

Early Career Award: Framework for Quantifying Microbial Risk and Sustainability of Potable Reuse Systems in the United States

Funding Opportunity Number: EPA-G2014-STAR-F1

EPA Grant Number: R835823

Project Period: 8/2015 – 7/2018

Dr. Daniel Gerrity

Assistant Professor

Department of Civil & Environmental Engineering and Construction

Email: <u>Daniel.Gerrity@unlv.edu</u>

Website: http://faculty.unlv.edu/wpmu/dgerrity/

Potable Reuse Systems in the U.S.

National Water Reuse Institute (NWRI), WateReuse Association, and WE&RF critical for the success of these projects

Project Overview

- Quantitative Microbial Risk Assessment (QMRA)
 - Dr. Joseph Eisenberg (University of Michigan)
 - Dr. Brian Pecson (Trussell Technologies)
 - Erfaneh Amoueyan (Ph.D. Student at UNLV)

Project Overview

- Quantitative Microbial Risk Assessment (QMRA)
 - Dr. Joseph Eisenberg (University of Michigan)
 - Dr. Brian Pecson (Trussell Technologies)
 - Erfaneh Amoueyan (Ph.D. Student at UNLV)
- Life Cycle Assessment of Potable Reuse in Las Vegas
 - Dr. Sajjad Ahmad (UNLV)
 - Dr. Krystyna Stave (UNLV)
 - Cory Dow (M.S. Student at UNLV / Carollo Engineers)

Project Overview

- Quantitative Microbial Risk Assessment (QMRA)
 - Dr. Joseph Eisenberg (University of Michigan)
 - Dr. Brian Pecson (Trussell Technologies)
 - Erfaneh Amoueyan (Ph.D. Student at UNLV)
- Life Cycle Assessment of Potable Reuse in Las Vegas
 - Dr. Sajjad Ahmad (UNLV)
 - Dr. Krystyna Stave (UNLV)
 - Cory Dow (M.S. Student at UNLV / Carollo Engineers)
- Potable Reuse Treatment with Ozone Biofiltration
 - Dr. Eric Dickenson (Southern Nevada Water Authority)
 - Mayara Aquino (M.S. Student at UNLV) → THMs/HAAs
 - Fernanda Bacaro (M.S. Student at UNLV) → NDMA

UNLV Film Department Collaboration

Brett Levner

- MTV, VH1, A&E, The History Channel, Animal Planet,
 Discovery, Atlantic Records, Coca-Cola, Greenpeace...
- Develop a short film to educate students/general public about potable reuse and the Las Vegas water system
- Collaboration begins in the Spring 2017 semester

Motivation for Collaboration

- Last Call at the Oasis trailer
- Research and experience indicates that public outreach and education are critical to the success of potable reuse
- Increase interest in environmental engineering in Southern Nevada

RESEARCH TOPIC 1: QMRA

Quantitative Microbial Risk Assessment

- Evaluation of potable reuse treatment scenarios
 - de facto Reuse
 - Indirect Potable Reuse
 - Direct Potable Reuse

Quantitative Microbial Risk Assessment

• Evaluation of potable reuse treatment scenarios

- de facto Reuse
- Indirect Potable Reuse
- Direct Potable Reuse

• Evaluation of pathogen hazards

- Protozoan Parasite → Cryptosporidium (current focus)
- Viral Pathogen → future
- Bacterial Pathogen → future

Quantitative Microbial Risk Assessment

• Evaluation of potable reuse treatment scenarios

- de facto Reuse
- Indirect Potable Reuse
- Direct Potable Reuse

• Evaluation of pathogen hazards

- Protozoan Parasite → Cryptosporidium (current focus)
- Viral Pathogen → future
- Bacterial Pathogen → future

Research Questions

- How do public health risks compare in different potable reuse systems under typical operational conditions?
- How do failures in a treatment process impact the performance of the overall treatment train and ultimately public health risks?
- What are the critical variables affecting public health risk in potable reuse systems?

Model Objectives

• Provide a template for adaptation to real-world systems

- Water quality (e.g., total organic carbon, UV₂₅₄ absorbance)
- Dosing conditions (e.g., ozone dose, UV dose)
- Baseline conditions (e.g., residence time, temperature)
- Critical pathogens (e.g., dose response, survival)
- Limits on log removal credits (e.g., 6-log max in California)

Model Objectives

Provide a template for adaptation to real-world systems

- Water quality (e.g., total organic carbon, UV₂₅₄ absorbance)
- Dosing conditions (e.g., ozone dose, UV dose)
- Baseline conditions (e.g., residence time, temperature)
- Critical pathogens (e.g., dose response, survival)
- Limits on log removal credits (e.g., 6-log max in California)

Allow for updates to failure rate framework

- Current: fault tree analysis from Windhoek studies
- Current: ozone failure rate from Melbourne, Australia
- Current: arbitrary failure rate for UV system (1%)

Model Objectives

Provide a template for adaptation to real-world systems

- Water quality (e.g., total organic carbon, UV₂₅₄ absorbance)
- Dosing conditions (e.g., ozone dose, UV dose)
- Baseline conditions (e.g., residence time, temperature)
- Critical pathogens (e.g., dose response, survival)
- Limits on log removal credits (e.g., 6-log max in California)

Allow for updates to failure rate framework

- Current: fault tree analysis from Windhoek studies
- Current: ozone failure rate from Melbourne, Australia
- Current: arbitrary failure rate for UV system (1%)

Allow for sensitivity analyses on model parameters

- Critical residence times in environmental buffers
- Significance of failures (i.e., failure rates and 'domino effects')

Potable Reuse Paradigms

Potable Reuse Scenario 1: de facto IPR

Potable Reuse Scenario 2: Planned Indirect Potable Reuse

Potable Reuse Scenario 3: Direct Potable Reuse

Treatment Scenarios

A) Conventional wastewater treatment plant (WWTP)

B) Conventional drinking water treatment plant (DWTP)

Trains:

C) Advanced wastewater treatment plant for IPR (AWWTP 1)

D) Advanced wastewater treatment plant for DPR (AWWTP 2)

Methodology

Model Framework

- STELLA 10.1 System Dynamics Software
- 3 different *Cryptosporidium* scenarios based on LT2ESWTR
 - Affects upstream *Cryptosporidium* concentration and DWTP log removals
 - Model: Bin 1, Bin 2, and Bin 4

Bin Classification	Cryptosporidium Concentration (oocysts)	DWTP (Conventional Filtration)
Bin 1	Cryptosporidium < 0.075/L	No additional treatment
Bin 2	$0.075/L \le Cryptosporidium < 1.0/L$	1 log treatment
Bin 3	$1.0/L \le Cryptosporidium < 3.0/L$	2 log treatment
Bin 4	$Cryptosporidium \ge 3.0/L$	2.5 log treatment

Methodology

Public Health Benchmarks

- World Health Organization: 10⁻⁶ DALYs/person-year
- California: 10-log removal/inactivation of *Cryptosporidium*
- General: 10⁻⁴ annual risk of infection

LT2ESWTR Framework and Infectivity Calculations from Literature

Cryptosporidium Concentration in Surface Water (oocysts/L)

STELLA System Dynamics Software

• A mathematical simulation methodology that describes the complex effects of system elements and their interrelationships using stocks, flows, convertors, and arrows.

• WWTP

- 1-log removal of *Cryptosporidium*

• WWTP

- 1-log removal of *Cryptosporidium*
- Ultrafiltration (UF)
 - 4-log removal of *Cryptosporidium*
 - 0.3% failure rate → 0-log *Cryptosporidium* removal
 - Achieves reduction in UV₂₅₄ absorbance and total organic carbon (TOC)

WWTP

1-log removal of Cryptosporidium

• Ultrafiltration (UF)

- 4-log removal of *Cryptosporidium*
- 0.3% failure rate \rightarrow 0-log *Cryptosporidium* removal
- Achieves reduction in UV_{254} absorbance and total organic carbon (TOC)

Pre-Ozone

- Dosing based on O₃/TOC ratio of 1.1 and inactivation based on ozone CT
- Models developed to predict ozone demand/decay, CT, and ΔUV_{254} vs. O₃/TOC
- 0.2% failure rate for ozone process \rightarrow 0-log *Cryptosporidium* inactivation
- − Upstream failure of UF increases UV_{254} and $TOC \rightarrow$ decreased O_3/TOC and CT

WWTP

1-log removal of Cryptosporidium

• Ultrafiltration (UF)

- 4-log removal of Cryptosporidium
- 0.3% failure rate \rightarrow 0-log *Cryptosporidium* removal
- Achieves reduction in UV₂₅₄ absorbance and total organic carbon (TOC)

Pre-Ozone

- Dosing based on O₃/TOC ratio of 1.1 and inactivation based on ozone CT
- Models developed to predict ozone demand/decay, CT, and ΔUV_{254} vs. O₃/TOC
- 0.2% failure rate for ozone process \rightarrow 0-log *Cryptosporidium* inactivation
- − Upstream failure of UF increases UV_{254} and $TOC \rightarrow$ decreased O_3/TOC and CT

• Biological Activated Carbon (BAC)

- 0-log *Cryptosporidium* removal
- Critical for post-ozone TOC removal → Assumes 40% TOC removal
- Upstream failure of ozone → Assumes 5% TOC removal

WWTP

1-log removal of Cryptosporidium

• Ultrafiltration (UF)

- 4-log removal of Cryptosporidium
- 0.3% failure rate \rightarrow 0-log *Cryptosporidium* removal
- Achieves reduction in UV_{254} absorbance and total organic carbon (TOC)

Pre-Ozone

- Dosing based on O₃/TOC ratio of 1.1 and inactivation based on ozone CT
- Models developed to predict ozone demand/decay, CT, and ΔUV_{254} vs. O₃/TOC
- 0.2% failure rate for ozone process \rightarrow 0-log *Cryptosporidium* inactivation
- − Upstream failure of UF increases UV_{254} and $TOC \rightarrow$ decreased O_3/TOC and CT

Biological Activated Carbon (BAC)

- 0-log *Cryptosporidium* removal
- Critical for post-ozone TOC removal → Assumes 40% TOC removal
- Upstream failure of ozone → Assumes 5% TOC removal

Post-Ozone

- Similar to pre-ozone but maintains constant ozone dose for CT of 10 mg-min/L
- − Failure rate of 0.03% and upstream failures result in decreased O₃/TOC and CT

WWTP

1-log removal of Cryptosporidium

• Ultrafiltration (UF)

- 4-log removal of Cryptosporidium
- 0.3% failure rate \rightarrow 0-log *Cryptosporidium* removal
- Achieves reduction in UV_{254} absorbance and total organic carbon (TOC)

Pre-Ozone

- Dosing based on O₃/TOC ratio of 1.1 and inactivation based on ozone CT
- Models developed to predict ozone demand/decay, CT, and ΔUV_{254} vs. O₃/TOC
- 0.2% failure rate for ozone process \rightarrow 0-log *Cryptosporidium* inactivation
- − Upstream failure of UF increases UV_{254} and $TOC \rightarrow$ decreased O_3/TOC and CT

• Biological Activated Carbon (BAC)

- 0-log *Cryptosporidium* removal
- Critical for post-ozone TOC removal → Assumes 40% TOC removal
- Upstream failure of ozone → Assumes 5% TOC removal

Post-Ozone

- Similar to pre-ozone but maintains constant ozone dose for CT of 10 mg-min/L
- Failure rate of 0.03% and upstream failures result in decreased O₃/TOC and CT

Environmental Buffer

- Considers upstream *Cryptosporidium* loading and recycled water contribution (i.e., dilution)
- Considers *Cryptosporidium* die-off based on reservoir residence time and temperature

Baseline Conditions for Model

Paramete	r	Description	Value	Units	Reference
Risk calculations	I	Proportion of symptomatic illness	0.7	Unitless	(Zhang et al., 2012)
	S	Susceptible proportion of population	100%	Unitless	(Zhang et al., 2012)
	ω	Severity weight of Cryptosporidium	0.0017	DALYs/case	(Zhang et al., 2012)
	r	Infectivity parameter	0.00419	oocysts ⁻¹	(Ryu et al., 2007)
	w	Daily water consumption rate	2	L/per-day	(WHO, 2011)
Wastewater	C_c	Influent oocyst concentration	Normal (74, 30)	Oocysts/L	(Kitajima et al., 2014)
Pre-ozone	O ₃ /TOC	O ₃ /TOC ratio	1.1	mgO ₃ /mgC	(Gerrity et al., 2014)
	TOC	Total organic carbon concentration	7.2	mgC/L	(Gamage et al., 2013)
	IOD	Instantaneous ozone demand	4.0	mg/L	See Text S2 – draft manuscript
	k_{O3}	First order ozone decay rate constant	0.54	min ⁻¹	See Text S2 – draft manuscript
	t _{O3}	Ozone contact time	5	min	(Au, 2004); See Text S2
	T	Temperature	25	°C	(USEPA, 2010)
Post-ozone	O ₃ CT	Target ozone CT	5.0	mg-min/L	(LeChevallier & Au, 2013)
	T	Temperature	25	°C	(USEPA, 2010)
Environmental buffer	$k_{ m oocyst}$	Oocyst decay rate constant at 4°C	0.0093	day-1	(Peng et al., 2008)
	λ	Dimensionless temperature modifier	0.095	Unitless	(Peng et al., 2008)
	T_{sw}	Temperature of surface water	20	°C	(Peng et al., 2008)
	RWC	Recycled water contribution	20%	Unitless	(Rice et al., 2013)
	t_{EB}	Storage time	270	days	(Wu, 2015)
UV	I_{max}	UV incident (maximum) intensity	25	mW/cm ²	Based on commercial UV system
	х	UV path length	10	cm	(Lee et al., 2016)
	k_A	UVA of nitrified effluent	0.250	cm ⁻¹	(Metcalf & Eddy, 2007)
	k_A	UVA of filtered nitrified effluent	0.175	cm ⁻¹	(Metcalf & Eddy, 2007)
	$k_{ m UV}$	Oocyst inactivation rate constant	0.243	$(mJ/cm^2)^{-1}$	(Hijnen et al., 2006)

Risk Equations

General Risk Framework:

$$P_{inf,d} = 1 - e^{-rCw}$$

$$P_{inf,a} = 1 - \prod_{i=1}^{365} (1 - P_{inf,d})_i$$

 $P_{inf,a}$ = annual probability of infection

Disability Adjusted Life Year (DALY) Framework:

$$R = P_{inf,a} \times S \times I$$

R = annual risk of illness

S = susceptible proportion of population

I = symptomatic proportion of illnesses

$$D = R \times \omega$$

D = disease burden, DALYs/person-year

 ω = severity weight, DALYs/case

Preliminary Data: Storage Time = 270 Days

Preliminary Data: Storage Time = 45 Days

Preliminary Conclusions

de facto vs. IPR vs. DPR

- Risk of infection significantly lower for advanced treated wastewater
- Risk is generally controlled by RWC and environmental buffer
- Failures are not particularly significant for these treatment trains/operational conditions when targeting Cryptosporidium → robust and redundant

Preliminary Conclusions

de facto vs. IPR vs. DPR

- Risk of infection significantly lower for advanced treated wastewater
- Risk is generally controlled by RWC and environmental buffer
- Failures are not particularly significant for these treatment trains/operational conditions when targeting Cryptosporidium → robust and redundant

Critical variables

- Retention time in the environmental buffer
 - No significant difference between de facto and IPR at 270 days
 - Critical threshold ≈ 60 days
- Temperature in the environmental buffer
 - Significant when combined with shorter reservoir residence times
- Recycled water contribution (RWC)
 - Higher RWC leads to decreased probability of infection
 - Impact varies with DWTP scenario (i.e., loading and bin classification)

RESEARCH TOPIC 2: SUSTAINABILITY OF POTABLE REUSE

Justification for Direct Potable Reuse – Las Vegas

Sustainability of Potable Reuse in Las Vegas

Develop System Dynamics Model

- Water Flows (also Las Vegas Wash Ecosystem)
- Water Quality (Salinity Loads)
- Energy Consumption and Greenhouse Gas Emissions
- Capital and O&M Costs

Sustainability of Potable Reuse in Las Vegas

Develop System Dynamics Model

- Water Flows (also Las Vegas Wash Ecosystem)
- Water Quality (Salinity Loads)
- Energy Consumption and Greenhouse Gas Emissions
- Capital and O&M Costs

• Evaluate Scenarios

- Status Quo: Return Flow Credits / Indirect Potable Reuse
- Direct Potable Reuse → Compare RO vs. Ozone-Biofiltration
- Nevada Groundwater Pipeline

Sustainability of Potable Reuse in Las Vegas

Develop System Dynamics Model

- Water Flows (also Las Vegas Wash Ecosystem)
- Water Quality (Salinity Loads)
- Energy Consumption and Greenhouse Gas Emissions
- Capital and O&M Costs

• Evaluate Scenarios

- Status Quo: Return Flow Credits / Indirect Potable Reuse
- Direct Potable Reuse → Compare RO vs. Ozone-Biofiltration
- Nevada Groundwater Pipeline

Research Questions

- At what point (if any) is DPR economically viable considering the additional treatment that would be required?
- What are the water quality and risk implications?

RESEARCH TOPIC 3: OZONE BIOFILTRATION

Potential DPR Treatment Trains

Advantages of O₃-BAC

- Nearly complete TOrC removal
- Eliminates concentrated brine stream
- Reduced capital and O&M costs
- Reduced energy consumption

Disadvantages of O₃-BAC

- No reduction in TDS and higher TOC
- Disinfection byproduct uncertainty
 - Total trihalomethanes (TTHMs)
 - Haloacetic acids (HAA5s)
 - N-nitrosodimethylamine (NDMA)

Total Organic Carbon (TOC) Removal Criteria

$$TOC_{max} = \frac{0.5 \text{ mg/L}}{RWC}$$
 (RWC = Recycled Water Contribution) **Source:** CDPH (2014)

Full advanced treatment with RO can achieve TOC < 0.5 mg/L:

Expected TOC < 0.5 mg/L \rightarrow RWC = 1.0

Ozone-BAC can achieve 30-50% removal of TOC (multiple studies and full-scale plants):

Expected TOC = $2.5 - 5.0 \text{ mg/L} \rightarrow \text{RWC} = 0.10 - 0.20$

Ozone-SAT can achieve more than 80% removal of TOC (Nishimura et al., 2013):

Expected TOC = $1.0 - 2.0 \text{ mg/L} \rightarrow \text{RWC} = 0.25 - 0.50$

The question is whether this TOC requirement is appropriate considering that the median TOC concentration of treated drinking water is ~3 mg/L (Trussell et al., 2013)

Objectives of Research Topic 3

• Chlorine Disinfection Byproduct Formation Potential (Ongoing)

- What is the relationship between O_3 dose, empty bed contact time, and TOC removal?
- Can we use THM/HAA formation potential as a guide for TOC removal (similar to Stage 1 D/DBPR)?

Source Water TOC (mg/L)	Alkalinity: 0 - 60 mg/L as CaCO ₃	Alkalinity: 60 - 120 mg/L as CaCO ₃	Alkalinity: > 120 mg/L as CaCO ₃
2.0 – 4.0	35.0%	25.0%	15.0%
4.0 - 8.0	45.0%	35.0%	25.0%
> 8.0	50.0%	40.0%	30.0%

Objectives of Research Topic 3

• Chlorine Disinfection Byproduct Formation Potential (Ongoing)

- − What is the relationship between O₃ dose, empty bed contact time, and TOC removal?
- Can we use THM/HAA formation potential as a guide for TOC removal (similar to Stage 1 D/DBPR)?

Source Water TOC (mg/L)	Alkalinity: 0 - 60 mg/L as CaCO ₃	Alkalinity: 60 - 120 mg/L as CaCO ₃	Alkalinity: > 120 mg/L as CaCO ₃
2.0 – 4.0	35.0%	25.0%	15.0%
4.0 - 8.0	45.0%	35.0%	25.0%
> 8.0	50.0%	40.0%	30.0%

• N-nitrosodimethylamine (NDMA) Formation and Mitigation (Future)

- What is the relationship between O₃ dose, empty bed contact time, and NDMA mitigation?
- How can we optimize the biofiltration process to more reliably control NDMA mitigation?

Current Progress: TOC Removal

Current Progress: Chlorine Dose Correlation

- Residual ammonia was detected in some ozone-biofiltration samples (*Bradyrhizobium spp.*)
- Chlorine dose had to account for demand due to TOC and NH₃
 - Uniform Formation Conditions (UFC) = 1 mg/L free chlorine residual after 24 hours
- Empirical chlorine dosing requirements:

Multivariate Linear Regression:

Chlorine Dose (mg/L) = $8.2 \times NH_3$ -N (mg/L) + $1.2 \times TOC$ (mg/L)

Current Progress: DBP Summary

		TTHMs (µg/L)	% Reduction	HAA5s (μg/L)	% Reduction
	w/o Chlorine	<5	<5	<5	<5
ſ	MBR Filtrate	226		139	
5	BAC	206	9%	102	27%
4	Ozone	200	12%	92	34%
	Ozone+Anthracite	168	26%	70	50%
	Ozone+BAC	160	29%	63	55%
	EPA MCL	80		60	

On average, all treated effluents would require further polishing to reliably achieve U.S. EPA MCLs for TTHMs (80 μ g/L) and HAA5s (60 μ g/L)

Chlorinated

Current Progress: DBP/TOC Correlation

Estimated TOC to achieve U.S. EPA MCLs:

TTHMs: TOC = 2.6 mg/L HAA5s: TOC = 6.4 mg/L

Current Accomplishments

• Research Topic 1: QMRA

- 1 Ph.D. student
- Nearly complete system dynamics model for *Cryptosporidium*
- Aiming for draft of first publication by end of Fall 2016

• Research Topic 2: Sustainability of Potable Reuse

- 1 M.S. student
- Significant progress on system dynamics model for Las Vegas
- Aiming for complete model by end of Fall 2016

• Research Topic 3: Ozone-Biofiltration

- 2 M.S. students
- Significant progress on TOC removal and TTHMs/HAA5s
- Microbial community characterization of biofiltration columns

Next Steps

• Research Topic 1: QMRA

- Expand model to address viral and bacterial pathogens
- Expand model to include reverse osmosis
- Expand model to include disease transmission
- Compare relative risks of trace organics vs. pathogens

• Research Topic 2: Sustainability of Potable Reuse

- Complete model and evaluate policy/water resource scenarios
 - 'Return Flow' vs. DPR vs. Groundwater Pipeline

• Research Topic 3: Ozone-Biofiltration

- Evaluation DBP formation with different blending ratios
- Restart ozone-biofiltration system to evaluate NDMA mitigation
- Evaluate trace organic compound (TOrC) mitigation (PFOS/PFOA)

• UNLV Film Department Collaboration

Create short film related to potable reuse

