.0 U	<2.1 U	< 2.0 U	<2.0 U	< 2.0 U	<2.0 U	<2.0 U	1	7700	NA	Caprolactam
< 2.0 U	< 2.0 U	<2.0 U	<2.1 U	< 2.0 U	< 2.0 U	<2.0 U	< 2.0 U	<2.0 U	1400	14	NA	Butylbenzylphthalate
< 2.0 U	< 2.0 U	<2.0 U	<2.1 U	< 2.0 U	< 2.0 U	<2.0 U	< 2.0 U	<2.0 U	6	6	NA	bis(2-Ethylhexyl)phthalate
< 2.0 U	<2.0 U	<2.0 U	<2.1 U	< 2.0 U	<2.0 U	<2.0 U	<2.0 U	<2.0 U	300	0.31	NA A	bis(2-Chloroisopropyl)ether
< 0.51 U	< 0.50 U	< 0.50 U	< 0.52 U	< 0.51 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	0.76	0.012	NA.	bis(2-Chloroethyl)ether
< 2.0 U	< 2.0 U	< 2.0 U	<2.1 U	< 2.0 U	< 2.0 U		<2.0 U		310	47	NA	bis(2-Chloroethoxy)methane
< 2.0 U	< 2.0 U	< 2.0 U	<2.1 U	<2.0 U	<2.0 U	< 2.0 U	< 2.0 U	<2.0 U	0.55	0.29	NA	Benzo[k]fluoranthene
												SVOCs Continued
									PADEP Non-Res Used Aquifer MSC	EPA MCL (or RSL)	Fraction	Constituent (ug/L)
4/12/2012	4/12/2012	4/10/2012	4/11/2012	4/13/2012	4/13/2012	4/10/2012	4/12/2012	4/12/2012	ate			
W-09	W-09 (DUP)	W-08	W-07	W-06	W-05	W-04	W-03	W-02	Location ID			
7		J									Charles of The charles of the con-	

Xylene	Vinyl (Trichloroflu	Trichlo	trans-1,3-Dic	trans-1,2-D	Tol	Tetrachl	Sty	0-X	Methyl-t-	Methyler	Methylcy	Methyl	m&p->	Isopropy	Ethylb	Dichlorodifly	Dibromoch	Cyclo	cis-1,3-Dich	cis-1,2-Dic	Chloror	Chlor	Chlore	Chlorol	Carbon te	Carbon	Bromor	Brom	Bromodichl	Bromochlo	Ben	Ace	4-Methyl-2	2-Hex	2-But	1,4-D	1,4-Dichlo	1,3-Dichlo	1,2-Dichlo	1,2-Dichle	1,2-Dichlo	VOCs Continued	Constituent (ug/L)		
Xylenes (Total)	Vinyl chloride	Trichlorofluoromethane	Trichloroethene	trans-1,3-Dichloropropene	trans-1,2-Dichloroethene	Toluene	Tetrachloroethene	Styrene	o-Xylene	Methyl-t-butyl ether	Methylene chloride	Methylcyclohexane	Methyl Acetate	m&p-Xylenes	sopropylbenzene	Ethylbenzene	Dichlorodifluoromethane	Dibromochloromethane	Cyclohexane	cis-1,3-Dichloropropene	cis-1,2-Dichloroethene	Chloromethane	Chloroform	Chloroethane	Chlorobenzene	Carbon tetrachloride	Carbon disulfide	Bromomethane	Bromoform	Bromodichloromethane	Bromochloromethane	Benzene	Acetone	4-Methyl-2-pentanone	2-Hexanone	2-Butanone	1,4-Dioxane	1,4-Dichlorobenzene	1,3-Dichlorobenzene	1,2-Dichloropropane	1,2-Dichloroethane	1,2-Dichlorobenzene		ent (ug/L)		
NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	AN	NA	AN	NA.	AN	AN	AN	AN	NA A	NA NA	NA AN	NA.	NA	NA	NA	N.	NA	NA	NA	NA	NA	NA	December of Action of the Control	Fraction		
10000	2	1100	5	1	100	1000	5	100	190	12	5	1	16000	1	390	700	190	80	13000	1	70	190	80	21000	100	5	720	7	80	80	83	5	12000	1000	34	4900	0.67	75		5	5	600		EPA MCL (or RSL)		
10000	2	2000	5	1	100	1000	5	100	1	20	5	ı	100000	1	3500	700	1000	08	53000	_	70	30	80	900	100	5	6200	10	80	80	90	5	92000	8200	44	4000	32	75	600	5	5	600		PADEP Non-Res Used Aquifer MSC	Sample Date	Locaron
< 1.0 U	< 1.0 U	< 1.0 U	1.5	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	<1.0 U	< 0.50 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 0.50 U	< 10 U	< 1.0 U	<1.0 U	< 1.0 U	< 5.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 0.50 U	< 1.0 U			4/12/2012	:
< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	<1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 0.50 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 ·U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 0.50 U	< 10 U	< 1.0 U	< 1.0 U	< 1.0 U	< 5.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 0.50 U	< 1.0 U			4/12/2012	44-0
< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 0.50 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 0.50 U	< 10 U	< 1.0 U	< 1.0 U	< 1.0 U	< 5.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 0.50 U	< 1.0 U			4/10/2012	40-4
	<1.0 U	_	_	< 1.0 U		-		1		_	_	,	1	< 1.0 U	_	_	_	_		^	^	_	_	^	_	_	_	^	^	_	_	^	< 10 U	< 1.0 U	<1.0 U	٨	٨	< 1.0 U	< 1.0 U	< 1.0 U	< 0.50 U	^			4/13/2012	00-AA
< 1.0 U	-	_	_	_	_		_	-	-	_	_	-	-	< 1.0 U	_	_	$\overline{}$	_	$\overline{}$																\dashv	-		< 1.0 U	-		Н	-	8 (8		4/13/2012	VV-00
< 1.0 U	-	_	< 1.0 U		-	-	-	-	_	_	-	_	-	< 1.0 U					$\overline{}$															< 1.0 U	< 1.0 U	-	\neg	^		^		-			4/11/2012	VV-VV
< 1.0 U	_	_	_	_	_		_							< 1.0 U																					\dashv	-	-	< 1.0 U	-	< 1.0 U	-	-			4/10/2012	VV-00
< 1.0 U	\vdash	Т	< 1.0 U	-	$\overline{}$			-	-	-	-	$\overline{}$	$\overline{}$	<1.0 U					\neg			-	e d	-	200		2000	-	37.3					< 1.0 U	< 1.0 U	< 1.0 U	< 5.0 U	< 1.0 U	< 1.0 U	< 1.0 U			1.0		4/12/2012	ער-טט (טטר)
<1.0 U											_	_							_	_		-	-	-	-	-	$\overline{}$		-	-	-	_		_	< 1.0 U	-	_		_		Н	-			4/12/2012) VV-VV

Table F-4
Complete Analytical Summary of Groundwater Samples - April 2012
Remedial Investigation Report
Rhodia Morrisville Facility

Thallium	Sodium	Sodium	Silver	Silver	Selenium	Selenium	Potassium	Potassium	Nickel	Nickel	Mercury	Mercury	Manganese	Manganese	Magnesium	Magnesium	Lead	Lead	Iron	Iron	Cr (Hexavalent)	Copper	Copper	Cobalt	Cobalt	Chromium	Chromium	Calcium	Calcium	Cadmium	Cadmium	Beryllium	Beryllium	Barium	Barium	Arsenic	Arsenic	Antimony	Antimony	Aluminum	Aluminum	Metals	Constituent (ug/L)		
D	Т	D	T	0	Т	D	Т	0	T	0	7	D	7	D	Т Т	D	1	D	T	D	T	T	D	T	D	T	D	T	D	T	D	T	D	Т	D	1	D	1	D	Т	D		Fraction		
2	7.5	1	71	71	50	50	1	1	300	300	2	2	320	320	-	•	15	15	11000	11000	0.031	1300	1300	4.7	4.7	100	100	-		5	5	4	4	2000	2000	10	10	6	6	16000	16000		EPA MCL (or RSL)		
2	1	1	100	100	50	50	1	1	100	100	2	2	300	300		-	5	5	300	300	•	1000	1000	31	31	100	100	-	•	5	5	4	4	2000	2000	10	10	6	6	200	200		PADEP Non-Res Used Aquifer MSC	Sample Date	Location ID
< 10 U	23000	22000	2.0 JB	1.7 JB	8.1 J	< 40 U	780 J	610 J	10 J	10 J	< 0.70 U	< 0.70 U	8600 B	8200 B	23000 B	23000 B	4.3	3.6 J	5700	3400	< 25 U	5.6 JB	5.3 JB	20 JB	17 JB	2.7 JB	2.0 JB	28000 B	28000 B	240 B	240 B	1.8 JB	1.7 JB	20 JB	7.6 JB	8700 B	8700 B	< 12 U	< 12 U	400 B	50 JB			e 4/13/2012	W-10
< 10 U	26000	28000	2.2 JB	2.6 JB	< 40 U	J. 6.6	9600	11000	7.8 J	4.4 J	< 0.70 U	< 0.70 U	180 B	24 JB	13000 B	14000 B	3.6 J	2.8 J	750	< 280 U	< 25 U	5.6 JB	4.5 JB	1.2 JB	< 20 U	3.9 JB	2.0 JB		35000 B	2.2 JB	2.5 JB	1.7 JB	1.7 JB	70 B	61 B	28 B	29 B	< 12 U	< 12 U	290 B	47 JB			4/13/2012	W-11
< 10 U	6800	6500	1.2 J	1.3 J	< 40 U	< 40 U	450 J	320 J	4.1 J	2.8 J	< 0.70 U	< 0.70 U	1200 B	1100 B	7700 B	7100 B	< 4.0 U	< 4.0 U	19000	13000	< 25 U	3.0 JB	1.8 JB	4.5 J	4.0 J	2.2 JB		-	10000 B	2.2 JB	1.8 JB	0.93 JB	0.87 JB	67 B	44 JB	13	8.2	< 12 U	< 12 U	650	< 180 U			4/10/2012	W-13
< 10 U	36000	37000	1.4 J	1.2 J	< 40 U	< 40 U	650 J	460 J	4.1 J	2.2 J	< 0.70 U	< 0.70 U	5700 B	5600 B	7600 B	7400 B	5.4	< 4.0 U	15000	11000	< 25 U	5.0 JB	2.6 JB	24	22	3.8 JB	1.4 JB	12000 B	12000 B	4.7 B	4.6 B	8L 56.0	0.87 JB	19 JB	1.4 JB	77	74	< 12 U	< 12 U	1600	L 55			4/11/2012	W-14 4/10/2012 &
< 10 U	34000	38000	1.6 J	1.7 J	8.7 J	< 40 U	1600 J	1700 J	1.6 J	< 50 U	< 0.70 U	< 0.70 U	100	140	13000	14000	< 4.0 U	< 4.0 U	630	< 280 U	< 25 U	4.5 J	2.1 J	< 20 U	< 20 U	2.3 J	< 50 U	28000 B	29000 B	1.3 JB	0.97 JB	< 4.0 U	<4.0 U	7.9 JB	2.1 J	9.9	11	< 12 U	< 12 U	590	< 180 U			4/12/2012	W-15
< 10 U	27000	27000	2.2 J	2.1 J	< 40 U	< 40 U	2400 J	1900 J	5.1 J	< 50 U	< 0.70 U	< 0.70 U	790 B	350 B	16000 B	15000 B	5.6	< 4.0 U	8000	< 280 U	< 25 U	6.3 JB	2.5 JB	2.3 J	< 20 U	5.7 JB	< 50 U	33000 B	32000 B	2.2 JB	1.9 JB	1.1 JB	0.82 JB	98 B	9,6 JB	7.5	2.6 J	< 12 U	< 12 U	3200	47 J			4/11/2012	W-17 4/10/2012 &
< 10 U	130000	130000	3.0 J	3.1 J	< 40 U	< 40 U	2400 J	2400 J	5.7 J	< 50 U	< 0.70 U	< 0.70 U	1100 B	910 B	36000 B	35000 B	4.1	2.7 J	2500	< 280 U	< 25 U	2.9 JB	1.6 JB	0.55 J	0.46 J	12 JB	< 50 U	51000 B	48000 B	2.6 JB	2.4 JB	0.84 JB	0.81 JB	27 JB	2.9 JB	5.7 J	6.2 J	< 12 U	< 12 U	220	73 J			4/10/2012	W-18
< 10 U	110000	110000	1.8 J	1.6 J	< 40 U	< 40 U	1600 J	1700 J	1.2 J	< 50 U	0.067 J	< 0.70 U	170 B	140 B	10000 B	11000 B	< 4.0 U	< 4.0 U	1600	< 280 U	< 25 U	3.6 JB	2.1 JB	0.86 J	0.50 J	2.4 JB	0.78 JB	19000 B	19000 B	2.6 JB	2.7 JB	0.86 JB	0.82 JB	7.7 JB	1.4 JB	9.1	10	< 12 U	< 12 U	430	£5J			4/11/2012	W-19 4/10/2012 &
< 10 U	84000	81000	2.4 J	2.2 J	10 J	< 40 U	1600 J	1500 J	1.4 J	< 50 U	< 0.70 U	< 0.70 U	320 B	240 B	29000 B	28000 B	3.3 J	< 4.0 U	3000	180 J	< 25 U	4.0 JB	1.8 JB	0.80 J	< 20 U	1.7 JB	< 50 U	29000 B	27000 B	3.5 JB	3.1 JB	0.88 JB	0.82 JB	28 JB	3.3 JB	33	28	< 12 U	< 12 U	530	56 J			4/10/2012	W-20

< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	<2.0 U	< 2.0 U	< 2.0 U	<2.1 U	< 2.0 U	0.26	ı	NA	Benzo[g,h,i]perylene
< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	<2.0 U	< 2.0 U	<2.1 U	< 2.0 U	1.2	0.029	AN	Benzo[b]fluoranthene
< 0.020 U	< 0.020 U	< 0.020 U	< 0.020 U	< 0.020 U	< 0.020 U	< 0.020 U	J < 0.021 U	< 0.020 U	0.2	0.2	NA	Benzo[a]pyrene
< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.1 U	< 2.0 U	3.6	0.029	NA	Benzo[a]anthracene
< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.1 U	< 2.0 U	1	1500	NA	Benzaldehyde
< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.1 U	< 2.0 U	3	3	NA.	Atrazine
<2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	<2.1 U	< 2.0 U	66	1300	AN	Anthracene
< 2.0 U	< 2.0 U	< 2.0 U	<2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	<2.1 U	< 2.0 U	10000	1500	NA.	Acetophenone
< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.1 U	< 2.0 U	6100	1	AN	Acenaphthylene
< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	<2.0 U	< 2.1 U	< 2.0 U	3800	400	AN	Acenaphthene
< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.1 U	< 2.0 U	60	1	AN	4-Nitrophenol
< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.1 U	< 2.0 U	130	3.3	AN	4-Nitroaniline
< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.1 U	< 2.0 U	-	1	AN	4-Chlorophenyl-phenylether
< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.51 U	< 0.50 U		< 0.51 U	13	0.32	AN	4-Chloroaniline
< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.1 U	< 2.0 U	510	1100	AN	4-Chloro-3-methylphenol
< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 2.1 U	< 2.0 U	10	1.2	NA	4,6-Dinitro-2-methylphenol
< 2.0 U	< 2.0 U	<2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	<2.1 U	< 2.0 U	31		NA	3-Nitroaniline
< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	<2.0 U	<2.1 U	< 2.0 U	5.8	0.11	NA	3,3'-Dichlorobenzidine
< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.51 U	< 0.50 U	< 0.52 U	< 0.51 U	1	140	NA	3&4-Methylphenol
< 2.0 U	< 2.0 U	<2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	<2.1 U	< 2.0 U	820	1	NA	2-Nitrophenol
< 2.0 U	< 2.0 U	<2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	<2.1 U	< 2.0 U	310	150	NA	2-Nitroaniline
< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.50 U	< 0.51 U	< 0.50 U	< 0.52 U	< 0.51 U	5100	720	NA	2-Methylphenol
< 2.0 U	< 2.0 U	<2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.1 U	<2.0 U	410	27	NA	2-Methylnaphthalene
< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	<2.0 U	< 2.1 U	< 2.0 U	40	71	NA	2-Chlorophenol
< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.1 U	<2.0 U	8200	550	NA	2-Chloronaphthalene
< 2.0 U	< 2.0 U	<2.0 U	< 2.0 U	<2.0 U	< 2.0 U	< 2.0 U	and a	< 2.0 U	100	15	NA	2,6-Dinitrotoluene
< 2.0 U	< 2.0 U	<2.0 U	< 2.0 U	< 2.0 U	<2.0 U	< 2.0 U	< 2.1 U	< 2.0 U	8.4	0.2	NA	2,4-Dinitrotoluene
< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	200	30	NA	2,4-Dinitrophenol
< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	<2.0 U	<2.0 U	< 2.0 U	<2.1 U	<2.0 U	2000	270	NA	2,4-Dimethylphenol
< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.1 U	< 2.0 U	20	35	NA	2,4-Dichlorophenol
< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	<2.0 U	< 2.0 U	<2.1 U	<2.0 U	100	3.5	NA	2,4,6-Trichlorophenol
< 2.0 U	< 2.0 U	< 2,0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.1 U	< 2.0 U	10000	890	NA	2,4,5-Trichlorophenol
< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	<2.0 U	<2.0 U	\rightarrow	< 2.0 U	1	170	NA	2,3,4,6-Tetrachlorophenol
< 0.050 U	< 0.050 U	< 0.050 U	< 0.050 U	< 0.050 U	< 0.051 U	< 0.050 U	_	< 0.051 U	1	0,067	NA.	1,2-Diphenylhydrazine
< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	<2.0 U	< 2.0 U	<2.0 U	\dashv	<2.0 U	31	1.2	NA	1,2,4,5-Tetrachlorobenzene
< 2,0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	<2.0 U	<2.1 U	< 2.0 U	5100	0.83	NA	1,1'-Biphenyl
												SVOCs
37 JB	23 JB	34 JB	23 JB	12 JB	17 JB	13 JB	54	14 J	2000	4700	Т	Zinc
17 JB	17 JB	17 JB	7.2 JB	4.1 J	15 JB	8.8 JB	36 J	13 J	2000	4700	0	Zinc
13 J	8.8 J	16 J	17 J	6.5 J	r 0'8	5.9 J	8.3 J	9.7 J	720	1	Т	∀anadium
10 J	9.1 J	15 J	7.1 J	5.5 J	4.8 J	3.9 J	8.1 J	8.6 J	720	1	0	Vanadium
< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	< 10 U	6.2 JB	2	2	Т	Thallium
												Metals Continued
									PADEP Non-Res Used Aquifer MSC	EPA MCL (or RSL)	Fraction	Constituent (ug/L)
4/10/2012	4/11/2012	4/10/2012	4/11/2012	4/12/2012	4/11/2012	4/10/2012	4/13/2012	4/13/2012	Sample Date 4/13/2012			
W-20	W-19 4/10/2012 &	W-18	W-17 4/10/2012 &	W-15	W-14 4/10/2012 &	W-13	W-11	W-10	Location ID			
								7				

Table F-4 Complete Analytical Summary of Groundwater Samples - April 2012 Remedial Investigation Report Rhodia Morrisville Facility

< 1.0 U		< 0.020 U	< 1.0 U	< 1.0 U	< 1.0 U	< 0.020 U	< 0.020 U	< 0.020 U	0.05	0.05	NA NA	1,2-Dibromoethane
< 1.0 U	H	c	< 1.0 U	<1.0 U	< 1.0 U	<1.0 U	<1.0 U	< 1.0 U	70	70	NA NA	1,2,4-Trichlorobenzene
< 1.0 U		0 U	<1.	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	-	5.2	NA	1,2,3-Trichlorobenzene
		0 U	< 1.	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	7	7	NA	1,1-Dichloroethene
<1.0 U		0 U	< 1.	< 1.0 U	< 1.0 U	< 1.0 U	< 0.57 U	< 0.57 U	160	2.4	NA	1,1-Dichloroethane
< 1.0 U	+	c	<1.1	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	5	5	NA	1,1,2-Trichloroethane
< 1.0 U	+	٥	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	<1.0 U	< 1.0 U	170000	53000	NA.	1,1,2-Trichloro-1,2,2-trifluoroethane
V <1.0 U <1.0 U		c c	<1.0 U	<0.75 U	<1.0 U	^1.0 U	< 0.75 U	< 0.75 U	4.3	0.066	N S	1.1.2.2-Tetrachloroethane
	-									200		VOCs
U <2.0 U <2.0 U			< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	< 2.1 U	< 2.0 U	-	1	NA	-Bromop
< 2.0 U		٦	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	<2.1 U	< 2.0 U	130	87	NA	Pyrene
<2.0 U			< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	<2.1 U	< 2.0 U	2000	4500	NA	Phenol
< 2.0 U	4	_	< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	<2.1 U	< 2.0 U	1100	1	NA	Phenanthrene
< 0.20 U	4		< 0.20 U	< 0.20 U	< 0.20 U	< 0.20 U	< 0.21 U	< 0.20 U	1	1	NA	Pentachlorophenol
			< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	<2.1 U	< 2.0 U	530	10	NA	N-Nitrosodiphenylamine
< 0.50 U			O 05.0 >	< 0.50 U	< 0.51 U	< 0.50 U	< 0.52 U	< 0.51 U	0.37	0.0093	NA	N-Nitroso-di-n-propylamine
< 2.0 U			< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	<2.1 U	< 2.0 U	200	0.12	NA	Nitrobenzene
< 0.50 U			N 05.0 >	< 0.50 U	< 0.51 U	< 0.50 U	< 0.52 U	< 0.51 U	100	0.14	AN	Naphthalene
< 2,0 U			< 2.0 U	< 2.0 U	< 2.0 U	<2.0 U	<2.1 U	< 2.0 U	100	67	NA	Isophorone
<2.0 U ·			< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	$\overline{}$	< 2.0 U	3.6	0.029	NA	Indeno[1,2,3-cd]pyrene
< 0.020 U < 0.020 U			< 0.020 U	< 0.020 U	< 0.020 U	< 0.020 U	< 0.021 U	< 0.020 U	1	0.79	AN	Hexachloroethane
< 2.0 U			< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	-	< 2.0 U	50	50	NA	Hexachlorocyclopentadiene
_	< 0.020 U		< 0.020 U	< 0.020 U	< 0.020 U	< 0.020 U	-	< 0.020 U	33	0.26	NA	Hexachlorobutadiene
	< 0.020 U		< 0.020 U	< 0.020 U	< 0.020 U	< 0.020 U	,	< 0.020 U	_	1	NA	Hexachlorobenzene
1	<2.0 U		< 2.0 U	< 2.0 U	< 2.0 U	<2.0 U	<2.1 U	< 2.0 U	1900	220	AN	Fluorene
<2.0 U <2.0 U	<2.0 U		<2.0 U	< 2.0 U	<2.0 U	< 2.0 U	<2.1 U	< 2.0 U	260	630	AN	Fluoranthene
<2.0 U <2.0 U	< 2.0 U		<2.0 U	<2.0 U	<2.0 U	<2.0 U	<2.1 U	<2.0 U	3000	1	Ä	Di-n-octylphthalate
	< 0.50 U		< 0.50 U	< 0.50 U	< 0.51 U	< 0.50 U	< 0.52 U	< 0.51 U	10000	670	AN	Di-n-butylphthalate
	<2.0 U		< 2.0 U	<2.0 U	<2.0 U	<2.0 U	<2.1 U	<2.0 U		1	AN	Dimethylphthalate
1	< 2.0 U		< 2.0 U	<2.0 U	<2.0 U	< 2.0 U	\neg	< 2.0 U	82000	11000	AN	Diethylphthalate
	< 0.50 U		< 0.50 U	< 0.50 U	< 0.51 U	< 0.50 U		< 0.51 U	100	5.8	AN	Dibenzofuran
	<2.0 U		< 2.0 U	<2.0 U	< 2.0 U	< 2.0 U	<2.1 U	< 2.0 U	0.36	0.0029	Ä	Dibenzo[a,h]anthracene
1	<2.0 U		< 2.0 U	< 2.0 U	< 2.0 U	<2.0 U	<2.1 U	<2.0 U	1.9	2.9	NA.	Chrysene
	<2.0 U		< 2.0 U	<2.0 U	<2.0 U	<2.0 U	<2.1 U	< 2.0 U	130	1 20	NA :	Carbazole
730 II 730 II	7200		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 1 1 1	720	720 0	1011	1000	1400	7707	NA	Canrolactam
	^20 0		< 2.0 0	V 2.0 C	<2.0 0	V 20 U	V 2.1 C	V 2.0 C	1400	. 0	NA	But/benzylphthalate
	<2.0 U		< 2.0 U	<2.0 U	<2.0 U	<2.0 U	<2.1 U	<2.0 U	300	0.31	NA NA	bis(2-Chloroisopropyl)ether
٨	< 0.50 U	Ш	< 0.50 U	< 0.50 U	< 0.51 U	< 0.50 U	< 0.52 U	< 0.51 U	0.76	0.012	NA	bis(2-Chloroethyl)ether
<2.0 U <2.0 U	< 2.0 U		< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	<2.1 U	< 2.0 U	310	47	NA	bis(2-Chloroethoxy)methane
<2.0 U <2.0 U	< 2.0 U		< 2.0 U	< 2.0 U	< 2.0 U	< 2.0 U	<2.1 U	< 2.0 U	0.55	0.29	NA	Benzo[k]fluoranthene
		1								The second secon		SVOCs Continued
									PADEP Non-Res Used Aquifer MSC	EPA MCL (or RSL)	Fraction	Constituent (ug/L)
4/10/2012			4/11/2012	4/12/2012	4/11/2012	4/10/2012	4/13/2012	4/13/2012	Sample Date			
& W-18 W-19 & 4/10/2012 &	234	Do.	W-17 4/10/2012 &	W-15	W-14 4/10/2012 &	W-13	W-11	W-10	Location ID			
	$\frac{1}{1}$							7	,			

<1.0 U	< 1.0 0		^1.0 U
C		< 1.0 U	<1.0 U <1.0 U
	L		
U		< 1.0 U	<1.0 U <1.0 U
< 1.0 U	4	< 1.0 U	<1.0 U <1.0 U
.0 .	1.0 0 < 1.0 0	+	^ 1.0 U
<1.0 U	+	<1.0 U	<1.0 U <1.0 U
< 1.0 U	_	< 1.0 U	<1.0 U <1.0 U
0.89	Ц	< 0.50 U	<0.50 U < 0.50 U
< 1.0 U	Н	< 1.0 U	<1.0 U <1.0 U
< 1.0 U	4	<1.0 U	<1.0 U <1.0 U
<1.0 U	4	<1.0 U	<1.0 U <1.0 U
<1.0 U	+	<1.0 U	<1.0 U <1.0 U
100	+	×10 C	×10 ×10
< 1.0 U	\perp	<1.0 U	<1.0 U <1.0 U
< 1.0 U	L	< 1.0 U	<1.0 U <1.0 U
< 1.0 U		< 1.0 U	<1.0 U <1.0 U
< 1.0 U	_	< 1.0 U	<1.0 U <1.0 U
c	4	< 1.0 U	<1.0 U <1.0 U
1.0 U	+	<1.0 U	<1.0 U <1.0 U
	+	^1.0 U	<1.0 U <1.0 U
^1.0	+	^1.0	×10 U ×10 U
< 1.0 U	╀	<1.0 U	<1.0 U <1.0 U
< 1.0 U	Н	< 1.0 U	<1.0 U <1.0 U
< 1.0 U	4	< 1.0 U	<1.0 U <1.0 U
< 1.0 U	4	<1.0 U	<1.0 U <1.0 U
1.0	+	^1.0 C	<1.0 U <1.0 U
< 0.50 U	\perp	< 0.50 U	<0.50 U <0.50 U
< 10 U	L	<10 U	<10 U < 10 U
< 1.0 U	Ц	<1.0 U	<1.0 U <1.0 U
< 1.0 U	4	< 1.0 U	<1.0 U <1.0 U
< 1.0 U	4	< 1.0 U	< 1.0 U < 1.0 U
< 5.0 U		< 5.0 U	<5.0 U <5.0 U
<10 II	-	<10	<10 <10
<1.0 U	-	< 1.0 U	<1.0 U <1.0 U
٦	4	< 1.0 U	<1.0 U <1.0 U
U 0	\dashv	< 0.50 U	<0.50 U < 0.50 U
C	Н	< 1.0 U	<1.0 U <1.0 U
4/11/2012 &	12 4/12/2012	4/12/2012	4/12/2012
W-14	14 W-15	W-15	W-15
	W-15 4/12/2012 4/12/2012 4/12/2012 4/10 U 41.0 U		W-17 4/10/2012 & 4/11/2012 & 4/11/2012 & 4/11/2012 & 4/11/2012 & 4/11/2012 & 4/11/2012 & 4/11/2012 & 4/11/2012 & 4/11/2012 & 4/10 U 4/1

Notes:	
All units a	re in ug/L
Bold font	indicates a detected result.
	= concentration above EPA MCL (or RSL)
	= concentration above PADEP MSC
If a conce	ntration was above both the EPA MCL/RSL and
the PAI	DEP MSC, it is highlighted yellow.
Only disso	olved metals (not total metals) concentrations are
conside	red representative of groundwater conditions.
T = Total.	
D = Disso	Ived
< U = An	alyte not detected above the specified laboratory
detect	ion limit
J = Estima	ated concentration above the laboratory method
detect	ion limit but below the reporting limit

B = Analyte was detected in the laboratory method blank.

8				
		D.	•	
ū				
i.				