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Sources of BC




Improve our understanding of the optical
properties of BC-containing particles and their
evolution during their lifetime

Link emissions of BC particles with particle
number concentrations over the US

Improve the ability of the existing regional models
to simulate the BC mass and number
concentrations

Quantify effects of changes in BC emissions in PM
and PN over the US







Combustion Emissions

BC particles act as condensation sites for OA

Organic + *OH
Compounds
Black Carbon Core =Shell

morphology

* Brown Carbon?
e How does the condensation and chemical aging of OA
affect the absorption of BC?
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CMU Smog Chamber
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Coating of BC with D-toluene SOA

(fuel: White birch bark)
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/C during D-toluene SOA formation
(fuel: White birch bark)
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Absorption during D-toluene SOA

formation
fuel: White birch bark
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Absorption enhancement
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Comparison of Mie theory with
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Measured absorption enhancement

The D-toluene SOA - soot particles have core shell morphology and their
absorption is consistent with Mie theory predictions.




Aethalometer

OA/BC from biomass burning




OA Absorption:
The Chaos Returns!

0.04 ‘ ‘ ‘ ‘ ‘ ‘ R. Saleh
O
O . FLAME IV
0.03 o ® BS: black spruce
o ® PP: ponderosa pine
2 002 o | OH: organic hay
NS O SG: saw grass
O ° WG: wire grass
0.01 e i - RS: rice straw
® = o Closed symbols: fresh

Open symbols: aged

BS PP OH SG WG RS

* A lot of variability across fuels, and even within the same fuel.
 Similar to previous work.



Some Order: The Role of BC/OA
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Direct Radiative Effect of Biomass
Burning Emissions

non-absorbing OA absorblng OA

-0.64 W/m? , -0.43 W/m?
externally-mixed

internally-mixed
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BC related instruments

Optical instruments Instruments using incandescence
MAC methods (rBC)
abs > eBC
1) Aethalometer 1) Single Particle Soot Photometer(SP2)

2) Soot Particle Aerosol
Mass Spectrometer(SP-AMS)
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Comparison of rBC measurements
(OA/rBC =0.02 - 0.33)
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Intercomparison of optical instruments

High OA/rBC
(0.1<OA/rBC<0.7)

[ PAX  /MAAP

green

] PAX_ . IMAAP
Low OA/rBC v, PAXque IPAX

green

(OA/rBC<0.1) B MAAP / Aethalometer
] PAxgreen | Aethalometer

-PAXbIue | Aethalometer
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For low OA/rBC: 5%-15% discrepancies
For high OA/rBC: 20%-60% discrepancies







Total primary particle number fractional source
contributions

Biomass Gasoline Industrial

- 10.15

Long-range transport




Sources of Measureable (>3 nm) Particle
Number in Pittsburgh

PMCAMXx Calculated from Measurements

Power Plant Secondary

2% Aerosol
9%

Stationary
Combustion
21%

Zhou et al., 2005

Predicted: 29,000 cm-3 “Measured”: 26,000 cm-3






Fractional Change of EC
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Average PM, . reduction around 3%.



Fractional Changes of N, ,,

Nucleation increases, creating more smaller particles due to the decrease in the
condensation sink.




Fractional Changes of N, -,
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Particles in this size range are typically emitted or grown from nucleated
particles, so they see increases (from nucleation) and decreases elsewhere.




Fractional changes of N,,,
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PMCAMX

Current approach: 1 particle distribution-Internal Mixing

Same % of BC mass for all particles of a given section
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10 size sections : from 40 nm up to 40 um



BC Core
Size




PMCAMX
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Predicted BC Distribution

Dp BC(pm)

t= 0 hours BC (pg m?)
0.884 x10
0.442 I6
0.221 LR
0.131 N
0.093 &
0.066 E
0.046 1
0.000 0

0.04 0.08 0.16 0.31 0.63 1.25
Dp (4m)



Dp BC(pm)
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Dp BC(pm)

Predicted BC distribution
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Do two wrongs make a right?




TEM photos of coated particles

Typical BC particle after coating with secondary organic
compounds.

Saliba et al., in prep.
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retrieval Climate model
morphology morphology




retrieval Climate model
morphology morphology
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GEOS-Chem modeling;:
DRE of biomass-burning BC+OA




GEOS-Chem Modeling
DRE of biomass-burning BC+OA

global average = +0.11 W/m?

relative error = 40%



GEOS-Chem modeling;:
DRE of biomass-burning BC+OA

W/m?

1
.0.5

global average =-0.01 W/m?

relative error = 3%



Conclusions

Condensation and chemical aging of biogenic and
anthropogenic SOA on BC was reproduced within
experimental error by core-shell Mie models.

— No effect of O:C during aging of SOA
Brown carbon in emissions from biomass burning is

associated mostly with organic compounds of
extremely low volatility

— Effect can be parameterized as a function of BC/OA
— Quite sensitive to burn conditions

Estimated radiative forcing of 0.1-0.2 W m2 due to
biomass burning BrC.

— Net effect of biomass burning is still cooling.
This effect was not observed in diesel emissions



Conclusions

* Diesel sources responsible for approximately
25% of particle number emissions in the Eastern
US during summer
— 30% of emissions of N,

* Reduction of these emissions leads to increases
of nucleation rates

— Increases of very small particles predicted
— The N50 and N100 concentrations decrease more than expected
— This reduction in CCN could result in warming

* Development of a computationally efficient
multi-distribution model to better simulate the
mixing state of BC in regional models
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