Black Carbon, Air Quality and Climate

Spyros Pandis

Center for Atmospheric Particle Studies (CAPS)
Carnegie Mellon University

The Team

Allen Robinson

Neil Donahue

Peter Adams

Rawad Saleh

R. Subramanian

Black Carbon, Air Quality and Climate

?

Objectives

- Improve our understanding of the optical properties of BC-containing particles and their evolution during their lifetime
- Link emissions of BC particles with particle number concentrations over the US
- Improve the ability of the existing regional models to simulate the BC mass and number concentrations
- Quantify effects of changes in BC emissions in PM and PN over the US

Chemical Aging and Optical Properties of BC Emissions

Combustion Emissions

BC particles act as condensation sites for OA

- Brown Carbon?
- How does the condensation and chemical aging of OA affect the absorption of BC?

CMU Smog Chamber

Coating of BC with D-toluene SOA

(fuel: White birch bark)

O/C during D-toluene SOA formation

(fuel: White birch bark)

Absorption during D-toluene SOA formation

(fuel: White birch bark)

Comparison of Mie theory with

The D-toluene SOA - soot particles have core shell morphology and their absorption is consistent with Mie theory predictions.

OA and BC Formation and Aging (FLAME III and IV)

Aethalometer

OA/BC from biomass burning

PASS-3

HR-SP-AMS

OA Absorption: The Chaos Returns!

FLAME IV

BS: black spruce

PP: ponderosa pine

OH: organic hay

SG: saw grass

WG: wire grass

RS: rice straw

Closed symbols: fresh Open symbols: aged

- A lot of variability across fuels, and even within the same fuel.
- Similar to previous work.

Some Order: The Role of BC/OA

Direct Radiative Effect of Biomass Burning Emissions

BC related instruments

Optical instruments

$$b_{abs} \xrightarrow{MAC} eBC$$

1) Aethalometer

2) Multiangle Absorption Photometer (MAAP)

3) Photoextinciometer -PAX

Instruments using incandescence methods (rBC)

1) Single Particle Soot Photometer(SP2)

2) Soot Particle AerosolMass Spectrometer(SP-AMS)

Comparison of rBC measurements

(OA/rBC = 0.02 - 0.33)

• CE≈Es=0.37

Intercomparison of optical instruments

For low OA/rBC: 5%-15% discrepancies

For high OA/rBC: 20%-60% discrepancies

BC and Aerosol Number Concentrations

Total primary particle number fractional source contributions

Sources of Measureable (>3 nm) Particle Number in Pittsburgh

PMCAMx

Calculated from Measurements

Predicted: 29,000 cm⁻³ "Measured": 26,000 cm⁻³

Effects of Controls of Diesel Particulate Emissions (-50% Scenario)

Fractional Change of EC

Average PM_{2.5} reduction around 3%.

Fractional Changes of N₁₋₁₀

Nucleation increases, creating more smaller particles due to the decrease in the condensation sink.

Fractional Changes of N₁₀₋₅₀

Particles in this size range are typically emitted or grown from nucleated particles, so they see increases (from nucleation) and decreases elsewhere.

Fractional changes of N₁₀₀

Improving Regional Scale BC Models

PMCAMx

Current approach: 1 particle distribution-Internal Mixing

10 size sections : from 40 nm up to 40 µm

Simulating BC Mixing State In PMCAMx

Size

PMCAMx

Based Warrith the configuration of a given section!

Predicted BC Distribution

Predicted BC Distribution

Predicted BC distribution

BC particle shape Do two wrongs make a right?

TEM photos of coated particles

Typical BC particle after coating with secondary organic compounds.

Saliba et al., in prep.

GEOS-Chem modeling: DRE of biomass-burning BC+OA

GEOS-Chem Modeling DRE of biomass-burning BC+OA

relative error = 40%

GEOS-Chem modeling: DRE of biomass-burning BC+OA

relative error = 3%

Conclusions

- Condensation and chemical aging of biogenic and anthropogenic SOA on BC was reproduced within experimental error by core-shell Mie models.
 - No effect of O:C during aging of SOA
- Brown carbon in emissions from biomass burning is associated mostly with organic compounds of extremely low volatility
 - Effect can be parameterized as a function of BC/OA
 - Quite sensitive to burn conditions
- Estimated radiative forcing of 0.1-0.2 W m⁻² due to biomass burning BrC.
 - Net effect of biomass burning is still cooling.
- This effect was not observed in diesel emissions

Conclusions

- Diesel sources responsible for approximately 25% of particle number emissions in the Eastern US during summer
 - 30% of emissions of N_{100}
- Reduction of these emissions leads to increases of nucleation rates
 - Increases of very small particles predicted
 - The N50 and N100 concentrations decrease more than expected
 - This reduction in CCN could result in warming
- Development of a computationally efficient multi-distribution model to better simulate the mixing state of BC in regional models

Acknowledgments

Graduate students/postdocs
 Laura Posner, Christos Fountoukis, Antonis Tassoglou.

