Assessment of Stormwater Harvesting via Manage Aquifer Recharge (MAR) to Develop New Water Supplies in the Arid West: The Salt Lake Valley Example

EPA-STAR Program
Grant #83582401

Project Overview

- Interdisciplinary, Integrated Project
- . Designed to Test Hypothesis
 - MAR is Technically Feasible,
 Socially/Regulatorally/
 Environmentally/
 Economically Viable Option
 for Development of New
 Water Supplies in Arid
 Urban Ecosystems Under
 Population Growth/Climate
 Change Pressures

• Specific Recommendations for Future Work in SL

Project Approach

- * Integration of Stormwater Production & Conveyance Models, Vadose Zone/Groundwater Transport & Fate Models & Ecosystem Services Models for
- * Assessing Impacts & Benefits of Distributed MAR for Stormwater Harvesting in
- Collaboration w/Stakeholders (Implementers and Communities)

Project Design

- · Organized Into Three Components
 - · Component | Monitoring of Existing
 Distributed MAR Harvesting (GI) Schemes
 - . Component | Integrated Stormwater/Vadose Zone/Groundwater/Ecosystem Services Modeling
 - Component III Assessment of Stakeholder
 Attitudes, Collaboration on Feasible Distributed MAR Scenario Development and Outcomes

Component | - Monitoring of Existing Distributed MAR (GI) Systems

Stormwater Quality

- System Performance Monitoring
- System Performance Reporting
- Groundwater Pollutant Loading (Quantity & Configuration)
- LImitations/Constraints to Field-Scale Implementation

Key Questions Here

. How Do these Systems Perform in Arid Western Environments?

Deep Infiltration w/or w/out Pretreatment

· For Stakeholders - Are These the Right Options to Consider?

IUTAH GIRN APPROACH

Neighborhood Drainages in Logan

Dry Wells, Roofs @ USU

Storm Drains Red Butte Creek, Uof U

Bioretention Area w/Varying Filtration Media @SLCPU

> 1300 S Storm Drain to Jordan

Preliminary Findings/Observations

Potential
Issues
W/Shallow
Infiltration
Systems
re. As
Mobility

Component | - Integrated | Modeling

Storm/Groundwater/Ecosystem Modeling

- Loading Inputs of Stormwater
- Water Quality and Flow Changes
 - Impacts on Water Availability
- Impacts on Ecosystem Services

Data and Model Flow

Stormwater Component

Model: WinSLAMM Runoff, Infiltration, Pollutant Loadings

Groundwater & Vadose Zone Component

Models:
MODFLOW,
MT3DMS and
HYDRUS

GW to SW, Water Quality

SW to GW

Surface Water Component

Models:
HEC-HMS: Rainfallrunoff
QUAL2K: Streamflow &
water quality

Water Quality Constituents:
flow, stream temperature,
specific conductance,
turbidity,
nitrogen, phosphorus,
dissolved oxygen, fDOM,
chlorophyll

Stormwater Modeling W/WinSLAM Winship Winship

· Provide Assessment of & WQ Changes w/Gl

- . Difference w/& w/Out G| Related to Groundwater Inputs & Reductions to Surface Water of Both Water & Pollutants
- · Calibrated w/Three Small Subwatersheds in Logan, One Small & One Large Urban Watershed in SL Valley

Issue Critical to Stakeholder Advisory Board - Will Municipality Retain Ownership of Harvested Stormwater?

Graphical user interface (GUI) for reconnaissance Recovery Effectiveness

- * Recoverable Quantity of Rechaged SW?
- Establish Recovery Scheme to Ensure No Depletion of GW Resource
- * GUI Developed for One Well
 Injection/Extraction to be Modified to Address Distributed
 Recharge and Multiple Wells Scheme for Recovery

2.0 2.5

· Ecosystem Services Modeling

- Red Butte Creek
- Jordan River

Note: WINSLAMM, HEC-HMS, and MODFLOW inputs to QUAL2K

Ecosystem Services Metrics to be Used

Ecosystem Service	Metric (Units)
Increased Summer Baseflow	Duration of Low Flow Conditions (days)
Flood Attenuation	Flood Magnitude (m³/s), Duration (minutes), Rate of Change of Slope of Hydrograph
Process Water Quality Contaminants (nutrients, salts, metals)	Pollutant Concentration (mg/L), Conductivity (S/m)
Maintenance of Natural Thermal Regime	Maximum Weekly Average Temperature (°C) & Maximum Daily Temperature (°C)
Aquatíc Bíodíversíty	Habitat Suitability Curves for Fish Species of Interest (e.g., Bonneville cutthroat trout, Utah chub, rainbow trout)

Ecosystem Services Research Questions

- * What Environmental Benefits are Lost, Altered, or Improved w/Stormwater Harvesting?
 - * At What Thresholds Do Changes Occur?
- * How Can Methods Developed In this Project be Generalized to Other Water-Scarce Regions?
- * How can Understanding Changes to Environmental Benefits from Stormwater Harvesting Aid Resource Management Decision-Making?

Component III - Stakeholder Involvement

Social Acceptability

- Stakeholder Identification
- Stakeholder Attitudes and Preferences
- Social/Regulatory Constraints
 - Economic Cost/Benefits

Expected Outcomes

- Development of Methodology Field
 Measurements, Modeling, Stakeholder Interaction
 - · Optimize Distributed MAR for Stormwater Harvesting via Glimplementation
 - . Development of Additional Water Supplies
 - · Improve Risk Management (Source Water Protection)
- In Response to Population Growth, Climate Change, Conflicting Public/Ecosystem Demands

Now to
Highlights of
Component III
Progress

Outcome

- Generalized Methodology for Application to Other Western Basins
- Specific Recommendations for Future Work in SL Valley

Overview of Approach

- . Key Informant Interviews (2016)
 - · City/County/State Stormwater Program Managers
 - . Private Sector Consultants & Developers
- · On-line Survey of All Utah MS4 Permittees
- . Focus Groups of Neighborhood Residents
- . Coordinate Stakeholder Advisory Committee

Key Informant Interviews

. QUESTIONS

. Five Types of MAR/GI Practices

. TYPE A: Extended Detention Basins

• TYPE B: Distributed Surface Storage & Infiltration (grassy swales, rain gardens, tree boxes) (Shallow Infiltration w/Treatment)

TYPE C: Subsurface Storage and Infiltration (D-blocks, R-tanks, dry

wells, vaults) (Shallow Infiltration w/Out Treatment)

. TYPE D: Deep Subsurface Injection Wells (Deep Infiltration w/ & w/Out Treatment

. TYPE E: Rain Barrels

. Familiarity

• Effectiveness (flooding, SW& GW quality impacts/protection, local water supply augmentation)

. Best/Worst Aspects

. Barriers to Wider Adoption

Key Informant Interviews

- . Sample
 - · City and County staff (PU/PW Directors; Stormwater Program Managers and/or engineers)
 - . 17 interviewed to date; 5-8 more planned
 - . State Agency staff (DEQ/DWQ)
 - . 2 interviewed to date; Water Rights & Permitting planned
 - . Private Consulting Engineering Firms
 - . 1 interviewed to date; 3-5 more planned to include Developer Community

Emerging Findings (very preliminary)

- . TYPE A Widely Used, Works; But Perceived as No Longer Sufficient to Meet Emerging State Rules
- . GILID Options (Types B&C) Attractive
 - . Limited in Some Situations
 - . Biophysically
 - . Socially/Politically

Emerging Findings (very preliminary)

- Manufacture of the second of t
- . LID Type D (Deep Wells) Unlikely to be Widely Acceptable
 - Concerns About Potential for GW
 Contamination
- . Perceptions & Concerns Similar Across Cities
- · Viability Differs Across Cities (Diff. Contexts)

Outcome of Stakeholder Advisory Committee Meeting - 10/2016

- . Held in Conjunction w/Utah APWA Meeting
- · Participation by Eight City, County, State, Consulting Representatives
- . Input on
 - . Labeling of MAR/GI Practices
 - . Emphasized Need for MAR/GI System Performance Data
 - · Identified Participants Willing & Able to Add Systems to Monitoring Network (Spanish Fork & South Jordan)
 - Highlighted Concerns about Water Rights & Reuse of Stored, Recharged GW
 - . Recommended Inclusion of Developer Community in Stakeholder Profile
- Scheduled Next SAC Meeting in Conjunction w/Spring Public Works & Stormwater Coalition Meetings

Upcoming work

- · On-Line Survey Winter 2016/17
 - . Sample All MS4 Permittees
 - . Update Mailing List w/SAC Input
 - . Seeking Co-sponsorship from USWAC, Others
- . Focus Groups
 - Looking for SAC Help in Identifying a Few Instances of BMP Field-implementations where Neighbors can be Approached to Participate in Focus Group Interactions

Thank You Questions?

Social Acceptability

- •Stakeholder Identification
- Stakeholder Attitudes and Preferences
- •Social/Regulatory Constraints
- •Economic Cost/Benefits

- Generalized Methodology for Application to Other Western Basins
- Specific Recommendations for Future Work in SL Valley