



















# <section-header><list-item><list-item><list-item><list-item><list-item><section-header><section-header><list-item><list-item><list-item><section-header>























































# Nutrient Loading cont...

- Things to keep in mind
  - Impervious vs pervious area
  - Vegetated surfaces relative to storage and pollution retention vs non-vegetation surfaces
  - Industrial Surfaces generate up to 20 times that of forested areas in terms of nitrogen and phosphorus
  - Ag lands can generate up to 40 times that of forested areas in terms of nitrogen and phosphorus
  - Suburban and urban land use will generate 10 to 20 times the nutrients over background levels.



#### Once a Lake is Pushed beyond its Eutrophic State by Watershed Abuses: In-Lake Activities Have to be the Center of the Game Plan

- Primary production and related water quality is a direct function of phosphorus availability
  - Related to when and how much P is available within the lake
  - For many lakes with current or past excess external P loading
    - it is not the original source of phosphorus that is important: <u>It is the quantity and timing of phosphorus</u> availability "within" the lake that is important!



| shallow hypereutrophic lakes |           |                   |                      |                                   |  |  |
|------------------------------|-----------|-------------------|----------------------|-----------------------------------|--|--|
| Lake                         | Area (ha) | Mean Depth<br>(m) | TΡ <sub>1</sub> μg/L | % Internal<br>Load <sup>1</sup>   |  |  |
| Upper Klamath<br>Lake, OR    | 26,800    | 2.0               | 120                  | 80 <sup>1</sup> , 59 <sup>2</sup> |  |  |
| Arresø, DK                   | 4,100     | 2.9               | 430                  | 88 <sup>1</sup> , 71 <sup>2</sup> |  |  |
| Vallentuna, SK               | 610       | 2.7               | 220                  | 95 <sup>1</sup> , 87 <sup>2</sup> |  |  |
| Søbygaard, DK                | 196       | 1.0               | 600                  | 79 <sup>1</sup> , 55 <sup>2</sup> |  |  |
| GLSM, OH                     | 5,200     | 1.6               | 187                  | 90 <sup>1</sup> , 25 <sup>2</sup> |  |  |







# Data QA/QC

- Field Replicates/Duplicates
  - Water column profiling (every 10<sup>th</sup> measurement)
  - Water quality grab sample (at least one each sampling event or 1/20 samples)
- Field equipment blanks
  - One each sampling event
- QA/QC laboratory data
   Review lab performance metrics; lab blanks, spikes, dupes

#### • Perform a Reality Check

- Chl:TP ratios
- World wide average = 0.3; Range from 0.3 to 1.0 (as high as 1.5)











| Source                                      | TP Phosphorus Loading (kg) | Percent of Total TP Load | Percent of Summer TP Load |
|---------------------------------------------|----------------------------|--------------------------|---------------------------|
| Direct Precipitation                        | 1,230                      | 2.1%                     | 1.4%                      |
| Chickasaw Creek                             | 8,930                      | 15.6%                    | 1.0%                      |
| Chickasaw WWTP                              | 236                        | 0.4%                     | 0.0%                      |
| Barnes Creek                                | 796                        | 1.4%                     | 0.2%                      |
| Beaver Creek                                | 7,996                      | 14.0%                    | 1.3%                      |
| Montezuma WWTP                              | 1,332                      | 2.3%                     | 0.0%                      |
| Burntwood Creek                             | 2,320                      | 4.1%                     | 0.5%                      |
| Coldwater Creek                             | 10,802                     | 18.9%                    | 2.1%                      |
| St. Henry's WWTP                            | 1,046                      | 1.8%                     | 0.6%                      |
| Little Chickasaw Creek                      | 3,230                      | 5.6%                     | 0.5%                      |
| Prairie Creek                               | 2,619                      | 4.6%                     | 0.5%                      |
| Ungaged Basin                               | 1,964                      | 3.4%                     | 0.3%                      |
| Elks ADF                                    | 1                          | 0.0%                     | 0.0%                      |
| Marion Local School ADF                     | 27                         | 0.0%                     | 0.0%                      |
| Northwood WWTP                              | 162                        | 0.3%                     | 0.2%                      |
| Total External Load (5/1/2010 to 5/13/2011) | 42,691                     | 74.6%                    |                           |
| Total External Load (6/12 to 9/17/2010)     | 1,380                      |                          | 8.7%                      |
| Internal Load (6/12 to 9/17/2010)           | 14,552                     | 25.4%                    | 91.3%                     |
| Total P Load (5/1/2010 to 5/13/2011)        | 57,243                     | 100.0%                   |                           |
| Total D Load (6/12 to 0/17/2010)            | 15,933                     | 27.8%                    |                           |

#### Example Phosphorus Budget Detail for Grand Lake St. Marys



















#### **Proposed 1-yr Intensive Monitoring**

- Twice monthly monitoring and sample collection in Kiser Lake from March through October (critical period is the growing season from May – September), monthly during the remainder of the year
- Conduct monitoring at main lake station
  - Collect samples from 0.5 m below surface and 0.5 m above bottom
  - Determine temperature, pH, DO, and specific conductivity at 0.5-m intervals throughout the water column
  - Record Secchi disk depth at same time
- Analyze water samples for TP, SRP, TN, NO<sub>3</sub>+NO<sub>2</sub>, NH<sub>4</sub>, and chl
  - Split sample analysis (send samples to two laboratories for QA/QC purposes). Use method with low detection limit



#### **Proposed 1-yr Intensive Monitoring**

- Collect samples for
  phytoplankton analysis monthly
- Test for cyanotoxins (microcystin, etc.) if algal blooms or surface scums are observed, or if concentrations of chl exceed 10 µg/L
- Conduct an aquatic plant survey each August to map the community structure, density, and coverage of aquatic macrophytes within the lake









### Lake Alma Watershed Land Use

- Lake Alma is part of the larger Raccoon Creek watershed. Historically, this region of Ohio was home to a booming mining industry
- As a result of this mining legacy, two impoundments remain in the eastern part of the watershed on the hillside above Lake Alma
- In the mid-1990s, heavy rainfall caused these impoundments to be breached on two occasions. The resulting runoff drained into Lake Alma, and contributed high loads of sediment to the lake









## **External Loading**

- Lake Alma watershed 71% forested, only 7 % cropland
- Inflow TP ~ 125 μg/L if runoff 1 m/yr
- Forest runoff = 30 μg/L, cropland runoff = 1,200 μg/L. TP Ag = 40x forest
- If whole watershed forested, loading 4x less (55 kg/yr) than with current land use (225 kg/yr)
- Need actual observed loading to manage lake water quality

|                            | CTEDLLand | Demonstrate |       |
|----------------------------|-----------|-------------|-------|
| NLCD Land Use              | Use       | (%)         | Acres |
| Open Water                 | Omitted   | 13          | 59.2  |
| Dev. Open Space            | Urban     | 4           | 18.2  |
| Developed Low<br>Intensity | Urban     | 1.6         | 7.3   |
| Mixed Forest               | Forest    | 71          | 323.1 |
| Pasture/Hay                | Pasture   | 2           | 9.1   |
| Cultivated Crops           | Cropland  | 7           | 31.9  |
| Shrub/Scrub                | Pasture   | 1.4         | 6.4   |
|                            |           |             |       |

Total Total STEPL Land Percent Phosphorus Load (lb/yr) Phosphorus Load (kg/yr) Use (%) 13.7 Urban 30.2 6.1 340.8 154.6 Cropland 7.8 Pastureland 68.7 38.5 17.5 86.4 39.2 Forest 17.4 224.9 Total 495.9 100



#### **Proposed 1-yr Intensive Monitoring**

- Twice monthly monitoring and sample collection in Lake Alma from March through October (critical period is the growing season from May – September), monthly during the remainder of the year
- Conduct monitoring at deep site
  - Collect samples from 1, 3 and 4.5 m below surface
  - $-\,$  Determine temperature, pH, DO, and specific conductivity at  $0.5\mbox{-m}$  intervals throughout the water column
  - Record Secchi disk depth at same time
- Analyze water samples for TP, SRP, TN, NO<sub>3</sub>+NO<sub>2</sub>, NH<sub>4</sub>, and chl
  - Split sample analysis (send samples to two laboratories for QA/QC purposes). Use method with low detection limit
- Test for cyanotoxins (microcystin, etc.) if algal blooms or surface scums are observed, or if concentrations of chl exceed 10 μg/L. Analysis for algal counts, biovolume, and taxa is expensive
  - If TP can be managed to < 20 μg/L, cyanobacteria blooms should be relatively low</li>

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

## **Data Analysis**

- Lake: Summer means for TP, chl, and SD
- Loading:
  - Water budget, calculate ground water quantity and sample GW for TP (wells, seepage meters, etc.)
  - Mass balance for TP (calculated internal loading) on 2-week intervals
- Calibrate seasonal mass balance model for whole lake TP. Lake too shallow to assume permanent whole-summer stratification
  - Select appropriate TP settling rate and calculate gross internal loading
  - May be possible to calculate sediment P release rate from "hypolimnion" (4 5 m) TP with time, if stratification persists
- Evaluate management alternatives with TP model
- Evaluate the cost benefit and sustainability of management alternatives both in the watershed and in-lake based upon predicted outcomes for HAB control.





# IN-LAKE MANAGEMENT ALTERNATIVES







# Dilution

- Supply low nutrient
- Increase outflow of P
- Reduction in available P in water column
- Dilution volume needed; 2 to 15% of lake water volume per day
- For large lakes low nutrient water supply usually in short supply and/or expensive
- Dilution must decrease water column P, but must also increase effective P flushing







### Alum or Ca, Fe, La Lake Treatment for Phosphorus Control - Common Approaches

- All applications strategies share
  - Metal is active ingredient
  - Capture
    - Chemically binds with phosphorus
  - Transport
    - Removal from water (sludge)
    - Distributed to lake sediments
  - Inactivation
    - Reducing bioavailability of phosphorus







# Summary

- Internal P loading in shallow lakes may be more important than external P loading in summer algal bloom production in the short-term
- In shallow lakes even modest flux rates from sediments result in high water column concentrations due to shallowness that may lead to HAB
- Watershed BMPs will only address part of the increase in external P loading due to land-use compared to historical P loading
- Phosphorus inactivation has been proven effective in shallow lakes, regardless of the level of watershed management, in reducing internal P loading and HABs
- Phosphorus inactivation is also effective in deep stratified lake where hypolimnetic P becomes available to drive Cyanobacteria blooms
- Must always work with watershed BMPs to reduce overall loading to lakes and reservoir for long-term management success.







