CALIFORNIA:

Imperial County, Los Angeles-South Coast Air Basin, Plumas County, San Joaquin Valley Area Designations

for the

2012 Primary Annual PM_{2.5} National Ambient Air Quality Standard Technical Support Document

1.0 Summary

In accordance with Section 107(d) of the Clean Air Act (CAA), the EPA must promulgate designations for all areas of the country. In particular, the EPA must identify those areas that are violating a National Ambient Air Quality Standard (NAAQS) or contributing to a violation of the NAAQS in a nearby area. The EPA must complete this process within 2 years of promulgating a new or revised NAAQS, or may do so within 3 years under circumstances not relevant to these designations.¹ This technical support document (TSD) describes the EPA's intent to designate areas in California as nonattainment or unclassifiable for the 2012 primary annual fine particle NAAQS (2012 annual PM_{2.5} NAAQS).²

Under section 107(d), states are required to submit area designation recommendations to the EPA for the 2012 annual $PM_{2.5}$ NAAQS no later than 1 year following promulgation of the standard, or by December 13, 2013. In November 2013, California recommended that the counties and partial counties identified in Table 1 be designated as "nonattainment" for the 2012 annual $PM_{2.5}$ NAAQS based on air quality data from 2010-2012. As also reflected in Table 1, California amended its recommendation for Plumas County on July 2, 2014 based on preliminary air quality data from 2011-2013. Tribes are also able to submit area designations under section 107(d), on a similar timeline as States, and designation of a State area may also impact Indian country. More information on tribal designations for the 2012 annual $PM_{2.5}$ NAAQS is below.

¹ Section 107(d) of the CAA requires the EPA to complete the initial designation process within 2 years of promulgation of a new or revised NAAQS, unless the Administrator has insufficient information to make initial designation decisions in the 2-year time frame. In such circumstances, the EPA may take up to 1 additional year to make initial area designation decisions (i.e., no later than 3 years after promulgation of the standard).

² On December 14, 2012, the EPA promulgated a revised primary annual PM_{2.5} NAAQS (78 FR 3086, January 15, 2013). In that action, the EPA revised the primary annual PM_{2.5} standard, strengthening it from 15.0 micrograms per cubic meter $(\mu g/m^3)$ to 12.0 $\mu g/m^3$.

After considering these recommendations and based on the EPA's technical analysis as described in this TSD, The EPA intends to designate the areas listed in Table 1 as nonattainment for the 2012 annual PM_{2.5} standard. The EPA must designate an area nonattainment if it has an air quality monitoring site³ that is violating the standard or if it has sources of emissions that are contributing to a violation of the NAAQS in a nearby area. Legal descriptions (e.g., county boundaries, townships and ranges) of these areas are found below in the supporting technical analysis for each area. As provided in CAA section 188(a), the EPA will initially classify all nonattainment areas as "Moderate" nonattainment areas.

Table 1. State's or Tribe's Recommended Nonattainment Areas and EPA's Intended Nonattainm	ent
Areas for the 2012 annual PM _{2.5} NAAQS	

Area	State's/Tribe's Recommended Nonattainment Counties or Areas of Indian country	EPA's Intended Nonattainment Counties or Areas of Indian country
Imperial County, CA	Imperial County (partial)	Imperial County (partial)
Los Angeles-South Coast Air Basin ^a	Los Angeles County (partial) Orange County Riverside County (partial) San Bernardino County (partial)	Los Angeles County (partial) Orange County Riverside County (partial) San Bernardino County (partial)
Cahuilla Band of Mission Indians of the Cahuilla Reservation	did not submit recommendation	Cahuilla Band of Mission Indians of the Cahuilla Reservation
Morongo Band of Mission Indians	• did not submit recommendation	 Morongo Band of Mission Indians
Ramona Band of Cahuilla	• did not submit recommendation	Ramona Band of Cahuilla
San Manuel Band of Mission Indians	• did not submit recommendation	• San Manuel Band of Mission Indians
• Soboba Band of Luiseno Indians	• did not submit recommendation	• Soboba Band of Luiseno Indians
Plumas County, CA	Plumas County (partial)	Plumas County (partial)

³ In accordance with 40 CFR 50 Appendix N, $PM_{2.5}$ measurements from the primary monitor and suitable collocated $PM_{2.5}$ FRM, FEM or ARMs may be used in a "combined site data record" to establish a $PM_{2.5}$ design value to determine whether the NAAQS is met or not met at a particular $PM_{2.5}$ monitoring site.

	Fresno County	Fresno County
	Kern County (partial)	Kern County (partial)
	Kings County	Kings County
San Lagarin Valley, CAb	Madera County	Madera County
San Joaquin Valley, CA ⁸	Merced County	Merced County
	San Joaquin County	San Joaquin County
	Stanislaus County	Stanislaus County
	Tulare County	Tulare County
Big Sandy Rancheria of Western Mono Indians	• did not submit recommendation	Big Sandy Rancheria of Western Mono Indians
 Cold Springs Rancheria of Mono Indians of California 	• did not submit recommendation	Cold Springs Rancheria of Mono Indians of California
 Northfork Rancheria of Mono Indians of California 	• did not submit recommendation	Northfork Rancheria of Mono Indians of California
Picayune Rancheria of Chuckchansi Indians of California	• did not submit recommendation	Picayune Rancheria of Chuckchansi Indians of California
 Santa Rosa Indian Community of the Santa Rosa Rancheria 	• did not submit recommendation	 Santa Rosa Indian Community of the Santa Rosa Rancheria
 Table Mountain Rancheria of California 	• did not submit recommendation	Table Mountain Rancheria of California
• Tule River Indian Tribe of the Tule River Reservation	• did not submit recommendation	• Tule River Indian Tribe of the Tule River Reservation

^a Los Angeles-South Coast Air Basin is a multi-jurisdictional nonattainment area that includes areas of Indian country of Federally-recognized tribes. Table 1 identifies the tribal lands that the EPA intends to designate as part of the nonattainment area. The areas of Indian country of each tribe that the EPA also intends to designate as part of the nonattainment area are discussed further in Section 3, Technical Analysis.

^b San Joaquin Valley Air Basin is a multi-jurisdictional nonattainment area that includes areas of Indian country of Federally-recognized tribes. Table 1 identifies the tribal lands that the EPA intends to designate as part of the nonattainment area. The areas of Indian country of each tribe that the EPA also intends to designate as part of the nonattainment area are discussed further in Section 3, Technical Analysis.

In addition to the tribes listed in the table above, the EPA intends to designate Pechanga Band of Luiseno Mission Indians of the Pechanga Reservation (Pechanga) as "unclassifiable" for the 2012 annual PM_{2.5} NAAQS. In December 2013, Pechanga Tribe recommended that their portion of Indian country be designated "unclassifiable." The EPA intends to agree with the Tribe's recommendation. See the technical analysis for the Pechanga area in Section 3.0.

In its 2013 recommendation letter and additional July 2, 2014 recommendation, California recommended that the EPA designate as "unclassifiable/attainment" all other counties and partial counties not identified in the State's/Tribe's Recommendation Column of Table 1. For state lands, the EPA agrees with the State's recommendation for nonattainment for the Los Angeles-South Coast Air Basin, San Joaquin Valley, Imperial County (partial), and Plumas County (partial). The EPA intends to designate the remainder of state lands in

California as unclassifiable/attainment based on the State's recommendation, ambient monitoring data collected during the 2011-2013 period showing compliance with the 2012 annual PM_{2.5} NAAQS, and the EPA's assessment that those unclassifiable/attainment areas within the State are not likely to be contributing to nearby violations.^{4,5}

The EPA has included the areas of Indian country of federally recognized tribes in the Los Angeles-South Coast Air Basin and San Joaquin Valley listed in Table 1 in the intended nonattainment areas, based on the technical analysis described in Section 3.0. All tribes will be designated in accordance with two guidance documents finalized in 2011 by the EPA's Office of Air Quality, Planning, and Standards: *Guidance to Regions for Working with Tribes during the National Ambient Air Quality Standard (NAAQS) Designations Process*⁶ and the *Policy for Establishing Separate Air Quality Designations for Areas of Indian Country*⁷. The EPA intends to designate all of the Indian country of five tribes in the Los Angeles-South Coast Air Basin and all of the Indian country of seven tribes in the San Joaquin Valley as part of these multi-jurisdictional nonattainment areas. To date, the EPA has not received any designation recommendations from any of these tribes, but has notified them of their ability to provide recommendations and offered consultation in accordance with *EPA's Policy on Coordination and Consultation with Indian Tribes*⁸.

2.0 Nonattainment and Unclassifiable Area Analyses and Intended Boundary Determination

The EPA evaluated and determined the intended boundaries for each nonattainment and unclassifiable area on a case-by-case basis considering the specific facts and circumstances unique to the area. In accordance with the CAA section 107(d), the EPA intends to designate as nonattainment not only the area with the monitoring sites that violate the 2012 annual PM_{2.5} NAAQS, but also those nearby areas with emissions sources that contribute to the violation in the violating area. As described in EPA guidance⁹, after identifying each monitoring site indicating a violation of the standard in an area, the EPA analyzed those areas with emissions contributing to that violating area by considering those counties in the entire metropolitan area (e.g., Core Based Statistical Area (CBSA) or Combined Statistical Area (CSA)) in which the violating monitoring sites are located. The EPA also evaluated counties adjacent to the CBSA or CSA as a starting point for the contribution analysis because those areas are nearby for purposes of the PM_{2.5} NAAQS. Based upon relevant facts and circumstances

⁶ <u>http://www.epa.gov/ttn/caaa/t1/memoranda/20120117naaqsguidance.pdf</u>

⁴ Unless a state or tribe has specifically identified jurisdictional boundaries in their area recommendations, when determining "remainder of the state," EPA will use Federal Information Processing Standard (FIPS) codes maintained by the National Institute of Standards and Technology (NIST), which are used to identify counties and county equivalents (e.g., parishes, boroughs) of the United States and its unincorporated territories (e.g., American Samoa, Guam, Northern Mariana Islands, Puerto Rico, and the US Virgin Islands). Available on EPA's Envirofacts website at http://www.epa.gov/envirofw/html/codes/state.html.

⁵ EPA uses a designation category of "unclassifiable/ attainment" for areas that are monitoring attainment and for areas that do not have monitoring sites but which the EPA believes are likely attainment and does not emissions sources that are contributing to nearby violations based on the five factor analysis and other available information.

⁷ <u>http://www.epa.gov/ttn/caaa/t1/memoranda/20120117indiancountry.pdf</u>

⁸ <u>http://www.epa.gov/tp/pdf/cons-and-coord-with-indian-tribes-policy.pdf</u>

⁹ EPA issued guidance on April 16, 2013, that identified important factors that EPA intended to evaluate, in making a recommendation for area designations and nonattainment boundaries for the 2012 annual PM_{2.5} NAAQS. Available at *http://www.epa.gov/pmdesignations/2012standards/docs/april2013guidance.pdf*.

in each area, the designated nonattainment area could be larger or smaller that the CBSA or CSA. The EPA's analytical approach for both nonattainment and unclassifiable areas is described in section 3 of this technical support document.

3.0 Technical Analysis

In this technical analysis, the EPA used the latest data and information available to the EPA (and to the states and tribes through the $PM_{2.5}$ Designations Mapping Tool¹⁰ and the EPA PM Designations Guidance and Data web page¹¹) and/or data provided to the EPA by states or tribes. This technical analysis identifies the areas with monitoring sites that violate the 2012 annual $PM_{2.5}$ standard. The EPA evaluated these areas and other nearby areas with emissions sources or activities that potentially contribute to ambient fine particle concentrations at the violating monitors in the area based on the weight of evidence of the five factors recommended in EPA guidance and any other relevant information.

These five factors are:

<u>Factor 1: Air Quality Data</u>. The air quality data analysis involves examining available ambient PM_{2.5} air quality monitoring data at, and in the proximity of, the violating monitoring locations. This includes reviewing the design values (DV) calculated for each monitoring location in the area based on air quality data for the most recent complete 3 consecutive calendar years of quality-assured, certified air quality data in the EPA's Air Quality System (AQS). In general, the EPA identifies violations using data from suitable Federal Reference Method (FRM), Federal Equivalent Method (FEM), and/or Approved Regional Method (ARM) monitors sited and operated in accordance with 40 CFR Part 58.¹² Procedures for using the air quality data to determine whether a violation has occurred are given in 40 CFR part 50 Appendix N, as revised by a final action published in the Federal Register on January 15, 2013 (78 FR 3086).¹³ In addition to reviewing data from violating monitor sites, the EPA also assesses the air quality data from other monitoring locations to help ascertain the potential contribution of sources in areas nearby to the violating monitoring sites. Examples include using chemical speciation data to help characterize contributing emissions sources and the determination of nearby contributions through analyses that differentiate local and regional source contributions.

¹⁰ EPA's PM_{2.5} Designations Mapping Tool can be found at *http://geoplatform2.epa.gov/PM_MAP/index.html*.

¹¹ EPA's PM Designations Guidance and Data web page can be found at

http://www.epa.gov/pmdesignations/2012standards/techinfo.htm.

¹² Suitable monitors include all FEM and/or ARMs except those specific continuous FEMs/ARMs used in the monitoring agency's network where the data are not of sufficient quality such that data are not to be compared to the NAAQS in accordance with 40 CFR part 58.10(b)(13) and approved by the EPA Regional Administrator per 40 CFR part 58.11(e). ¹³ As indicated in Appendix N to 40 CFR part 50, Interpretation of the National Ambient Air Quality Standards for PM_{2.5}, section 3(a) indicates "Except as otherwise provided in this appendix, all valid FRM/FEM/ARM PM_{2.5} mass concentration data produced by suitable monitors that are required to be submitted to AQS, or otherwise available to EPA, meeting the requirements of part 58 of this chapter including appendices A, C, and E shall be used in the DV (design value) calculations. Generally, EPA will only use such data if they have been certified by the reporting organization (as prescribed by § 58.15 of this chapter); however, data not certified by the reporting organization can nevertheless be used, if the deadline for certification has passed and EPA judges the data to be complete and accurate."

Factor 2: Emissions and emissions-related data. The emissions analysis examines identified sources of direct PM_{2.5}, the major components of direct PM_{2.5} (primary organic carbon/organic mass, elemental carbon, crustal material (and/or individual trace metal compounds)), primary nitrate and primary sulfate, and precursor gaseous pollutants (e.g., SO₂, NO_X, total VOC, and NH₃). Emissions data are generally derived from the most recent National Emissions Inventory (NEI) (i.e., 2011 NEI version 1), and are given in tons per year. The emission estimates are based on the "2011ed" air quality modeling platform.¹⁴ Although many emissions inventory components of the "2011ed" modeling platform derive from the 2011 NEIv1, there are some differences between the platform inventories and the 2011NEIv1 emissions. There are also some differences in PM emissions between the 2011 NEIv1 and "2011ed" due to the meteorological adjustments made for certain sectors. In some cases, the EPA may also evaluate emissions information from states, tribes, or other relevant sources that may not be reflected in the NEI. One example of "other information" could include an inventory or assessment of local/regional area sources that individually does not meet the current threshold for reporting to the NEI but collectively contributes to area PM_{2.5} concentrations. Emissions data indicate the potential for a source to contribute to observed violations, making it useful in assessing boundaries of nonattainment areas.

<u>Factor 3: Meteorology</u>. Evaluating meteorological data helps to determine the effect on the fate and transport of emissions contributing to $PM_{2.5}$ concentrations and to identify areas potentially contributing to the violations at monitoring sites. The Factor 3 analysis includes assessing potential source-receptor relationships in the area identified for evaluation using summaries of air trajectories, wind speed, wind direction, and other meteorological data, as available.

<u>Factor 4: Geography/topography</u>. The geography/topography analysis includes examining the physical features of the land that might define the airshed and, therefore, affect the formation and distribution of $PM_{2.5}$ over an area. Mountains or other physical features may influence the fate and transport of emissions and $PM_{2.5}$ concentrations. Additional analyses may consider topographical features that cause local stagnation episodes via inversions, such as valley-type features that effectively "trap" air pollution, leading to periods of elevated $PM_{2.5}$ concentrations.

<u>Factor 5: Jurisdictional boundaries</u>. The analysis of jurisdictional boundaries identifies the governmental planning and organizational structure of an area that may be relevant for designations purposes. These jurisdictional boundaries provide insight into how the governing air agencies conduct or might conduct air quality planning and enforcement in a potential nonattainment area. Examples of jurisdictional boundaries include counties, air districts, areas of Indian country, CBSA or CSA, metropolitan planning organizations (MPOs), and existing nonattainment areas.

The EPA developed the intended area designations for all tribes in accordance with two guidance documents finalized in late 2011 by the EPA's Office of Air Quality, Planning, and Standards: *Guidance to Regions for Working with Tribes during the National Ambient Air Quality Standard (NAAQS) Designations Process*¹⁵ and the *Policy for Establishing Separate Air Quality Designations for Areas of Indian Country*¹⁶; in addition to *EPA Policy on Consultation and Coordination with Indian Tribes*.¹⁷ In accordance with these documents, the EPA notified tribes of the PM_{2.5} designation process and their ability to consult with the EPA and provide designation

¹⁴ http://www.epa.gov/ttn/chief/emch/2011v6/outreach/2011v6_2018base_EmisMod_TSD_26feb2014.pdf

¹⁵ http://www.epa.gov/ttn/caaa/t1/memoranda/20120117naaqsguidance.pdf.

¹⁶ http://www.epa.gov/ttn/caaa/t1/memoranda/20120117indiancountry.pdf.

¹⁷ http://www.epa.gov/tp/pdf/cons-and-coord-with-indian-tribes-policy.pdf

recommendations in 2013 and again in May 2014. The EPA received recommendations from four tribes in 2013, the Gila River Indian Community, Pechanga Band of Luiseno Mission Indians, Pala Band of Mission Indians, and the Salt River Pima Maricopa Indian Community. The EPA has carefully evaluated and considered all tribal recommendations and feedback in the development of these intended recommendations.

3.1 Area Background and Overview – Imperial County, CA

Figure 1 is a map of EPA's intended nonattainment boundary for Imperial County. The map shows the location and design values of ambient air quality monitoring locations, county and other jurisdictional boundaries, EPA's area of analysis, the State recommendation, and existing 2006 24-hour PM_{2.5} NAAQS nonattainment boundaries.

For purposes of the 2006 24-hour $PM_{2.5}$ NAAQS, this area was designated nonattainment. The boundary for the nonattainment area for the 2006 24-hour $PM_{2.5}$ NAAQS included a portion of Imperial County, CA. The boundary for the intended 2012 annual $PM_{2.5}$ NAAQS is a portion of Imperial County consistent with the existing 2006 24-hour $PM_{2.5}$ nonattainment area.

Figure 1. EPA's Intended Nonattainment Boundaries for the Imperial County Area

EPA must designate as nonattainment areas that violate the NAAQS and nearby areas that contribute to the violation in the violating area. Monitor data in Imperial County show a violation of the 2012 $PM_{2.5}$ NAAQS, thus EPA needs to ascertain what areas contain sources of emissions that contribute to this violation. As shown in Figure 1a, EPA evaluated each county located near the county with a violating monitoring site based on the five factors and other relevant information. In addition, because Imperial County itself includes a large geographic area, EPA has also evaluated whether the nonattainment area should encompass all of Imperial County or only a smaller portion of such county in order to include the sources of emissions and emissions

activities that are contributing to the violations of the NAAQS at the violating monitor. The following sections describe this five factor analysis process. While the factors are presented individually, they are not independent. The five factor analysis process carefully considers their interconnections and the dependence of each factor on one or more of the others.

Figure 1a. Area of Analysis for the Imperial County, CA Intended Nonattainment Area

Factor 1: Air Quality Data

All data collected during the year are important when determining contributions to an annual standard such as the 2012 annual PM_{2.5} NAAQS. Compliance with an annual NAAQS is dependent upon monitor readings throughout the year, including days with monitored ambient concentrations below the level of the NAAQS. This is somewhat different than the case for the 24-hour PM_{2.5} NAAQS, where compliance is often dependent on a few days over the level of the NAAQS, which are typically associated with episodic conditions. For the 2012 annual PM_{2.5} NAAQS, the annual mean is calculated as the mean of quarterly means. A high quarter can drive the mean for an entire year, which, in turn, can drive an elevated 3-year DV. Although all data are important, seasonal or episodic emissions can provide insight as to relative contributors to measured PM_{2.5} concentrations. For these reasons, for the Factor 1 air quality analysis, EPA assessed and characterized air quality at, and in the proximity of, the violating monitoring site locations first, by evaluating trends and the

spatial extent of measured concentrations at monitors in the area of analysis, and then, by identifying the conditions most associated with high average concentration levels of $PM_{2.5}$ mass in the area of analysis.

In most cases, EPA assessed air quality data on a seasonal, or quarterly, basis.¹⁸ EPA also identified the spatial extent of these high PM_{2.5} concentrations. The mass and composition at the design value location represents contributions from various emission sources including local, area-wide (which may comprise nearby urban and rural areas) and regional sources. To determine the source mix (by mass) at the design value monitoring site, EPA examined the chemical composition of the monitored PM_{2.5} concentrations by pairing each violating FRM/FEM/ARM monitoring site with a collocated or nearby Chemical Speciation Network (CSN) monitoring site or sites. Then, EPA contrasted the approximated mass composition at the design value monitoring site with data collected at IMPROVE¹⁹ and other monitoring locations whose data are representative of regional background.^{20,21} This comparison of local/area-wide chemical composition data to regional chemical composition data derives an "urban increment," which helps differentiate the influence of more distant

¹⁸ Although compliance with the annual NAAQS depends on contributions from all days of the year, examining data on a quarterly or seasonal basis can inform the relationship between the temporal variability of emissions and meteorology and the resulting PM_{2.5} mass and composition. In some areas of the country where there may be noticeable month-to-month variations in average PM_{2.5}, the quarterly averages may not adequately represent seasonal variability. In these areas, air quality data may be aggregated and presented by those months that best correspond to the local "seasons" in these areas. ¹⁹ IMPROVE stands for Interagency Monitoring for Protected Visual Environments and is an aerosol monitoring network in mostly rural and remote areas.

²⁰ The "urban increment" analysis assesses and characterizes the increase in seasonal and annual average PM_{2.5} mass and chemical constituents observed at violating monitoring site(s) relative to monitoring sites outside the area of analysis (which represent background concentrations). Developing the urban increment involves pairing a violating FRM/FEM/ARM monitor with a collocated monitor or nearby monitor with speciation data. EPA made every effort to pair these data to represent the same temporal and spatial scales. However, in some cases, the paired violating and CSN "urban" monitoring locations were separated by some distance such that the included urban CSN site(s) reflect(s) a different mixture of emissions sources, which could lead to misinterpretations. To generally account for differences in PM_{2.5} mass between the violating site and the nearby CSN site(s), EPA determined material balance of the PM_{2.5} composition at the violating site by assigning the extra measured PM_{2.5} mass to the carbon components of PM_{2.5}. Where the general urban increment approach may be misleading, or in situations where non-carbonaceous emissions are believed to be responsible for a local PM_{2.5} concentration gradient, EPA used alternative analyses to reflect the mix of urban and rural sources contributing to the measured concentrations at violating monitoring sites.

²¹ The urban monitors were paired with any rural sites within a 150 mile radius of an urban site to calculate spatial means of the quarterly averages of each species. If there were no rural sites within 150 miles, then the nearest rural site was used alone. That rural mean was then subtracted from the quarterly mean of the urban site to get the increment. Negative values were simply replaced with zeros.

emissions sources from the influence of closer emissions sources, thus representing the portion of the measured violation that is associated with nearby emission contributions.^{22,23,24}

<u>PM_{2.5} Design Values and Total Mass Measurements</u> - EPA examined ambient PM_{2.5} air quality monitoring data represented by the DVs at the violating monitoring site and at other monitors in the area of analysis. EPA calculated DVs based on air quality data for the most recent 3 consecutive calendar years of quality-assured, certified air quality data from suitable FEM/FRM/ARM monitoring sites in the EPA's Air Quality System (AQS). For this designations analysis, EPA used data for the 2011-2013 period (i.e., the 2013 design value), which are the most recent years with fully-certified air quality data. A monitor's DV is the metric or statistic that indicates whether that monitor attains a specified air quality standard. The 2012 annual PM_{2.5} NAAQS is met at a monitoring site when the 3-year average annual mean concentration is 12.0 micrograms per cubic meter (μ g/m³) or less (e.g., 12.1 μ g/m³ or greater is a violation). A DV is only valid if minimum data completeness criteria are met or when other regulatory data processing provisions are satisfied (See 40 CFR part 50 Appendix N). Table 2 identifies the current design value(s) (i.e., the 2013 DV) and the most recent two design values based on all monitoring sites in the area of analysis for the Imperial County intended nonattainment area.²⁵ Where a county has more than one monitoring location, the county design value is indicated in red type.

²² In most, but not all, cases, the violating design value monitoring site is located in an urban area. Where the violating monitor is not located in an urban area, the "urban increment" represents the difference between local and other nearby emission sources in the vicinity of the violating monitoring location and more regional sources.

²³ Hand, et. al. Spatial and Seasonal Patterns and Temporal Variability of Haze and its Constituents in the United States: Report V, June 2011. Chapter 7 – Urban Excess in PM_{2.5} Speciated Aerosol Concentrations, *http://vista.cira.colostate.edu/improve/Publications/Reports/2011/PDF/Chapter7.pdf*

²⁴ US EPA, Office of Air Quality Planning and Standards, December 2004. (2004) Area Designations for 1997 Fine Particle (PM_{2.5}) Standards, Technical Support Document for State and Tribal Air Quality Fine Particle (PM_{2.5}) Designations, Chapter 3, Urban Excess Methodology. Available at

www.epa.gov/pmdesignations/1997standards/documents/final/TSD/Ch3.pdf

²⁵ In certain circumstances, one or more monitoring locations within a monitoring network may not meet the network technical requirements set forth in 40 CFR 58.11(e), which states, "State and local governments must assess data from Class III PM_{2.5} FEM and ARM monitors operated within their network using the performance criteria described in table C-4 to subpart C of part 53 of this chapter, for cases where the data are identified as not of sufficient comparability to a collocated FRM, and the monitoring agency requests that the FEM or ARM data should not be used in comparison to the NAAQS. These assessments are required in the monitoring agency's annual monitoring network plan described in §58.10(b) for cases where the FEM or ARM is identified as not of sufficient comparability to a collocated FRM...."

•	·	8 1			• • •	
County, State	Monitor Site ID	Site Name	State Rec NA?	09-11 DV	10-12 DV	11-13 DV
Imperial, CA	060250005	Calexico-Ethel	Yes	13.9 ^g	14.1 ^g	14.3 ^g
Imperial, CA	060250007	Brawley	Yes	7.1	7.1	7.5
Imperial, CA	060251003	El Centro	Yes	7.4	7.2	7.4
La Paz, AZ	N/A		No		No mon	itor
Riverside, CA	060651003	Riverside	Yes ^f	12	11.4	11.5
Riverside, CA	060652002	Indio	No	7.3	7.2	7.7
Riverside, CA	060655001	Palm Springs	No	6.2	6.2	6.4
Riverside, CA	060658001 ^e	Rubidoux ^e	Yes ^f	14.2	13.6	13.4
Riverside, CA	060658005 ^e	Mira Loma-Van Buren ^e	Yes ^f	16.2	15.6	15.1
San Diego, CA	060730001	Chula Vista	No	10.3	9.8	9.9
San Diego, CA	060730003	El Cajon	No	11.8	10.6 ^c	10.6 ^c
San Diego, CA	060731002	Escondido	No	10.7	10.5 ^c	10.7°
San Diego, CA	060731010	San Diego - Downtown	No	11.0	10.8°	10.8 ^c
San Diego, CA	060731016	San Diego - Kearny Villa Road ^d	No	9.4	8.9	8.7
Yuma, AZ	040278011	Yuma Supersite	No	-	7.8	7.8 ^b

Table 2. Air Quality Data collected at Regulatory Monitors (all DV levels in $\mu g/m^3)^a$

^a Where a county has more than one monitoring location, the county design value is indicated in red type.

^b The listed design value is not valid due to completeness issues.

^c This design value does not include data from Class III FEM monitors that EPA has approved as not eligible for comparison to the NAAQS per 40 CFR 58.11(e).

^d In February 2012, the San Diego-Overland (Kearny Mesa) site (060730006) was relocated to the San Diego-Kearny Villa Road site (060731016). The data listed for the San-Diego-Kearny Villa Road site is a combination of data from San Diego-Overland from 2009 through February 17, 2012, and from San-Diego-Kearny Villa Road from February 21, 2012 through 2013.

^e EPA is currently reviewing a request to exclude data from Class III FEM monitors for comparison to the NAAQS per 40 CFR 58.11(e) at this site. Should this request be approved, the DVs will be recalculated with these data excluded.

^f State recommended nonattainment as part of a separate nonattainment area. See the section of this document titled "Area Background and Overview – Los Angeles-South Coast Air Basin, CA" for more information.

^g Design value based on all valid data, including data in 2011 and 2012 that were submitted to, but are not currently in, AQS. EPA considers these data valid for use per 40 CFR Part 50 and 58 (see Memorandum "Use of Data for Imperial County, CA PM_{2.5} Design Value Calculations").

In addition to the FEM/FRM/ARM monitoring sites identified in Table 2 whose collected data are used to calculate DVs, Imperial Irrigation District also operates the nonregulatory monitoring locations identified in Table 2a. These monitors are run to evaluate the evolution of the impact of the water diversion from the Salton Sea on air quality and are not required per 40 CFR 58.20 to be compared to the NAAQS. Although these nonregulatory monitors are not eligible for comparison to the NAAQS, the data collected may help define an appropriate boundary for areas with emissions sources or activities that potentially contribute to ambient fine particle concentrations at the violating monitor.

While the Salton Sea monitoring locations measure DVs below the 2012 annual PM_{2.5} NAAQS, the daily and hourly data show episodic increases in PM_{2.5} concentrations well above the NAAQS throughout the year that are likely associated with windblown dust and regional increases in PM_{2.5} concentrations throughout Imperial County. The episodic increases in PM_{2.5} concentrations measured in this area suggests that the area surrounding the Salton Sea is likely a large contributing source of crustal material to PM_{2.5} concentration in Imperial County. Generally, sources of crustal material in Imperial County contain a larger percentage of PM_{2.5} than other areas, likely due to the unique soil characteristics in the area. Table 2a also shows an increase of 1.5 μ g/m³ from the 2010-2012 DV to the 2011-2013 DV for the Salton City monitoring location. Annual means for the Salton City monitoring location also increase from 2010 to 2013, suggesting that PM_{2.5} concentrations may be increasing in the area surrounding the Salton Sea.

County, State	Monitor Site ID	Site Name	State Rec NA?	09-11 DV	10-12 DV	11-13 DV
Imperial, CA	n/a	Salton City	No	-	7.1 ^a	8.6 ^a
Imperial, CA	n/a	Naval Test Base	No	-	5.0 ^a	5.9 ^a
Imperial, CA	n/a	Sonny Bono	No	-	6.5 ^a	6.6 ^a
Imperial, CA	n/a	Bombay Beach	No	-	6.0 ^a	6.7 ^a

Table 2a. Air Quality Data Collected at Nonregulatory Monitors (all DV levels in µg/m³)²⁶

^a The listed design value is not valid due to completeness issues.

The Figure 1 map, shown previously, identifies the Imperial County intended nonattainment area and monitoring locations with 2011-2013 violating DVs. As indicated on the map, the one violating monitoring site within Imperial County is located in the City of Calexico near the United States/Mexico border and the City of Mexicali. This monitor is approximately 0.7 miles from the border with Mexico. The data at the Calexico-Ethel monitor show a slight increasing trend of 0.3 μ g/m³ from the 2009-2011 DV to the 2011-2013 DV. Further from the border with reduced potential impacts from border-related emissions sources are the Brawley and El Centro regulatory monitors. The monitors in the cities of El Centro and Brawley have a 7.4 µg/m³ and 7.5 µg/m³ 2011-2013 DV, respectively. These monitors are approximately 9and 22 miles from the border with Mexico, respectively. While these monitors do not currently record violations of the 2012 annual PM_{2.5} NAAQS, they, like the Salton Sea monitors, indicate that elevated PM2.5 concentrations exist in Imperial County beyond areas closer to the United States/Mexico border. These elevated ambient levels likely reflect that there are sources PM_{2.5} and PM_{2.5} precursors at locations in portions of Imperial County that are contributing to the violations of the 2012 annual PM_{2.5} NAAQS at the Calexico-Ethel monitor, in addition to contributions that are likely coming from beyond the international border. Potential emission sources associated with these elevated concentrations will be discussed in Factor 2, and their potential contribution to measured violations at the Calexico-Ethel monitor in Factor 3.

Seasonal variation can highlight those conditions most associated with high average concentration levels of $PM_{2.5}$. Figure 2 shows quarterly mean $PM_{2.5}$ concentrations for the most recent 3-year period for the highest DV monitoring sites in each county within the area of analysis. Figure 2a shows quarterly mean $PM_{2.5}$ concentrations for the most recent 3-year period for all monitoring sites in Imperial County, allowing us to

²⁶ Data from CARB's online Air Quality and Meteorological Information System (AQMIS2), available at <u>http://www.arb.ca.gov/aqmis2/aqmis2.php</u>. Data pulled June 2, 2014.

compare values over the past three years at monitors within the county. This type of graphical representation is particularly relevant when assessing air quality data for an annual standard, such as the 2012 annual $PM_{2.5}$ NAAQS, because, as previously stated, the annual mean is calculated as the mean of quarterly means and a high quarter can drive the mean for an entire year, which, in turn, can drive an elevated 3-year DV.

Figure 2. Imperial County Area of Analysis Monitors - PM_{2.5} Quarterly Means for 2011-2013

Figure 2a. Imperial County Intended Nonattainment Area Monitors - PM_{2.5} Quarterly Means for 2011-2013

As shown in Figure 2a, at the design value monitor (Calexico-Ethel) in Imperial County in 2012 and 2013, both quarters two (Q2) and four (Q4) measured higher $PM_{2.5}$ concentrations than other quarters of the year. Q2 is April through June and Q4 is October through December. As discussed further in Factor 3, increased concentrations and differences in meteorological patterns suggest that there are two different regimes of high $PM_{2.5}$ concentrations that contribute to violation of the NAAQS during these quarters. Also, all quarters from 2011 quarter one (Q1) through 2013 Q4 at Calexico Ethel measured quarterly averages above 12.0 µg/m³, with the sole exception of Q1 in 2013, which measured a quarterly average of 10.4 µg/m³. While the quarterly means and DVs for the Brawley and El Centro monitors are lower than the concentrations measured at Calexico Ethel, further evaluation of concentrations at these sites is warranted to determine whether sources in Imperial County impacting these monitors also contribute to violations at Calexico Ethel. As discussed further in Factors 2, 3, and 4, the areas surrounding these monitors contain numerous sources of $PM_{2.5}$ and $PM_{2.5}$ precursors along with meteorological conditions during portions of the year which are conducive to transport of $PM_{2.5}$ to the Calexico Ethel monitoring location.

<u>PM_{2.5} Composition Measurements</u> - To assess potential emissions contributions for each violating monitoring location, the EPA determined the various chemical species comprising total PM_{2.5} to identify the chemical constituents over the analysis area, which can provide insight into the types of emission sources impacting the monitored concentration. To best describe the PM_{2.5} at the violating monitoring location, EPA first adjusted the chemical speciation measurement data from a monitoring location at or near the violating FRM monitoring site using the SANDWICH approach to account for the amount of PM_{2.5} mass constituents retained in the FRM measurement.^{27,28,29,30} In particular, this approach accounts for losses in fine particle nitrate and increases in sulfate mass associated with particle bound water. Figure 3a illustrates the fraction of each PM_{2.5} chemical constituent at the Calexico Ethel monitoring site based on annual averages for the years 2010-2012.

²⁷ SANDWICH stands for measured Sulfate, Adjusted Nitrate, Derived Water, Inferred Carbonaceous mass Hybrid Material Balance Approach." The SANDWICH adjustment uses an FRM mass construction methodology that results in reduced nitrates (relative to the amount measured by routine speciation networks), higher mass associated with sulfates (reflecting water included in gravimetric FRM measurements) and a measure of organic carbonaceous mass derived from the difference between measured PM_{2.5} and its non-carbon components. This characterization of PM_{2.5} mass also reflects crustal material and other minor constituents. The resulting characterization provides a complete mass closure for the measured FRM PM_{2.5} mass, which can be different than the data provided directly by the speciation measurements from the CSN network.

²⁸ Frank, N. H., SANDWICH Material Balance Approach for PM_{2.5} Data Analysis, National Air Monitoring Conference, Las Vegas, Nevada, November 6-9, 2006. *http://www.epa.gov/ttn/amtic/files/2006conference/frank.pdf*.

²⁹ Frank, N. H., The Chemical Composition of PM_{2.5} to support PM Implementation, EPA State /Local/Tribal Training Workshop: PM_{2.5} Final Rule Implementation and 2006 PM_{2.5} Designation Process, Chicago IL, June 20-21, 2007, *http://www.epa.gov/ttn/naaqs/pm/presents/pm2.5_chemical_composition.pdf*.

³⁰ Frank, N. H. Retained Nitrate, Hydrated Sulfates, and Carbonaceous Mass in Federal Reference Method Fine Particulate Matter for Six Eastern U.S. Cities. J. Air & Waste Manage. Assoc. 2006 56:500–511.

Figure 3a. Imperial County Annual Average PM_{2.5} Chemical Constituents (2010-2012)

Figure 3b shows annual and quarterly chemical composition profiles and illustrates any seasonal or episodic contributors to PM_{2.5} mass. This "increment analysis," combined with the other factor analyses, can provide additional insight as to which sources or factors may contribute at a greater level. Simply stated, this analysis can help identify nearby sources of emissions that contribute to the violation at the violating monitoring site.

Figure 3b. Imperial County Annual and Quarterly Average PM_{2.5} Species (2010-2012)^a

^aAdjusted to FRM Total $PM_{2.5}$ indicates that the speciation profile and total mass depicted in this figure are the result of the urban increment calculation for the particular FRM monitor.

Figures 3a and 3b show that organic mass and crustal material are the predominant species on an annual mean basis, as well as for each quarter. Sulfates and elemental carbon also contribute to measured $PM_{2.5}$ mass at

Calexico Ethel throughout the year. Nitrates do not contribute to measured $PM_{2.5}$ mass in quarter two and three, but they do increase in the winter months, affecting Q1 and Q4 concentrations. There is also an increase in elemental carbon during Q1 and Q4. This suggests that biomass burning, combustion sources, and fugitive dust sources such as agricultural sources, unpaved roads, and windblown dust are large contributors to high annual $PM_{2.5}$ concentrations within Imperial County. The speciation results for the days that exceed the 24-hour standard show more of a contribution from organic matter and ammonium nitrate, which is different than what the annual mean speciation data show.

EPA assessed seasonal and annual average PM_{2.5} constituents at monitoring sites within the area relative to monitoring sites outside of the analysis area to account for the difference between regional background concentrations of PM_{2.5}, and the concentrations of PM_{2.5} in the area of analysis, also known as the "urban increment." This analysis differentiates between the influences of emissions from sources in nearby areas and in more distant areas on the violating monitor. Estimating the urban increment in the area helps to illuminate the amount and type of particles at the violating monitor that are most likely to be the result of sources of emissions in nearby areas, as opposed to impacts of more distant or regional sources of emissions. Figure 4a includes pie charts showing the annual and quarterly chemical mass constituents of the urban increment. The quarterly pie charts correspond to the high-concentration quarters identified in Figure 2. Evaluating these high concentration quarters can help identify composition of PM_{2.5} during these times. Note that in these charts, sulfates and nitrates have been adjusted to represent their mass in measured PM_{2.5}.

Figure 4a. Imperial County Urban Increment Analysis for 2010-2012.

Sulfates

Crustal

Figure 4b. Imperial County Average Urban Increment Analysis for 2010-2012.

Imperial County has one monitoring site violating the NAAQS. The Calexico-Ethel monitoring site measures increased $PM_{2.5}$ concentrations during Q2 and Q4, and considering meteorology (discussed further in Factor 3), this suggests that there are two different regimes of high $PM_{2.5}$ concentrations that contribute to exceedances of the NAAQS during these quarters.

The speciation analysis shows high percentages of both crustal material and organic mass suggesting that the main contributing sources to $PM_{2.5}$ concentrations at Calexico-Ethel are biomass burning, other combustion emissions, and fugitive dust emissions primarily associated with unpaved roads, agricultural sources, and windblown dust. In reviewing the urban increment analysis for the Imperial County DV monitor, the results are similar to the adjusted speciation measurements.

Factor 2: Emissions and Emissions-related Data

In this designations process, for each area with a violating monitoring site, EPA evaluated the emissions data from nearby areas using emissions related data for the relevant counties to assess each county's potential contribution to PM_{2.5} concentrations at the violating monitoring site or monitoring sites in the area under evaluation. Similar to the air quality analysis, these data were examined on a seasonal basis. EPA examined emissions of identified sources or source categories of direct PM_{2.5}, the major components of direct PM_{2.5} (organic mass, elemental carbon, crustal material (and/or individual trace metal compounds)), primary nitrate and primary sulfate, and precursor gaseous pollutants (i.e., SO₂, NO_x, total VOC, and NH₃). EPA also considered the distance of those sources of emissions from the violating monitoring site. While direct PM_{2.5} monitoring sites, the gaseous precursors tend to have a more regional influence (although the EPA is mindful of the potential local NO_x and VOC emissions contributions to PM_{2.5} from mobile and stationary sources) and transport from neighboring areas can contribute to higher PM_{2.5} levels at the violating monitoring sites.

Emissions Data

For this factor, EPA reviewed data from the 2011 National Emissions Inventory (NEI) version 1 (see *http://www.epa.gov/ttn/chief/net/2011inventory.html*). For each county in the area of analysis, EPA examined the magnitude of county-level emissions reported in the NEI. These county-level emissions represent the sum of emissions from the following general source categories: point sources, non-point (i.e., area) sources, nonroad mobile, on-road mobile, and fires. In some instances, non-anthropogenic sources of emissions such as wildfires account for large portions of the emissions inventory data presented below. EPA also looked at the geographic distribution of major point sources of the relevant pollutants.³¹ Significant emissions levels from sources in a nearby area indicate the potential for the area to contribute to monitored violations.

To further analyze area emissions data, EPA also developed a summary of direct $PM_{2.5}$, components of direct $PM_{2.5}$, and precursor pollutants, which is available at

http://www.epa.gov/pmdesignations/2012standards/docs/nei2011v1pointnei2008v3county.xlsx.

When considered with the urban increment analysis in Factor 1, evaluating the components of direct $PM_{2.5}$ and precursor gases can help identify specific sources or source types contributing to elevated concentrations at violating monitoring sites and thus assist in identifying appropriate area boundaries. In general, directly emitted particulate organic carbon (POC) and VOCs³² contribute to $PM_{2.5}$ organic mass (OM); directly emitted EC contributes to $PM_{2.5}$ EC; NO_X, NH₃ and directly emitted nitrate contribute to $PM_{2.5}$ nitrate mass; SO₂, NH₃ and directly emitted sulfate contribute to $PM_{2.5}$ sulfate mass; and directly emitted crustal material and metal oxides contribute to $PM_{2.5}$ crustal matter. ^{33,34} EPA believes that the quantities of those nearby emissions as potential

 $^{^{31}}$ For purposes of this designations effort, "major" point sources are those whose sum of PM precursor emissions (PM_{2.5} + NOx + SO₂ + VOC + NH₃) are greater than 500 tons per year based on NEI 2011v1.

 $^{^{32}}$ As previously mentioned, nearby VOCs are presumed to be a less important contributor to PM_{2.5} OM than POC.

³³ See, Seinfeld J. H. and Pandis S. N. (2006) *Atmospheric Chemistry and Physics: From Air Pollution to Climate Change*, 2nd edition, J. Wiley, New York. See also, Seinfeld J. H. and Pandis S. N. (1998) *Atmospheric Chemistry and Physics: From Air Pollution to Climate Change*, 1st edition, J. Wiley, New York.

³⁴ USEPA Report (2004), The Particle Pollution Report: Current Understanding of Air Quality and Emissions through 2003, found at: *http://www.epa.gov/airtrends/aqtrnd04/pm.html*.

contributors to the $PM_{2.5}$ violating monitors are somewhat proportional to the $PM_{2.5}$ chemical constituents in the estimated urban increment. Thus, directly emitted POC is more important per ton than SO₂, partially because POC emissions are already $PM_{2.5}$ whereas SO₂ must convert to $PM_{2.5}$ and not all of the emitted SO₂ undergoes this conversion.

Table 3a provides a county-level emissions summary (i.e., the sum of emissions from the following general source categories: point sources, non-point (i.e., area) sources, nonroad mobile, on-road mobile, and fires) of directly emitted PM_{2.5} and precursor species for the county with the violating monitoring site and nearby counties considered for inclusion in the Imperial County, CA area. Table 3b summarizes the directly emitted components of PM_{2.5} for the same counties in the area of analysis for the Imperial County, CA area. This information will be paired with the Urban Increment composition previously shown in Figures 4a and 4b.

County, State	Total NH3	Total NOx	Total Direct PM _{2.5}	Total SO ₂	Total VOC	Total
San Diego, CA	6,754	42,667	10,559	1,286	60,083	121,348
Riverside, CA	9,421	35,935	5,453	378	26,789	77,975
Imperial, CA	16,396	10,052	4,472	146	6,978	38,043
Yuma, AZ	2,835	6,303	1,855	86	5,950	17,029
La Paz, AZ	357	3,745	1,102	43	2,446	7,693

 Table 3a. County-Level Emissions of Directly Emitted PM2.5 and Precursors (tons/year)

County, State	РОМ	EC	PSO ₄	PNO ₃	PCrustal	Residual	Total Direct
San Diego, CA	5,979	1,357	186	27	1,078	1,931	10,559
Riverside,							
CA	2,140	1,087	109	14	929	1,174	5,453
Imperial, CA	1,200	346	103	11	1,323	1,488	4,472
Yuma, AZ	453	198	13	2	629	560	1,855
La Paz, AZ	235	118	8	1	420	318	1,102

Table 3b. County-Level Emissions for Components of Directly Emitted PM_{2.5} (tons/year)³⁵

Table 3b breaks down the direct $PM_{2.5}$ emissions value from Table 3a into its components. These data will also be compared with the previously presented Urban Increment composition.

Using the previously described relationship between directly emitted and precursor gases and the measured mass to evaluate data presented in Tables 3a and 3b, EPA identified the following components warranting additional review: NH₃, PM_{2.5}, SO₂, VOC, POM, PSO₄, Crustal and Residual. EPA then looked at the

³⁵ Data are based on the 2011 and 2018 Emissions Modeling Platform Data Files and Summaries (*ftp://ftp.epa.gov/EmisInventory/2011v6/v1platform*) available at: *http://www.epa.gov/ttn/chief/emch/index.html#2011* (accessed 02/26/14).

contribution of these constituents of interest from each of the counties included in the area of analysis as shown in Tables 4a-h.

	Emissions in average tons/yr				
County, State	NH ₃	Pct.	Cumulative %		
Imperial, CA	16,396	46	46		
Riverside, CA	9,421	26	72		
San Diego, CA	6,754	19	91		
Yuma, AZ	2,835	8	99		
La Paz, AZ	357	1	100		

Table 4a. County-Level NH₃ Emissions (tons/year)

Table 4b. County-Level PM_{2.5} Emissions (tons/year)

	Emissions in average tons/yr					
County, State	PM2.5	Cumulative %				
San Diego, CA	10,559	45	45			
Riverside, CA	5,453	23	68			
Imperial, CA	4,472	19	87			
Yuma, AZ	1,855	8	95			
La Paz, AZ	1,102	5	100			

Table 4c. County-Level SO₂ Emissions (tons/year)

	Emissions in average tons/yr				
County, State	SO ₂	Cumulative %			
San Diego, CA	1,286	66	66		
Riverside, CA	378	19	86		
Imperial, CA	146	8	93		
Yuma, AZ	86	4	98		
La Paz, AZ	43	2	100		

Table 4d. County-Level VOC Emissions (tons/year)

	Emissions in average tons/yr				
County, State	VOC	Cumulative %			
San Diego, CA	60,083	59	59		
Riverside, CA	26,789	26	85		
Imperial, CA	6,978	7	92		
Yuma, AZ	5,950	6	98		
La Paz, AZ	2,446	2	100		

	Emissions in average tons/yr					
County, State	РОМ	Pct.	Cumulative %			
San Diego, CA	5,979	60	60			
Riverside, CA	2,140	21	81			
Imperial, CA	1,200	12	93			
Yuma, AZ	453	5	98			
La Paz, AZ	235	2	100			

Table 4e. County-Level POM Emissions (tons/year)

Table 4f. County-Level PSO₄ Emissions (tons/year)

	Emissions in average tons/yr					
County, State	PSO ₄	Pct.	Cumulative %			
San Diego, CA	186	44	44			
Riverside, CA	109	26	70			
Imperial, CA	103	25	95			
Yuma, AZ	13	3	98			
La Paz, AZ	8	2	100			

 Table 4g. County-Level Crustal Emissions (tons/year)

	Emissions in average tons/yr					
County, State	Crustal	Pct.	Cumulative %			
Imperial, CA	1,323	30	30			
San Diego, CA	1,078	25	55			
Riverside, CA	929	21	76			
Yuma, AZ	629	14	90			
La Paz, AZ	420	10	100			

Table 4h. County-Level Residual Emissions (tons/year)

	Emissions in average tons/					
County, State	Residual	Pct.	Cumulative %			
San Diego, CA	1,931	35	35			
Imperial, CA	1,488	27	62			
Riverside, CA	1,174	21	84			
Yuma, AZ	560	10	94			
La Paz, AZ	318	6	100			

EPA also reviewed seasonal emissions for Imperial County, which show that all components (NH₃, PM_{2.5}, SO₂, VOC, POM, PSO₄, Crustal and Residual) had higher emissions in Q2 and Q3 than in Q1 and Q4. For example, direct PM_{2.5} emissions were lowest in Q4, slightly higher in Q1, higher again in Q2, and highest in Q3. Crustal material emissions were lowest in Q1 and Q4, and highest in Q2 and Q3, which is consistent with the pollution rose analysis in Factor 3, showing that meteorological conditions occurring in Q2 and Q3 are conducive to the

transport of crustal material to the Calexico Ethel monitoring location from various sources of crustal material present throughout the county. Also, NH_3 emissions increase in Q2 compared to other quarters in the year.

In addition to reviewing county-wide emissions of $PM_{2.5}$ and $PM_{2.5}$ precursors in the area of analysis, EPA also reviewed emissions from major point sources located in the area of analysis. The magnitude and location of these sources can help inform nonattainment boundaries. Table 5 provides facility-level emissions of direct $PM_{2.5}$, components of direct $PM_{2.5}$, and precursor pollutants (given in tons per year) from major point sources located in the area of analysis for the Imperial County, CA area. Table 5 also shows the distance from the facility to the DV monitor for the respective county.

		Distance	NEI 2011 v1 Emissions - Tons/Year					ear
County, State	Facility Name (Facility ID)	monitor (miles)	NH ₃	NOx	PM _{2.5}	SO_2	VOC	Total
San Diego, CA	San Diego Intl-Lindberg	100	n/a	1,156	21	125	165	1,468
Riverside, CA	None	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Imperial, CA	None	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Yuma, AZ	None	n/a	n/a	n/a	n/a	n/a	n/a	n/a
La Paz, AZ	None	n/a	n/a	n/a	n/a	n/a	n/a	n/a

 Table 5. NEI 2011 v1 Major Point Source Emissions (tons/year)

Figure 5 shows the major point source emissions (from the 2011 NEI in tons per year) in the area of analysis for Imperial County, CA and the relative distances of these sources from the violating monitoring location(s), as depicted by red dots. The actual distance from the point sources to the DV monitoring location is presented in Table 5). The distance from the violating monitoring location is particularly important for directly emitted $PM_{2.5}$. The influence of directly emitted $PM_{2.5}$ on ambient $PM_{2.5}$ diminishes more than that of gaseous precursors as a function of distance.³⁶

As indicated in Figure 5, there is one major point source located approximately 100 miles west of the monitor. The source is located on the other side of the coastal mountain range from the location of monitored violations in Imperial County, described further in Factor 4, below. Its largest emissions (nearly 80% by weight) are of NO_x, which is not observed at high concentrations in the speciation measurements, as discussed above in Factor 1. There are no major point sources in the remaining counties in the area of analysis. Thus, major point sources from all of the counties in the analysis area are unlikely to contribute to the violating monitor in Imperial County.

In addition to major point source emissions, EPA further evaluated non-point source emissions within Imperial County. EPA examined the spatial and temporal extent of agricultural burning within Imperial County, which typically occurs in the winter and summer months. Historical data from 2006 and 2007 suggest that over 35,000 acres of Bermuda grass and wheat fields are burned annually. The highest number of acres burned occur in Q1

³⁶ Baker, K. R. and K. M. Foley. *A nonlinear regression model estimating single source concentrations of primary and secondarily formed PM*_{2.5}. Atmospheric Environment. 45 (2011) 3758-3767.

(specifically in January and February) and O2 (specifically in May and June).³⁷ Agricultural burning occurs throughout Imperial County. As discussed in Factor 3, meteorological conditions during Q1 and Q2 are substantially different, with Q1 having a higher percentage of hours associated with stagnant conditions and Q2 experiencing a higher number of hours of non-stagnant conditions with winds coming from the north. Despite these differences, concentrations measured in both Q1 and Q2 are more likely to be influenced by emissions from agricultural burning than other times of the year when a lesser amount of acres are burned. The combination of non-stagnant meteorological conditions associated with winds generally from the north and the high number of acres burned in Q2 may be a cause for the increased monitored $PM_{2.5}$ concentrations in Q2, shown in Figures 2 and 2a. The data at the Calexico-Ethel monitor represent a combination of PM₂₅ concentrations from both non-point sources located throughout Imperial County and emissions sources from the City of Mexicali to the south. The two other monitoring locations in Imperial County (Brawley and El Centro) are located north of the City of Calexico. While these monitors do not currently record violations of the 2012 annual PM2.5 NAAQS and are not as clearly influenced by emissions from Mexicali, they do represent contributions from non-point emissions sources located throughout Imperial County. While not violating, the Brawley and El Centro monitors show elevated concentrations during the second and third quarters (see Factor 1). For example, Figure 2a in Factor 1 shows that quarterly means at Brawley and El Centro in 2013 were highest in Q2. As discussed further in Factor 3, various meteorological conditions that occur throughout the year are conducive to transport from sources located near the Brawley and El Centro monitoring locations, suggesting that these sources likely contribute to elevated PM_{2.5} concentrations at the violating Calexico-Ethel monitoring location.

³⁷ Agricultural Burning: Air Monitoring and Exposure Reduction in Imperial County, California: Final Report to U.S./Mexico Border Environmental Cooperation Commission Funded under Technical Assistance Agreement Number TAA08-068. Environmental Health Investigations Branch, California Department of Public Health and School of Public Health, San Diego State University. May 22, 2011.

Figure 5. Major Point Source Emissions in the Area of Analysis for the Imperial County, CA Area.

In addition to analyzing emissions from Imperial County and from other United States counties that are adjacent to Imperial County, CA, the EPA also looked at emissions from the City of Mexicali and the municipality ("municipio," analogous to U.S. counties, hereafter referred to as the municipio/county) of Mexicali, which are located on the south side of the U.S. – Mexico international border. While emissions from the Mexican side of the border are beyond the legal jurisdiction of the Clean Air Act, and thus are not in an area that the EPA could include within the designated nonattainment area for the 2012 annual PM_{2.5} NAAQS, the EPA nevertheless believes that the impacts of these sources should be acknowledged as a part of the nonattainment problem in Imperial County. Figure 5a shows a map of the Mexicali-Calexico international area.

Figure 5a. Map of Border Region, City of Mexicali and Municipio/County of Mexicali

Figure 5b shows the locations of point source emissions in the metropolitan area of the City of Mexicali. Table 5a shows the emissions from these sources.

Source: "2005 Mexicali Emissions Inventory: Final Report," Figure 2-1, page 2-3

Table 5a.	2005 Mexical	i Point Source	Emissions	(Tons per	Year)
-----------	--------------	----------------	-----------	-----------	-------

Point Source Emissions 14 376 4 624 733 12		NOx	SO ₂	VOC	PM _{2.5}
1 ont Source Emissions 14,570 4,024 755 12	Point Source Emissions	14,376	4,624	733	128

Source: "2005 Mexicali Emissions Inventory: Final Report," Tables 2-2 and 2-3, page 2-9

Emissions information for non-point sources for the city of Mexicali was not available; information was available from the entire municipio/county of Mexicali and is presented in Table 5b. As shown in Figure 5a above, the municipio/county of Mexicali has an area of 5,300 square miles that includes the City of Mexicali and areas of Mexico that range from the U.S.- Mexico border to the Sea of Cortez, which is approximately 120 miles to the south.³⁸

³⁸ See "2005 Mexicali Emissions Inventory: Final Report," prepared for Western Governors' Association, Denver, Colorado; U.S. EPA Region 9, San Francisco, CA; and the Secretaria de Proteccion al Ambiente de Baja California, Mexicali, Baja California, Mexico.

Source Type	NOx	SO ₂	VOC	CO	PM2.5	NH ₃	CH ₄
Point	14,376	4,624	732	4,116	128		
Area	1,206	131	15,302	18,854	6,754	9,015	6,033
On-Road Mobile	8,570	169	8,977	60,603	666	252	144
Nonroad Mobile	4,485	61	543	3,207	533	0	1.5
Total	28,637	4,985	25,554	86,780	8,081	9,268	6,179

 Table 5b. 2005 Municipio/County of Mexicali Emissions Inventory Summary (Tons per Year)

Blanks indicate that pollutant emissions were not applicable or were not estimated due to a lack of data. Source: "2005 Mexicali Emissions Inventory: Final Report," Table ES-1, page ES-3

Table 5c shows a comparison of county-level emissions for Imperial County and emissions in the adjacent municipio/county of Mexicali. Except for NH₃, direct PM_{2.5} emissions and precursors are 2 to 34 times as high in the municipio/county of Mexicali as in Imperial.

Table 5c.	2011 Imperial	County and 2	005 Municipio/	County of Mexica	li Emissions ((Tons per	Year)
	-ori imperiar	county and -	love manerpro,	county of filemed			I cai)

	NO _x	SO ₂	VOC	PM _{2.5}	NH ₃
Imperial County, CA	10,052	146	6,978	4,472	16,396
Municipio/County of Mexicali,	28,637	4,985	25,554	8,081	9,268
Baja California, Mexico					

In summary, EPA's analysis showed major point sources north of the U.S.-Mexico border are not contributing to violations of the 2012 annual PM_{2.5} NAAQS in Imperial County, while non-point sources throughout the county account for a large percentage of the emissions and are therefore likely contributing to violations of the 2012 annual PM_{2.5} NAAQS. Crustal material and organic mass are the highest identified components of directly-emitted PM_{2.5} within Imperial County based on the speciated ambient PM_{2.5} information presented in Factor 1, and are associated with emissions sources located throughout the county.

Population density and degree of urbanization

In this part of the factor analysis, EPA evaluated the population and vehicle use characteristics and trends of the area as indicators of the probable location and magnitude of non-point source emissions. Rapid population growth in a county on the urban perimeter signifies increasing integration with the core urban area, and indicates that it may be appropriate to include the county associated with area source and mobile source emissions as part of the nonattainment area. Table 6 shows the 2000 and 2010 population, population growth since 2000, and population density for each county in the area.

					Population		
				Land	Density		
County,	Population	Population	% Change	Area (Sq.	(per Sq.		Cumulative
State	2000	2010	from 2000	Miles)	Mile)	%	%
San Diego,	2,813,833	3,103,933	10%	4,200	739	54	54
Riverside,	1,545,387	2,202,361	43%	7,207	306	39	93
Imperial, CA	160,026	196,786	23%	5,514	36	3	97
Yuma, AZ	142,361	174,667	23%	4,175	42	3	100
La Paz, AZ	19,715	20,465	4%	4,500	5	0	100
Total	4,681,322	5,698,212					

 Table 6. Population Growth and Population Density.

Source: U.S. Census Bureau population estimates for 2000 and 2010

Imperial County, CA is low in both population and population density, compared to other counties in the area of analysis, as shown in Table 6. The county accounts for only 3% of the total population in that area. The population in Imperial County is not economically integrated with neighboring counties. The large population to the north in Riverside County is concentrated in the South Coast Air Basin, in the western portion of the county and to a lesser extent in the central portion, known as Coachella Valley, which forms the northern portion of the Salton Sea Air Basin (SSAB), of which the Imperial Valley forms the southern portion. In between these two portions lies the Salton Sea, which effectively splits the population in the SSAB between people who live in the north and are more or less associated with the greater Los Angeles metropolitan area on the west side of Banning Pass – the high mountain pass that separates the SSAB from the SCAB. Although Riverside County is experiencing the highest growth in the area of analysis, and one of the highest growth rates nationally, that growth is happening in areas that are disparate from the populated area of south central Imperial County, where monitored violations of the 2012 PM_{2.5} NAAQS are occurring.

The population in San Diego County, CA is concentrated along the Pacific Ocean Coast. San Diego County's population is experiencing rapid growth, but that growth is occurring in the western portion of that large (4,200 square miles) county, on the other side of a coastal range of mountains. Yuma and La Paz counties in Arizona, like San Diego County, are separate and distinct population centers that have little commuting to or from Imperial County. Both Arizona counties have low population and low population density. At a 4% increase from 2000 to 2010, La Paz is not experiencing rapid population growth. Although Yuma County is experiencing rapid growth, that growth is occurring in and around Yuma City and is more associated with economic activity in Mexico than in Imperial County. The absence of contribution of emissions from VMT and little economic integration between these areas and Imperial County indicate these four counties are not one large, urban area.

In addition to population data for counties within the area of analysis, EPA also notes that the Calexico-Ethel monitoring location is 0.7 miles from the U.S. – Mexico border and the City of Mexicali, which had a population of 689,775 in 2010.

Traffic and Vehicle Miles Travelled

High vehicle miles travelled (VMT) and/or a high number of commuters associated with a county is generally an indicator that the county is an integral part of an urban area. Mobile source emissions of NO_x, VOC, and direct PM may contribute to ambient particulate matter that contributes to monitored violations of the NAAQS in the area. In combination with the population/population density data and the location of main transportation arteries, an assessment of VMT helps identify the probable location of nonpoint source emissions that contribute to violations in the area. Comparatively high VMT in a county outside of the CBSA or CSA signifies integration with the core urban area contained within the CSA or CBSA, and indicates that a county with the high VMT may be appropriate to include in the nonattainment area because emissions from mobile sources in that county contribute to violations in the area. Table 7 shows 2011 VMT while Figure 7 overlays 2011 countylevel VMT with a map of the transportation arteries. VMT information reflects data from the Federal Highway Administration.

County, State	Total 2011 VMT	Percent	Cumulative %
San Diego, CA	27,302,301,628	54	54
Riverside, CA	19,110,634,300	38	92
Imperial, CA	1,771,872,720	4	96
Yuma, AZ	1,453,430,294	3	98
La Paz, AZ	776,932,996	2	100
Total	50,415,171,938		

 Table 7. 2011 VMT for the Imperial County, CA Area.

http://www.census.gov/hhes/commuting/data/commuting.html

Figure 7. Overlay of 2011 County-level VMT with Transportation Arteries.

According to Table 7 and Figure 7, Imperial County is shown as having the same pattern of isolation in terms of its VMT as it had for its population. San Diego and Riverside counties in CA have larger VMT than any other counties in the area of analysis, and again as for population, this VMT is associated with the ocean-facing western portion of San Diego County and for Riverside County, with the western portion of the county in SCAB and to a lesser extent the northern Coachella portion of SSAB, whose VMT is associated with traffic within Coachella Valley as well as to and from SCAB.

According to Census Bureau statistics for commuter flow between counties for 2006-2010, Imperial County, CA has 55,565 commuters. See: <u>http://www.census.gov/population/metro/data/other.html</u>. Of those commuters residing in Imperial County, 51,171 or 92% travel to a workplace destination within the county, while 2% (1,231 commuters) travel to a workplace in Riverside County and less than 2% (961 commuters) travel to a San Diego workplace.

In the reverse direction, commuters residing in the surrounding area of analysis do not appreciably commute into Imperial County for work. From Yuma County, AZ, 1,066 commuters travel to Imperial for work, while from Riverside and San Diego counties only 665 and 792 commuters, respectively, travel to work in the county. There were no commuters who resided in La Paz County, AZ who travelled to work in Imperial County, CA. Table 7a presents statistics for border crossings at the two land ports of entry, Calexico and Calexico East, on the Imperial County portion of the U.S.-Mexico border.

Port Name	Trucks	Trains	Train Passengers	Buses	Bus Passengers	Personal Vehicles	Personal Vehicle Passengers	Pedestrians
Calexico,								
CA	0	0	0	0	0	4,112,348	7,132,134	4,398,916
Calexico								
East, CA	325,690	250	259	2571	103,690	3,198,849	5,915,717	717,009

Table 7a. 2013 Border Crossing/Entry at Calexico and Calexico East, CA

Source: U.S. Department of Transportation, Research and Innovative Technology Administration, Bureau of Transportation Statistics, based on data from the Department of Homeland Security, U.S. Customs and Border Protection, Office of Field Operations. Report created: Fri Jul 11 16:06:27 EDT 2014

In summary for emissions-related information, Imperial County is isolated from the surrounding counties in the area of analysis. Crustal material and organic mass are the components that account for the largest percentage of directly-emitted PM_{2.5} within Imperial County, and are associated with emissions sources located throughout the county. North of the U.S-Mexico border, there are no major point sources contributing to violations of the 2012 PM_{2.5} NAAQS, and non-point sources, population and VMT are isolated to Imperial County. EPA does note that the Calexico Ethel monitoring site is in close proximity to the U.S – Mexico border and the city of Mexicali, which has a large population compared to Imperial County and is a known source of PM_{2.5} emissions, which, in addition to the Imperial County emissions, likely impact the Calexico Ethel monitor, especially during times of stagnant conditions as discussed further in Factor 3.

Factor 3: Meteorology

EPA evaluated available meteorological data to determine how meteorological conditions, including, but not limited to, weather, transport patterns, and stagnation conditions, could affect the fate and transport of directly emitted particulate matter and precursor emissions from sources in the area of analysis. EPA used two primary tools for this assessment: wind roses and kernel density estimation (KDE). When considered in combination with area PM_{2.5} composition and county-level and facility emissions source location information, wind roses and KDE can help to identify nearby areas contributing to violations at violating monitoring sites.

Wind roses are graphic illustrations of the frequency of wind direction and wind speed. Wind direction can indicate the direction from which contributing emissions are transported; wind speed can indicate the force of

the wind and thus the distance from which those emissions are transported. EPA constructed wind roses from hourly observations of wind direction and wind speed using 2009-2012 data from National Weather Service locations archived at the National Climate Data Center.³⁹ When developing these wind roses, EPA also used wind observations collected at meteorological sampling stations collocated at air quality monitoring sites, where these data were available. Figure 8 shows wind roses that EPA generated from data relevant in the Imperial County area.

Climatic conditions in the Salton Sea Air Basin are governed by the large-scale sinking and warming air in the subtropical high-pressure center of the Pacific Ocean. The high pressure ridge blocks most mid-latitude storms except in the winter when the high-pressure ridge is weakest and farther south. Similarly, the coastal mountains prevent the intrusion of any cool damp marine air from the coast. Because of the weakened storms and the mountainous barrier, the Salton Sea Air Basin has hot summers, mild winters, and little rainfall. The flat terrain of the Valley and the strong temperature differentials created by intense solar heating produces moderate winds and deep thermal convection.

³⁹ *ftp.ncdc.noaa.gov/pub/data/noaa* or

http://gis.ncdc.noaa.gov/map/viewer/#app=cdo&cfg=cdo&theme=hourly&layers=1&node=gis Quality assurance of the National Weather Service data is described here: *http://www1.ncdc.noaa.gov/pub/data/inventories/ish-qc.pdf*.

As shown in Figure 8, there is a pattern across the CBSA of predominantly southwest to west winds on an annual average basis, mostly at mid-level speeds of 2 to 8 meters per second.

In addition to wind roses, EPA also generated kernel density estimation (KDE) plots to represent HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) backward trajectory frequency at violating

monitoring sites.^{40,41} These KDEs are graphical statistical estimations to determine the density of trajectory endpoints at a particular location represented by a grid cell. The EPA used KDEs to characterize and analyze the collection of individual HYSPLIT backward trajectories.⁴² Higher density values, indicated by darker blue colors, indicate a greater frequency of observed trajectory endpoints within a particular grid cell. Figure 9 shows a HYSPLIT KDE plot for the Calexico-Ethel air monitoring site (AQS number 060651103) in Imperial County, summarized by calendar quarter for the 2010-2012 period.

http://www.arl.noaa.gov/HYSPLIT_info.php

⁴⁰ In some past initial area designations efforts, EPA has used HYSPLIT backward trajectories to assist in determining nonattainment area boundaries. A HYSPLIT backward trajectory is usually depicted on a standard map as a single line, representing the centerline of an air parcel's motion, extending in two dimensional (x,y) space from a starting point and regressing backward in time to a point of origin. Backward trajectories may be an appropriate tool to assist in determining an air parcel's point of origin on a day in which a short-term standard, such as an 8-hour standard or a 24-hour standard, was exceeded. However, for an annual standard, such as the 2012 annual PM_{2.5} NAAQS, every trajectory on every day is important. Plotting a mass of individual daily (e.g., 365 individual back trajectories), or more frequent, HYSPLIT trajectories may not be helpful as this process is likely to result in depicting air parcels originating in all directions from the violating monitoring site.

⁴¹ HYSPLIT - Hybrid Single Particle Lagrangian Integrated Trajectory Model,

⁴² The KDEs graphically represent the aggregate of HYSPLIT backward trajectories for the years 2010-2012, run every third day (beginning on the first day of monitoring), four times each day, and ending at four endpoint heights.
Figures 9. Quarter 1-Quarter 4: HYSPLIT Kernel Density Estimation Plots for the Calexico-Ethel Monitoring Station.

Figure 10. Pollution Roses for Calexico Ethel, 2011-2013. $PM_{2.5} > 12 \ \mu g/m^3$ Binned by Wind Direction and Quarter.

Figure 10 shows the distribution of hourly $PM_{2.5}$ concentrations greater than 12 µg/m³ from the Calexico Ethel monitoring site binned by wind direction (e.g. direct N corresponds to hourly $PM_{2.5}$ concentrations from wind directions ranging from 349° to 11°, direct NNW corresponds to hourly $PM_{2.5}$ concentrations from wind directions ranging from 326° to 349°) for the years 2011-2013. These data are also separated by wind speed to

highlight the effect of wind speeds over 3 miles per hour (mph) versus stagnant conditions, here characterized as instances when wind speeds are less than 3 mph, on PM_{2.5} concentrations throughout the different quarters of the year. These values represent the percentage of hourly $PM_{2.5}$ values greater than 12 µg/m³ for a given wind direction. This analysis focuses on higher concentrations with respect to the annual NAAOS, which provides insight into the directionality of $PM_{2.5}$ concentrations on a subset of days throughout the year that may be contributing to violations of the annual NAAQS. For example, in Q2, 13% of all hourly values above $12 \,\mu g/m^3$ are associated with wind speeds greater than 3 mph from the WNW wind direction. Generally, stagnant conditions are indicative of contributions from emission sources from locations closer to the monitor, while higher wind speeds indicate greater probability of contribution from emission sources from locations further away. For quarters two and four, shown to be the quarters with the highest average concentrations at the violating Calexico Ethel monitor (see Figure 2a in Factor 1), these data further support the conclusion that there are two different meteorological regimes resulting in different PM_{2.5} sources contributing to violations of the NAAQS during these quarters. 58% of all hourly PM_{2.5} concentrations greater than 12 μ g/m³ in quarter two are associated with wind speeds greater than 3 mph, while only 14% of the hourly PM_{2.5} concentrations greater than $12 \,\mu g/m^3$ are associated with these same conditions in quarter four. Conversely, it appears that higher hourly concentrations measured in quarter four are more associated with stagnant conditions - 86% of all hourly PM_{2.5} concentrations greater than 12 μ g/m³ measured in quarter four occurred when wind speeds were less than 3 mph. Also, when considering $PM_{2.5}$ concentrations associated with wind speeds greater than 3 mph, 24% of all hourly PM_{2.5} concentrations greater than 12 μ g/m³ measured at the Calexico Ethel monitoring site in quarter two are from northwesterly wind directions (i.e. $>281^{\circ}$ and $<78.8^{\circ}$), compared to only 6% in guarter four. Figure 10 additionally shows in quarter 2 that the west-northwest direction contains the highest percentage of hourly PM_{2.5} concentrations greater than 12 μ g/m³ at 13%. This indicates that there are greater contributions from sources in the west-northwest direction to violations of the annual NAAQS during quarter two compared to quarter four.

Factor 4: Geography/topography

To evaluate the geography/topography factor, EPA assessed physical features of the area of analysis that might define the airshed and thus affect the formation and distribution of $PM_{2.5}$ concentrations over the area.

Imperial Valley is located within the Salton Sea Air Basin along with the desert portion of Riverside County. Imperial County consists of 4,175 square miles, bordering Mexico to the south, Riverside County to the north, San Diego County to the west, and the State of Arizona on the east. The Imperial Valley is a part of the larger Salton Trough. Also included in the Salton Trough is the western half of the Mexicali Valley and the Colorado River delta in Mexico. This trough is a very flat basin (see Figure 10a) surrounded by mountains: the Peninsular Ranges to the west, the Chocolate, Orocopia and Cargo Muchacho Mountains to the east. Most of the trough is below sea level and is predominantly desert with agricultural land. Imperial Valley does not have any geographical or topographical barriers significantly limiting air-pollution transport within its airshed. There are no topographical barriers to separate the EPA's intended nonattainment area from the rest of the Imperial Valley. The Peninsular Ranges to the west of Imperial County serve as a partial barrier to transport from San Diego County. The Chocolate, Orocopia and Cargo Muchacho Mountains mountain ranges to the east of Imperial County serve as a partial barrier to transport from Yuma County and La Paz County in Arizona.

Figure 10a. Topographic Map in the Area of Analysis for Imperial County.

Figure 10b. Imagery in the Area of Analysis for Imperial County.

Factor 5: Jurisdictional boundaries

In defining the boundaries of the intended Imperial County, CA nonattainment area, EPA considered existing jurisdictional boundaries, which can provide easily identifiable and recognized boundaries for purposes of implementing the NAAQS. Existing jurisdictional boundaries often signify the state or local governmental organization with the necessary legal authority for carrying out air quality planning and enforcement functions for the intended area. Examples of such jurisdictional boundaries include existing/prior nonattainment area boundaries for particulate matter, county lines, air district boundaries, township boundaries, areas covered by a metropolitan planning organization, state lines, and Reservation boundaries, if applicable. Where existing jurisdictional boundaries were not adequate or appropriate to describe the nonattainment area, EPA considered other clearly defined and permanent landmarks or geographic coordinates for purposes of identifying the boundaries of the intended designated areas.

The EPA has previously established nonattainment boundaries for the 2006 24-hour PM_{2.5} NAAQS within Imperial County, and a larger partial-county nonattainment area encompassing all of Imperial County except the portion east of the Chocolate Mountains for the 1997 24-hour PM₁₀ NAAQS. The state has recommended the same boundary for the 2012 annual PM_{2.5} NAAQS as exists for the 2006 24-hr PM_{2.5} NAAQS. The state did not provide a 5-factor analysis to support their partial-county recommended nonattainment area for Imperial County, CA, instead merely relying on the existing 2006 24-hr PM_{2.5} NAAQS jurisdiction factor to recommend the same area as nonattainment for the 2012 annual PM_{2.5} NAAQS. [The 2006 24-hr nonattainment boundary was chosen based on the assumption that emissions from the City of Mexicali from across the U.S. – Mexico border influence exceedances of the 24-hour NAAQS during stagnation conditions in the winter months of November through February.]

In Imperial County, CA, air quality is managed by the Imperial County Air Pollution Control District (ICAPCD or district). ICAPCD has jurisdiction over control of stationary and non-point sources in the county while the state retains authority over mobile sources and consumer products. In addition, the district is the lead agency in developing state implementation plans for any area within the county. SIPs are submitted by ICAPCD to the state for subsequent action and then the state submits them to the EPA for federal action.

Imperial County is a member of the Southern California Association of Governments (SCAG). According to its website, "SCAG is the nation's largest metropolitan planning organization, representing six counties, 191 cities and more than 18 million residents." SCAG covers most of southern California, with the exception of San Diego County, CA. EPA deemed the area under SCAG jurisdiction to be inappropriately large with respect to developing a boundary for the Imperial County, CA nonattainment area. However, Imperial County is a member of SCAG and has the ability to perform certain transportation and transit related functions in the county, such as addressing the requirements under the CAA of transportation conformity.

The Office of Management and Budget's December 2009 delineations of core-based statistical areas (CBSAs) lists Imperial County, CA as the El Centro metropolitan statistical area (metro CBSA). In the listing, OMB did not include the metro CBSA in any larger adjacent combined statistical area (CSA). Directly to the north of the metro CBSA is one of the largest CSAs in the nation, the Los Angeles-Long Beach-Riverside CSA (LA CSA). In not delineating the metro CBSA as part of the neighboring LA CSA, it is clear that the metro CBSA is not economically linked to the neighboring CSA, nor even to the neighboring metro CBSAs. To the west is the San Diego-Carlsbad-San Marcos metro CBSA, and to the east is the Yuma, AZ metro CBSA. This characterization is in line with the agricultural nature of Imperial County, CA, and is borne out by other factors above. EPA has no indication that there is any large-scale commuting pattern between Imperial County, CA and any other neighboring county, for example. The southern border of Imperial County, CA is also the international border between the United States and Mexico.

Imperial County also includes portions of Indian country of the following tribes: Quechan Tribe of the Fort Yuma Indian Reservation (Quechan) and Torres Martinez Desert Cahuilla Indians (Torres Martinez). As defined at 18 U.S.C. 1151, "Indian country" refers to: "(a) all land within the limits of any Indian reservation under the jurisdiction of the United States Government, notwithstanding the issuance of any patent, and, including rights-of-way running through the reservation, (b) all dependent Indian communities within the borders of the United States whether within the original or subsequently acquired territory thereof, and whether within or without the limits of a state, and (c) all Indian allotments, the Indian titles to which have not been extinguished, including rights-of-way running through the same." EPA recognizes the sovereignty of tribal governments, and has attempted to take the desires of the tribes into account in establishing appropriate nonattainment area boundaries. At this time, we have not received recommendations from either tribe.

Torres Martinez is a federally recognized tribe that has non-contiguous lands in both Imperial County and Riverside County. These portions of Indian country and the surrounding nonattainment areas are shown in Figure 1. We intend to designate the Torres Martinez reservation land located in Riverside County as "unclassifiable/attainment" consistent with the surrounding area.

Quechan is a federally recognized tribe that has contiguous lands spanning Imperial County, California and Yuma County, Arizona. These portions of Indian country and the surrounding nonattainment areas are shown in Figure 1. However, the majority of the Tribe's area of Indian country in Imperial County is outside of the proposed nonattainment area boundaries, and consistent with current EPA policy that discourages splitting contiguous areas of Indian country between two separate nonattainment areas where practically possible, we intend to designate all areas of Quechan Indian country with Quechan reservation land located in Yuma County, Arizona, as "unclassifiable/attainment" consistent with Yuma County, Arizona.

The intended nonattainment area therefore does not include portions of Indian country.

Figure 11. EPA's Imperial County Intended Nonattainment Area and Nearby Tribes

In summary for this factor, a nonattainment boundary consistent with the 2006 24-hour $PM_{2.5}$ nonattainment area covers both the area that violates the NAAQS and nearby areas that contribute to the violation.

Conclusion for Imperial County Area

Based on the assessment of factors described above, both individually and in combination, EPA has preliminarily concluded that the following partial county should be included as part of the Imperial County nonattainment area because portions of the county are either violating the 2012 annual PM_{2.5} NAAQS or contributing to a violation at a nearby monitoring site: Imperial County (partial). The area EPA intends to designate nonattainment for the annual standard is in the central-southern portion of Imperial County, CA, and includes the City of Calexico. EPA concurs with the state's recommendation for this area, and intends to designate the same area as is included in the Imperial County nonattainment area for the 2006 24-hour PM_{2.5} NAAQS.

An evaluation of Factor 1 shows that the air quality monitoring sites in Imperial County indicate violations of the 2012 annual PM_{2.5} NAAQS based on the 2013 DVs; therefore portions of the county are included in the nonattainment area. Further evaluation of PM_{2.5} chemical mass constituents at the Calexico Ethel monitoring station show that while organic mass comprises 58% of the annual average PM_{2.5} concentrations in the area, crustal material comprises 21%, which suggests that fugitive dust sources, including unpaved roads, agricultural sources, and windblown dust are also contributing sources to violations of the 2012 annual PM_{2.5} NAAQS. Factor 2 shows that the Imperial County intended nonattainment area includes sources of directly emitted PM_{2.5} and/or PM_{2.5} precursors in the area that contribute to the violating monitor, and all areas in the intended nonattainment area contribute to the particulate matter concentrations which result in violations of the 2012 annual PM_{2.5} NAAQS through emissions from non-point sources (e.g. area sources), and mobile sources. As discussed in Factor 1, both organic mass and crustal material are contributing emissions sources to violations of the 2012 annual PM_{2.5} NAAQS and therefore, the intended nonattainment area includes both sources of organic mass and crustal material.

Factor 3 suggests that during the spring months there are likely contributions of emissions from the regions to the west-northwest and to the southeast of the Calexico Ethel monitoring location. Stagnant conditions during the winter months have the potential to cause more localized exceedances of the NAAQS, including influences from Mexico to the south of the violating Calexico-Ethel monitoring site. Both of these time periods are associated with higher quarterly averages than other times of the year (see Factor 1), which further supports that there are two distinct meteorological regimes under which different source areas contribute to violations of the 2012 annual PM_{2.5} NAAQS.

As discussed in Factor 4, Imperial County does not have any geographical or topographical barriers significantly limiting air-pollution transport within the Imperial Valley portion of the county. The Peninsular Ranges to the west of Imperial County does serve as a partial barrier to transport from San Diego County, while the Chocolate, Orocopia and Cargo Muchacho Mountains mountain ranges to the east of Imperial County serve as a partial barrier to transport from Yuma County and La Paz County in Arizona.

An assessment of Factor 5 supports the intended Imperial County nonattainment area due to the previous 2006 24-hour $PM_{2.5}$ nonattainment boundary designations and local air district jurisdiction, which encompasses a portion of Imperial County.

Given the uncertainty in the emissions of crustal sources outside the intended nonattainment boundary, EPA recommends the same boundary as the 24-hour $PM_{2.5}$ standard, including only a portion of Imperial County in the intended nonattainment area, based primarily on the jurisdiction factor.

Based on proximity to the border, emissions data from Mexico, population statistics, and wind patterns, EPA expects some contribution from sources in Mexicali to the violations at the Calexico Ethel site. In addition, based on speciated data, wind patterns, and land use, EPA also expects a local contribution from within Imperial County. As described in the TSD, information available indicates that biomass burning, combustion sources, and fugitive dust sources such as agricultural sources, unpaved roads, and windblown dust are large contributors to high annual PM_{2.5} concentrations within Imperial County, specifically, wind patterns indicate that part of the year is strongly impacted by sources to the north and northwest of Calexico Ethel. EPA recommends the same boundary as the 24-hour PM_{2.5} standard, based primarily on the jurisdiction factor.

3.2 Area Background and Overview – Los Angeles-South Coast Air Basin, CA

Figure 1 is a map of the EPA's intended nonattainment boundary for the Los Angeles-South Coast Air Basin. The map shows the location and design values of ambient air quality monitoring locations, county and other jurisdictional boundaries, the State recommendation, and existing 1997 annual and 2006 24-hour PM_{2.5} NAAQS nonattainment boundaries. Figure 1a shows the EPA's area of analysis considered in this section, which includes the counties in the Los Angeles-Long Beach-Riverside combined statistical area (CSA) (Los Angeles, Orange, Riverside, and San Bernardino counties) as well as all adjacent counties (Imperial, Inyo, Kern, San Diego, and Ventura counties in California, Mojave and La Paz counties in Arizona, and Clark County, Nevada).

For purposes of the 1997 annual PM_{2.5} NAAQS, this area was designated nonattainment. The boundary for the nonattainment area for the 1997 annual PM_{2.5} NAAQS included the entirety of Orange County and parts of Los Angeles, San Bernardino and Riverside counties. For purposes of the 2006 24-hour PM_{2.5} NAAQS, this area was designated nonattainment. The boundary for the nonattainment area for the 2006 24-hour PM_{2.5} NAAQS included the entirety of Orange County and parts of Los Angeles, San Bernardino and Riverside counties of Los Angeles, San Bernardino and Riverside counties. The boundary for the intended 2012 annual PM_{2.5} NAAQS is the same as the existing designated boundaries for the 1997 annual and 2006 24-hour PM_{2.5} NAAQS. This intended nonattainment area includes areas of Indian country of the following federally recognized tribes: Cahuilla Band of Mission Indians of the Cahuilla Reservation, Morongo Band of Mission Indians, Ramona Band of Cahuilla, San Manuel Band of Mission Indians, and Soboba Band of Luiseno Indians.

The EPA must designate as nonattainment areas that violate the NAAQS and nearby areas that contribute to the violation in the violating area. Data from monitors located in Los Angeles, Riverside, and San Bernardino counties show violations of the 2012 $PM_{2.5}$ NAAQS, therefore it is appropriate for these three counties or some portion of these three counties to be designated nonattainment. As shown in Figure 1a, the EPA evaluated each county with a violating monitor as well as those located near a county with a violating monitoring site based on the five factors and other relevant information. The following sections describe this five factor analysis process. While the factors are presented individually, they are not independent. The five factor analysis process carefully considers their interconnections and the dependence of each factor on one or more of the others.

Figure 1a. Area of Analysis for the Intended Los Angeles-South Coast, CA Area

Factor 1: Air Quality Data

All data collected during the year are important when determining contributions to an annual standard such as the 2012 annual PM_{2.5} NAAQS. Compliance with an annual NAAQS is dependent upon monitor readings throughout the year, including days with monitored ambient concentrations below the level of the NAAQS. For the 2012 annual PM_{2.5} NAAQS, the annual mean is calculated as the mean of quarterly means. A high quarter can drive the mean for an entire year, which, in turn, can drive an elevated 3-year DV. Although all data are important, seasonal or episodic emissions can provide insight as to relative contributors to measured PM_{2.5} concentrations. For these reasons, for the Factor 1 air quality analysis, the EPA assessed and characterized air quality at, and in the proximity of, the violating monitoring site locations first, by evaluating trends and the spatial extent of measured concentrations at monitors in the area of analysis, and then, by identifying the conditions most associated with high average concentration levels of PM_{2.5} mass in the area of analysis.

In most cases, the EPA assessed air quality data on a seasonal, or quarterly, basis.⁴³ The EPA also identified the spatial extent of these high PM_{2.5} concentrations. The mass and composition at the design value location represents contributions from various emission sources including local, area-wide (which may comprise nearby urban and rural areas) and regional sources. To determine the source mix (by mass) at the design value monitoring site, the EPA examined the chemical composition of the monitored PM_{2.5} concentrations by pairing each violating FRM/FEM/ARM monitoring site with a collocated or nearby Chemical Speciation Network (CSN) monitoring site or sites. Then, the EPA contrasted the approximated mass composition at the design value monitoring site with data collected at IMPROVE⁴⁴ and other monitoring locations whose data are representative of regional background.^{45,46} This comparison of local/area-wide chemical composition data to regional chemical composition data derives an "urban increment," which helps differentiate the influence of more distant emissions sources from the influence of closer emissions sources, thus representing the portion of the measured violation that is associated with nearby emission contributions.^{47,48,49}

in mostly rural and remote areas.

⁴⁵ The "urban increment" analysis assesses and characterizes the increase in seasonal and annual average PM_{2.5} mass and chemical constituents observed at violating monitoring site(s) relative to monitoring sites outside the area of analysis (which represent background concentrations). Developing the urban increment involves pairing a violating FRM/FEM/ARM monitor with a collocated monitor or nearby monitor with speciation data. EPA made every effort to pair these data to represent the same temporal and spatial scales. However, in some cases, the paired violating and CSN "urban" monitoring locations were separated by some distance such that the included urban CSN site(s) reflect(s) a different mixture of emissions sources, which could lead to misinterpretations. To generally account for differences in PM_{2.5} mass between the violating site and the nearby CSN site(s), EPA determined material balance of the PM_{2.5} composition at the violating site by assigning the extra measured PM_{2.5} mass to the carbon components of PM_{2.5}. Where the general urban increment approach may be misleading, or in situations where non-carbonaceous emissions are believed to be responsible for a local PM_{2.5} concentration gradient, EPA used alternative analyses to reflect the mix of urban and rural sources contributing to the measured concentrations at violating monitoring sites.

⁴⁶ The urban monitors were paired with any rural sites within a 150 mile radius of an urban site to calculate spatial means of the quarterly averages of each species. If there were no rural sites within 150 miles, then the nearest rural site was used alone. That rural mean was then subtracted from the quarterly mean of the urban site to get the increment. Negative values were simply replaced with zeros.

⁴⁷ In most, but not all, cases, the violating design value monitoring site is located in an urban area. Where the violating monitor is not located in an urban area, the "urban increment" represents the difference between local and other nearby emission sources in the vicinity of the violating monitoring location and more regional sources.

⁴⁸ Hand, et. al. Spatial and Seasonal Patterns and Temporal Variability of Haze and its Constituents in the United States: Report V, June 2011. Chapter 7 – Urban Excess in PM_{2.5} Speciated Aerosol Concentrations,

http://vista.cira.colostate.edu/improve/Publications/Reports/2011/PDF/Chapter7.pdf

⁴⁹ US EPA, Office of Air Quality Planning and Standards, December 2004. (2004) Area Designations for 1997 Fine Particle (PM_{2.5}) Standards, Technical Support Document for State and Tribal Air Quality Fine Particle (PM_{2.5}) Designations, Chapter 3, Urban Excess Methodology. Available at

www.epa.gov/pmd esignations/1997 standards/documents/final/TSD/Ch3.pdf

⁴³ Although compliance with the annual NAAQS depends on contributions from all days of the year, examining data on a quarterly or seasonal basis can inform the relationship between the temporal variability of emissions and meteorology and the resulting PM_{2.5} mass and composition. In some areas of the country where there may be noticeable month-to-month variations in average PM_{2.5}, the quarterly averages may not adequately represent seasonal variability. In these areas, air quality data may be aggregated and presented by those months that best correspond to the local "seasons" in these areas. ⁴⁴ IMPROVE stands for Interagency Monitoring for Protected Visual Environments and is an aerosol monitoring network

<u>PM_{2.5} Design Values and Total Mass Measurements</u> – The EPA examined ambient PM_{2.5} air quality monitoring data represented by the DVs at the violating monitoring site and at other monitors in the area of analysis. The EPA calculated DVs based on air quality data for the most recent 3 consecutive calendar years of quality-assured, certified air quality data from suitable FEM/FRM/ARM monitoring sites in the EPA's Air Quality System (AQS). For this designations analysis, the EPA used data for the 2011-2013 period (i.e., the 2013 design value), which are the most recent years with fully-certified air quality data. A monitor's DV is the metric or statistic that indicates whether that monitor attains a specified air quality standard. The 2012 annual PM_{2.5} NAAQS is met at a monitoring site when the 3-year average annual mean concentration is 12.0 micrograms per cubic meter (μ g/m³) or less (e.g., 12.1 μ g/m³ or greater is a violation). A DV is only valid if minimum data completeness criteria are met or when other regulatory data processing provisions are satisfied (See 40 CFR part 50 Appendix N). Table 2 identifies the current design value(s) (i.e., the 2013 DV) and the most recent two design values based on all monitoring sites in the area of analysis.⁵⁰ Where a county has more than one monitoring location, the county design value is indicated in red type.

	Monitor		State Rec			
County, State	Site ID	Site Name	NA?	09-11 DV	10-12 DV	11-13 DV
Los Angeles, CA	060370002	Azusa	Yes	12 ^b	11.3 ^b	11.2
Los Angeles, CA	060371002 ^h	Burbank ^h	Yes	13.9	12.9	12.8
		Los Angeles -				
Los Angeles, CA	060371103 ^h	Main St. ^h	Yes	13.5	13.1	13.0
Los Angeles, CA	060371201	Reseda	Yes	10.6	10.3	10.2
Los Angeles, CA	060371302	Compton	Yes	13.4	12.4	12.2
Los Angeles, CA	060371602	Pico Rivera #2	Yes	13.3	12.3	12.0
Los Angeles, CA	060372005	Pasadena	Yes	11.1 ^b	10.4 ^b	10.4 ^b
Los Angeles, CA	060374002 ^h	Long Beach (North) ^h	Yes	11.5	10.8	11.1
		Long Beach E Pacific Coast				
Los Angeles, CA	060374004 ^h	Hwy ^h	Yes	11.2	10.7	11.0
Los Angeles, CA	060379033	Lancaster	No	6.9 ^b	6.2 ^b	6.1 ^b
Orange, CA	060590007 ^h	Anaheim ^h	Yes	11.2	10.8	10.7
Orange, CA	060592022	Mission Viejo	Yes	8.7	8.1	8.2
Pechanga	060650009	Pechanga	No ^d	8.5 ^b	7.8 ^b	7.7
Riverside, CA	060651003	Riverside	Yes	12	11.4	11.5
Riverside, CA	060652002	Indio	No	7.3	7.2	7.7
Riverside, CA	060655001	Palm Springs	No	6.2	6.2	6.4
Riverside, CA	060658001 ^h	Rubidoux ^h	Yes	14.2	13.6	13.4
Riverside, CA	060658005 ^h	Mira Loma - Van Buren ^h	Yes	16.2	15.6	15.1
San Bernardino, CA	060710025	Ontario Fire Station	Yes	13.7	12.9	12.6

Table 2. Air Quality Data collected at Regulatory Monitors (all DV levels in µg/m³)^a

⁵⁰ In certain circumstances, one or more monitoring locations within a monitoring network may not meet the network technical requirements set forth in 40 CFR 58.11(e), which states, "State and local governments must assess data from Class III PM_{2.5} FEM and ARM monitors operated within their network using the performance criteria described in table C-4 to subpart C of part 53 of this chapter, for cases where the data are identified as not of sufficient comparability to a collocated FRM, and the monitoring agency requests that the FEM or ARM data should not be used in comparison to the NAAQS. These assessments are required in the monitoring agency's annual monitoring network plan described in §58.10(b) for cases where the FEM or ARM is identified as not of sufficient comparability to a collocated FRM...."

	Monitor		State Rec			
County, State	Site ID	Site Name	NA?	09-11 DV	10-12 DV	11-13 DV
		Victorville - Park				
San Bernardino, CA	060710306	Avenue	No	7.7 ^b	6.9 ^b	6.8 ^b
San Bernardino, CA	060712002	Fontana	Yes	12.9	12.4	12.6
San Bernardino, CA	060718001	Big Bear	Yes	8.9	8.3	8.7
San Bernardino, CA	060719004	San Bernardino	Yes	12.1	11.7	11.8
Imperial, CA	060250005	Calexico Ethel	Yes ^e	13.9 ⁱ	14.1 ⁱ	14.3 ⁱ
Imperial, CA	060250007	Brawley	Yes ^e	7.1	7.1	7.5
Imperial, CA	060251003	El Centro	Yes ^e	7.4	7.2	7.4
Inyo, CA	060271003	Keeler	No	7.3	7.3	7.5
Kern, CA	060290011	Mojave-Poole	No	5.3 ^b	5.7 ^b	7.0 ^b
		Bakersfield-				
Kern, CA	060290014	California Avenue	Yes ^f	16.5	14.5	16.4
Kern, CA	060290015	Ridgecrest	No	5.5 ^b	5.3 ^b	5.4 ^b
Kern, CA	060290016	Bakersfield-Planz	Yes ^f	18.2	15.6	17.3
San Diego, CA	060730001	Chula Vista	No	10.3	9.8	9.9
San Diego, CA	060730003	El Cajon	No	11.8	10.6 ^c	10.6 °
San Diego, CA	060731002	Escondido	No	10.7	10.5 ^c	10.7 °
		San Diego -		11.0	10.8 °	10.8 °
San Diego, CA	060731010	Downtown	No	11.0	10.0	10.0
		San Diego -				
		Kearny Villa		9.4	8.9	8.7
San Diego, CA	060731016	Road ^g	No			
Ventura, CA	061110007	Thousand Oaks	No	9.3	8.9	9.1
Ventura, CA	061110009	Piru	No	8.5	8.6	8.1
Ventura, CA	061111004	Ojai	No	na	9.5 ^b	9.0 ^b
Ventura, CA	061112002	Simi Valley	No	9.3	8.9	9.1
Ventura, CA	061113001	El Rio	No	9.2	8.7	9.0
Clark, NV	320030298	Green Valley	No	0	0	6.8 ^b
Clark, NV	320030540	Jerome Mack	No	9	7.8	8.1
Clark, NV	320030561	Sunrise Acres	No	7.7	7.9	8.8
Clark, NV	320031019	Jean	No	3.7	4	4.6
Clark, NV	320032002	JD Smith	No	7.3 ^b	8.3 ^b	9.5 ^b
La Paz, AZ	N/A		No		No Monitor	
Mojave, AZ	N/A		No	No Monitor		

^a Where a county has more than one monitoring location, the county design value is indicated in red type.

^b The listed design value is not valid due to completeness issues.

^c This design value does not include data from Class III FEM monitors that the EPA has approved as not eligible for comparison to the NAAQS per 40 CFR 58.11(e).

^d The Pechanga monitoring site is located within the intended Pechanga unclassifiable area. See the section of this document titled "Area Background and Overview – Pechanga" for more information.

^e State recommended nonattainment as part of a separate nonattainment area. See the section of this document titled "Area Background and Overview – Imperial County, CA" for more information.

^f State recommended nonattainment as part of a separate nonattainment area. See the section of this document titled "Area Background and Overview – San Joaquin Valley, CA" for more information.

^g In February 2012, the San Diego-Overland (Kearny Mesa) site (060730006) was relocated to the San Diego-Kearny Villa Road site (060731016). The data listed for the San-Diego-Kearny Villa Road site is a combination of data from San Diego-Overland from 2009 through February 17, 2012, and from San-Diego-Kearny Villa Road from February 21, 2012 through 2013.

^h The EPA is currently reviewing a request to exclude data from Class III FEM monitors for comparison to the NAAQS per 40 CFR 58.11(e) at this site. Should this request be approved, the DV will be recalculated with these data excluded.

ⁱ Design value based on all valid data, including data in 2011 and 2012 that were submitted to, but are not currently in, AQS. EPA considers these data valid for use per 40 CFR Part 50 and 58 (see Memorandum: "Use of Data for Imperial County, CA PM_{2.5} Design Value Calculations").

In addition to the FEM/FRM/ARM monitoring sites identified in Table 2 whose collected data are used to calculate DVs, additional nonregulatory monitors exist in the area of analysis, identified in Table 2a. The Temecula and Lake Elsinore sites were established for informational purposes, and the Agua Tibia, Joshua Tree and Lebec sites listed are IMPROVE sites established to evaluate visibility impacts on Class I areas. None of these five monitors are required per 40 CFR 58.20 to be compared to the NAAQS. Although these nonregulatory monitors are not eligible for comparison to the NAAQS, the data collected may help define an appropriate boundary for areas with emissions sources or activities that potentially contribute to ambient fine particle concentrations at the violating monitors.

County, State	Monitor Site ID	Site Name	State Rec NA?	09-11 DV	10-12 DV	11-13 DV
Riverside, CA	060650016	Temecula	Yes	-	-	8.5 ^a
Riverside, CA	060659000	Agua Tibia	No	5.1	4.9	4.7 ^a
Riverside, CA	060659000	Lake Elsinore	Yes	11.6	10.9	10.6
San Bernardino, CA	060719002	Joshua Tree National Monument – Black Rock Canyon	No	3.8	3.5	3.5ª
Los Angeles, CA	060379034	Lebec-Peace Valley Rd	Yes	3.2ª	2.7ª	2.8ª

Table 2a. Air Quality Data Collected at Special Purpose Monitors (all DV levels in µg/m³)

^a One or more years of data are not complete.

The Figure 1a map, shown previously, identifies the Los Angeles-South Coast Air Basin area of analysis and monitoring locations with 2011-2013 violating DVs. As indicated on the map, there are three violating monitoring sites located in Los Angeles County, two violating monitoring sites in Riverside County, and two violating monitoring sites in San Bernardino County, and no monitoring sites violating in Orange County.

Seasonal variation can highlight those conditions most associated with high average concentration levels of $PM_{2.5}$. Figure 2 shows quarterly mean $PM_{2.5}$ concentrations for the most recent 3-year period for the highest DV monitoring sites in each county within the area of analysis. Figure 2a shows quarterly mean $PM_{2.5}$ concentrations for the most recent 3-year period for the highest DV monitoring sites in each county within only the Los Angeles-South Coast Air Basin intended nonattainment area, excluding sites from surrounding counties outside the intended nonattainment area. This graphical representation is particularly relevant when assessing air quality data for an annual standard, such as the 2012 annual $PM_{2.5}$ NAAQS, because, as previously stated, the annual mean is calculated as the mean of quarterly means and a high quarter can drive the mean for an entire year, which, in turn, can drive an elevated 3-year DV.

Figure 2. Los Angeles-South Coast Air Basin Area of Analysis Monitors - PM_{2.5} Quarterly Means for 2011-2013

Figure 2a. Los Angeles-South Coast Air Basin Intended Nonattainment Area Monitors - PM_{2.5} Quarterly Means for 2011-2013

As shown in Figure 2a, in the Los Angeles – South Coast Air Basin, quarter four tends to measure higher $PM_{2.5}$ concentrations than other quarters of the year.

 $\underline{PM}_{2.5}$ Composition Measurements - To assess potential emissions contributions for each violating monitoring location, the EPA determined the various chemical species comprising total $PM_{2.5}$ to identify the chemical constituents over the analysis area, which can provide insight into the types of emission sources impacting the monitored concentration. To best describe the $PM_{2.5}$ at the violating monitoring location, the EPA first adjusted the chemical speciation measurement data from a monitoring location at or near the violating FRM monitoring site using the SANDWICH approach to account for the amount of $PM_{2.5}$ mass constituents retained in the FRM

measurement.^{51,52,53,54} In particular, this approach accounts for losses in fine particle nitrate and increases in sulfate mass associated with particle bound water. Figure 3a illustrates the fraction of each PM_{2.5} chemical constituent estimated at the Los Angeles Main St. monitoring site based on annual averages for the years 2010-2012. Figures 3a and Figure 3b shows that organic carbonaceous mass (OM) is the predominant species contributing over fifty percent of the total mass throughout the year. Sulfates are the second largest component in the annual mean, contributing 25 percent, followed by crustal material (CM), contributing 9 percent. Nitrates contribute most during quarter one (Q1) and quarter four (Q4), while sulfates contribute about thirty percent of the total mass in quarter two (Q2) and quarter three (Q3). Crustal material (CM) contributes most during Q1 and Q2 and elemental carbon contribute most in Q1 and Q4. This suggests that OM sources contribute at a greater level than any other species on an annual basis, while nitrates and sulfates also contribute annually and have even higher impacts in the colder and warmer months, respectively. Sources emitting CM also seem to contribute most in Q1 and Q2.

Figure 3a. Los Angeles-South Coast Air Basin Annual Average PM_{2.5} Chemical Constituents (2010-2012)

⁵¹ SANDWICH stands for measured Sulfate, Adjusted Nitrate, Derived Water, Inferred Carbonaceous mass Hybrid Material Balance Approach." The SANDWICH adjustment uses an FRM mass construction methodology that results in reduced nitrates (relative to the amount measured by routine speciation networks), higher mass associated with sulfates (reflecting water included in gravimetric FRM measurements) and a measure of organic carbonaceous mass derived from the difference between measured PM_{2.5} and its non-carbon components. This characterization of PM_{2.5} mass also reflects crustal material and other minor constituents. The resulting characterization provides a complete mass closure for the measured FRM PM_{2.5} mass, which can be different than the data provided directly by the speciation measurements from the CSN network.

⁵² Frank, N. H., SANDWICH Material Balance Approach for PM_{2.5} Data Analysis, National Air Monitoring Conference, Las Vegas, Nevada, November 6-9, 2006. *http://www.epa.gov/ttn/amtic/files/2006conference/frank.pdf*.

⁵³ Frank, N. H., The Chemical Composition of PM_{2.5} to support PM Implementation, EPA State /Local/Tribal Training Workshop: PM_{2.5} Final Rule Implementation and 2006 PM_{2.5} Designation Process, Chicago IL, June 20-21, 2007, *http://www.epa.gov/ttn/naaqs/pm/presents/pm2.5_chemical_composition.pdf*.

⁵⁴ Frank, N. H. Retained Nitrate, Hydrated Sulfates, and Carbonaceous Mass in Federal Reference Method Fine Particulate Matter for Six Eastern U.S. Cities. J. Air & Waste Manage. Assoc. 2006 56:500–511.

Figure 3b. Los Angeles-South Coast Air Basin Annual and Quarterly Average PM_{2.5} Species (2010-2012)^a

^a Adjusted to FRM Total $PM_{2.5}$ indicates that the speciation profile and total mass depicted in this figure are the result of the urban increment calculation for the particular FRM monitor.

The EPA assessed seasonal and annual average PM_{2.5} constituents at monitoring sites within the intended nonattainment area relative to monitoring sites outside of the analysis area to account for the difference between regional background concentrations of PM_{2.5}, and the concentrations of PM_{2.5} in the area of analysis, also known as the "urban increment." This analysis differentiates between the influences of emissions from sources in nearby areas and in more distant areas on the violating monitor. Estimating the urban increment in the area helps to illuminate the amount and type of particles at the violating monitor that are most likely to be the result of sources of emissions in nearby areas, as opposed to impacts of more distant or regional sources of emissions. Figure 4a includes pie charts showing the annual and quarterly chemical mass constituents of the urban increment. The quarterly pie charts correspond to the high-concentration quarters identified in Figure 2. Evaluating these high concentration quarters can help identify composition of PM_{2.5} during these times. Note that in these charts, sulfates and nitrates have been adjusted to represent their mass in measured PM_{2.5}.

Figure 4a. Los Angeles-South Coast Air Basin Urban Increment Analysis for 2010-2012.

Figure 4b. Los Angeles-South Coast Air Basin Average Urban Increment Analysis for 2010-2012.

The Los Angeles – South Coast Air Basin has seven monitoring sites violating the NAAQS located in Los Angeles, Riverside, and San Bernardino counties. In addition, monitors within the intended nonattainment area measure increased $PM_{2.5}$ concentrations during quarter four, with more inter-annual variability in the other quarters of the year.

In reviewing the urban increment analysis for the Los Angeles Main St. monitor, the results are similar to the adjusted speciation measurements, indicating a somewhat consistent source mix throughout the area. There is an increase in the contribution of OM indicating that it may have an additional contribution from a source closer to the speciation monitoring site. This analysis points in general to contribution of OM from sources closer to the speciation monitoring site.

Factor 2: Emissions and Emissions-related Data

In this designations process, for each area with a violating monitoring site, the EPA evaluated the emissions data from nearby areas using emissions related data for the relevant counties to assess each county's potential contribution to PM_{2.5} concentrations at the violating monitoring site or monitoring sites in the area under evaluation. The EPA examined emissions of identified sources or source categories of direct PM_{2.5}, the major components of direct PM_{2.5} (organic mass, elemental carbon, crustal material (and/or individual trace metal compounds)), primary nitrate and primary sulfate, and precursor gaseous pollutants (i.e., SO₂, NO_x, total VOC, and NH₃). The EPA also considered the distance of those sources of emissions from the violating monitoring site. While direct PM_{2.5} emissions and its major carbonaceous components are generally associated with sources near violating PM_{2.5} monitoring sites, the gaseous precursors tend to have a more regional influence (although the EPA is mindful of the potential local NO_x and VOC emissions contributions to PM_{2.5} from mobile and

stationary sources) and transport from neighboring areas can contribute to higher $PM_{2.5}$ levels at the violating monitoring sites.

Emissions Data

For this factor, the EPA reviewed data from the 2011 National Emissions Inventory (NEI) version 1 (see *http://www.epa.gov/ttn/chief/net/2011inventory.html*). For each county in the area of analysis, the EPA examined the magnitude of county-level emissions reported in the NEI. These county-level emissions represent the sum of emissions from the following general source categories: point sources, non-point (i.e., area) sources, nonroad mobile, on-road mobile, and fires. In some instances, non-anthropogenic sources of emissions such as wildfires account for large portions of the emissions inventory data presented below. The EPA also looked at the geographic distribution of major point sources of the relevant pollutants.⁵⁵ Significant emissions levels from sources in a nearby area indicate the potential for the area to contribute to monitored violations.

To further analyze area emissions data, the EPA also developed a summary of direct PM_{2.5}, components of direct PM_{2.5}, and precursor pollutants, which is available at <u>http://www.epa.gov/pmdesignations/2012standards/docs/nei2011v1pointnei2008v3county.xlsx</u>.

When considered with the urban increment analysis in Factor 1, evaluating the components of direct $PM_{2.5}$ and precursor gases can help identify specific sources or source types contributing to elevated concentrations at violating monitoring sites and thus assist in identifying appropriate area boundaries. In general, directly emitted particulate organic carbon (POC) and VOCs⁵⁶ contribute to $PM_{2.5}$ organic mass (OM); directly emitted EC contributes to $PM_{2.5}$ EC; NO_X, NH₃ and directly emitted nitrate contribute to $PM_{2.5}$ nitrate mass; SO₂, NH₃ and directly emitted sulfate contribute to $PM_{2.5}$ sulfate mass; and directly emitted crustal material and metal oxides contribute to $PM_{2.5}$ crustal matter.^{57,58} The EPA believes that the quantities of those nearby emissions as potential contributors to the $PM_{2.5}$ violating monitors are somewhat proportional to the $PM_{2.5}$ chemical constituents in the estimated urban increment. Thus, directly emitted POC is more important per ton than SO₂, partially because POC emissions are already $PM_{2.5}$ whereas SO₂ must convert to $PM_{2.5}$ and not all of the emitted SO₂ undergoes this conversion.

Table 3a provides a county-level emissions summary (i.e., the sum of emissions from the following general source categories: point sources, non-point (i.e., area) sources, nonroad mobile, on-road mobile, and fires) of directly emitted PM_{2.5} and precursor species for the county with the violating monitoring site and nearby counties considered for inclusion in the Los Angeles-South Coast Air Basin, CA area. Table 3b summarizes the directly emitted components of PM_{2.5} for the same counties in the area of analysis for the Los Angeles-South Coast Air Basin, CA area. This information will be paired with the Urban Increment composition previously shown in Figures 4a and 4b.

 $^{^{55}}$ For purposes of this designations effort, "major" point sources are those whose sum of PM precursor emissions (PM_{2.5} + NOx + SO₂ + VOC + NH₃) are greater than 500 tons per year based on NEI 2011v1.

⁵⁶ As previously mentioned, nearby VOCs are presumed to be a less important contributor to PM_{2.5} OM than POC.

⁵⁷ See, Seinfeld J. H. and Pandis S. N. (2006) *Atmospheric Chemistry and Physics: From Air Pollution to Climate Change*, 2nd edition, J. Wiley, New York. See also, Seinfeld J. H. and Pandis S. N. (1998) *Atmospheric Chemistry and Physics: From Air Pollution to Climate Change*, 1st edition, J. Wiley, New York.

⁵⁸ USEPA Report (2004), The Particle Pollution Report: Current Understanding of Air Quality and Emissions through 2003, found at: <u>http://www.epa.gov/airtrends/aqtrnd04/pm.html</u>.

County, State	Total NH3	Total NO _x	Total Direct PM _{2.5}	Total SO ₂	Total VOC	Total
Los Angeles, CA	19,205	143,295	16,929	7,888	117,854	305,172
Kern, CA	26,732	41,723	12,303	3,060	47,172	130,990
San Bernardino, CA	12,974	67,255	11,665	1,934	35,543	129,371
San Diego, CA	6,754	42,667	10,559	1,286	60,083	121,348
Clark, NV	1,329	52,422	11,931	7,160	38,011	110,852
Orange, CA	6,958	31,637	4,004	387	38,273	81,260
Riverside, CA	9,421	35,935	5,453	378	26,789	77,975
Imperial, CA	16,396	10,051	4,472	146	6,978	38,043
Ventura, CA	3,604	11,652	2,084	291	13,937	31,568
Mohave, AZ	446	12,747	2,850	132	10,995	27,170
La Paz, AZ	357	3,745	1,102	43	2,446	7,693
Inyo, CA	1,468	932	922	199	1,505	5,026

Table 3a. County-Level Emissions of Directly Emitted PM_{2.5} and Precursors (tons/year)

1	Table 3b. (County-L	evel Emis	sions for	Compo	onents	of Directly	Emitted P	A _{2.5} (tons/yea	ar) ⁵⁹

County, State	РОМ	EC	PSO ₄	PNO ₃	PCrustal	Residual	Total Direct
Los Angeles, CA	6,953	2,968	692	63	1,942	4,310	16,929
Kern, CA	6,863	1,862	324	65	1,204	1,987	12,303
Clark, NV	2,968	1,478	215	24	3,567	3,678	11,931
San Bernardino, CA	3,237	1,512	344	48	2,765	3,760	11,665
San Diego, CA	5,979	1,357	186	27	1,078	1,931	10,559
Riverside, CA	2,140	1,087	109	14	929	1,174	5,453
Imperial, CA	1,200	346	103	11	1,323	1,488	4,472
Orange, CA	1,891	718	96	15	418	867	4,004
Mohave, AZ	767	379	25	5	841	833	2,850
Ventura, CA	1,138	384	35	б	218	303	2,084
La Paz, AZ	235	118	8	1	420	318	1,102
Inyo, CA	201	69	21	3	303	325	922

Bold = counties (whole or partial) within the intended Los Angeles-South Coast nonattainment area.

Table 3b breaks down the direct $PM_{2.5}$ emissions value from Table 3a into its components. These data will also be compared with the previously presented Urban Increment composition.

Using the previously described relationship between directly emitted and precursor gases and the measured mass to evaluate data presented in Tables 3a and 3b, the EPA identified the following components warranting additional review: NH₃, NO_x, PM_{2.5}, SO₂, VOC, POM, EC, PSO₄, PNO₃, Crustal and Residual. The EPA then

⁵⁹ Data are based on the 2011 and 2018 Emissions Modeling Platform Data Files and Summaries (*ftp://ftp.epa.gov/EmisInventory/2011v6/v1platform*) available at: *http://www.epa.gov/ttn/chief/emch/index.html#2011* (accessed 02/26/14).

looked at the contribution of these constituents of interest from each of the counties included in the area of analysis as shown in Tables 4a-k.

	Emissions in average tons/yr					
County, State	NH ₃	Pct.	Cumulative %			
Kern, CA	26,732	25	25			
Los Angeles, CA	19,205	18	43			
Imperial, CA	16,396	16	59			
San Bernardino, CA	12,974	12	71			
Riverside, CA	9,421	9	80			
Orange, CA	6,958	7	87			
San Diego, CA	6,754	6	93			
Ventura, CA	3,604	3	97			
Inyo, CA	1,468	1	98			
Clark, NV	1,329	1	99			
Mohave, AZ	446	0	100			
La Paz, AZ	357	0	100			

Table 4a. County-Level NH₃ Emissions (tons/year)

Bold = counties (whole or partial) within the intended Los Angeles-South Coast nonattainment area.

	Emissions in average tons/yr				
County, State	NOx	Pct.	Cumulative %		
Los Angeles, CA	143,295	32	32		
San Bernardino, CA	67,255	15	46		
Clark, NV	52,422	12	58		
San Diego, CA	42,667	9	67		
Kern, CA	41,723	9	77		
Riverside, CA	35,935	8	84		
Orange, CA	31,637	7	91		
Mohave, AZ	12,747	3	94		
Ventura, CA	11,652	3	97		
Imperial, CA	10,051	2	99		
La Paz, AZ	3,745	1	100		
Inyo, CA	932	0	100		

Table 4b. County-Level NOx Emissions (tons/year)

	Emissions in average tons/yr					
County, State	PM2.5	Pct.	Cumulative %			
Los Angeles, CA	16,929	20	20			
Kern, CA	12,303	15	35			
Clark, NV	11,931	14	49			
San Bernardino, CA	11,665	14	63			
San Diego, CA	10,559	13	75			
Riverside, CA	5,453	6	82			
Imperial, CA	4,472	5	87			
Orange, CA	4,004	5	92			
Mohave, AZ	2,850	3	95			
Ventura, CA	2,084	2	98			
La Paz, AZ	1,102	1	99			
Inyo, CA	922	1	100			

Table 4c. County-Level PM_{2.5} Emissions (tons/year)

	Emissions in average tons/yr					
County, State	SO ₂	Pct.	Cumulative %			
Los Angeles, CA	7,888	34	34			
Clark, NV	7,160	31	66			
Kern, CA	3,060	13	79			
San Bernardino, CA	1,934	8	88			
San Diego, CA	1,286	6	93			
Orange, CA	387	2	95			
Riverside, CA	378	2	96			
Ventura, CA	291	1	98			
Inyo, CA	199	1	99			
Imperial, CA	146	1	99			
Mohave, AZ	132	1	100			
La Paz, AZ	43	0	100			

	Emissions in average tons/yr					
County, State	VOC	Pct.	Cumulative %			
Los Angeles, CA	117,854	29	29			
San Diego, CA	60,083	15	45			
Kern, CA	47,172	12	56			
Orange, CA	38,273	10	66			
Clark, NV	38,011	10	75			
San Bernardino, CA	35,543	9	84			
Riverside, CA	26,789	7	91			
Ventura, CA	13,937	3	95			
Mohave, AZ	10,995	3	97			
Imperial, CA	6,978	2	99			
La Paz, AZ	2,446	1	100			
Inyo, CA	1,505	0	100			

Table 4e. County-Level VOC Emissions (tons/year)

Table 4f. County-Level POM Emissions (tons/year)

	Emissions in average tons/yr						
County, State	РОМ	Pct.	Cumulative %				
Los Angeles, CA	6,953	21	21				
Kern, CA	6,863	20	41				
San Diego, CA	5,979	18	59				
San Bernardino, CA	3,237	10	69				
Clark, NV	2,968	9	77				
Riverside, CA	2,140	6	84				
Orange, CA	1,891	6	89				
Imperial, CA	1,200	4	93				
Ventura, CA	1,138	3	96				
Mohave, AZ	767	2	99				
La Paz, AZ	235	1	99				
Inyo, CA	201	1	100				

	Emissions in average tons/yr						
County, State	EC	C Pct. Cumulati					
Los Angeles, CA	2,968	24	24				
Kern, CA	1,862	15	39				
San Bernardino, CA	1,512	12	52				
Clark, NV	1,478	12	64				
San Diego, CA	1,357	11	75				
Riverside, CA	1,087	9	84				
Orange, CA	718	6	89				
Ventura, CA	384	3	93				
Mohave, AZ	379	3	96				
Imperial, CA	346	3	98				
La Paz, AZ	118	1	99				
Inyo, CA	69	1	100				

Table 4g. County-Level EC Emissions (tons/year)

Table 4h. County-Le	vel PSO4 Emissions	(tons/year)

	Emissions in average tons/yr						
County, State	PSO ₄	Pct.	Cumulative %				
Los Angeles, CA	692	32	32				
San Bernardino, CA	344	16	48				
Kern, CA	324	15	63				
Clark, NV	215	10	73				
San Diego, CA	186	9	82				
Riverside, CA	109	5	87				
Imperial, CA	103	5	91				
Orange, CA	96	4	96				
Ventura, CA	35	2	97				
Mohave, AZ	25	1	99				
Inyo, CA	21	1	100				
La Paz, AZ	8	0	100				

	Emissions in average tons/yr						
County, State	State PNO ₃ Pct. Cumul						
Kern, CA	65	23	23				
Los Angeles, CA	63	22	45				
San Bernardino, CA	48	17	62				
San Diego, CA	27	10	72				
Clark, NV	24	9	80				
Orange, CA	15	5	86				
Riverside, CA	14	5	91				
Imperial, CA	11	4	94				
Ventura, CA	6	2	97				
Mohave, AZ	5	2	98				
Inyo, CA	3	1	99				
La Paz, AZ	1	0	100				

Table 4i. County-Level PNO₃ Emissions (tons/year)

Table 4j. County-Level Crustal Emissions (tons/year)

	Emiss	Emissions in average tons/yr					
County, State	Crustal	Pct.	Cumulative %				
Clark, NV	3,567	24	24				
San Bernardino, CA	2,765	18	42				
Los Angeles, CA	1,942	13	55				
Imperial, CA	1,323	9	64				
Kern, CA	1,204	8	72				
San Diego, CA	1,078	7	79				
Riverside, CA	929	6	85				
Mohave, AZ	841	6	91				
La Paz, AZ	420	3	94				
Orange, CA	418	3	97				
Inyo, CA	303	2	99				
Ventura, CA	218	1	100				

Bold = counties (whole or partial) within the intended

Los Angeles-South Coast nonattainment area.

	Emissions in average tons/yr					
County, State	Residual	Pct.	Cumulative %			
Los Angeles, CA	4,310	21	21			
San Bernardino,	2 760	19	29			
CA Clark, NV	3,678	18	56			
Kern, CA	1,987	9	65			
San Diego, CA	1,931	9	75			
Imperial, CA	1,488	7	82			
Riverside, CA	1,174	6	87			
Orange, CA	867	4	92			
Mohave, AZ	833	4	95			
Inyo, CA	325	2	97			
La Paz, AZ	318	2	99			
Ventura, CA	303	1	100			

 Table 4k. County-Level Residual Emissions (tons/year)

In addition to reviewing county-wide emissions of PM_{2.5} and PM_{2.5} precursors in the area of analysis, the EPA also reviewed emissions from major point sources located in the area of analysis. The magnitude and location of these sources can help inform nonattainment boundaries. Table 5 provides facility-level emissions of direct PM_{2.5}, components of direct PM_{2.5}, and precursor pollutants (given in tons per year) from major point sources located in the area of analysis for the Los Angeles-South Coast Air Basin, CA area. Table 5 also shows the distance from the facility to the Los Angeles-South Coast Air Basin nonattainment area DV monitoring site (Mira Loma-Van Buren). These major sources may be closer to another violating monitor within the intended Los Angeles-South Coast nonattainment area.

		Distance	NEI 2011 v1 Emissions - Tons/Year					ear
County, State	Facility Name (Facility ID)	monitor (miles)	NH ₃	NO _x	PM _{2.5}	SO_2	VOC	Total
Clark, NV	REID-GARDNER GENERATING STATION	245	18	3,034	543	1,423	37	5,056
Clark, NV	Mc Carran Intl	195		2,508	59	272	377	3,216
Clark, NV	Lhoist North America and Granite Const. (Apex)	219		1,200	62	229	6	1,497
Clark, NV	Nevada Power (Chuck Lenzie)	220	15	227	177	30	71	519
Kern, CA	CALIFORNIA PORTLAND CEMENT CO.	85		2,204	168	790	6	3,168
Kern, CA	NATIONAL CEMENT CO	92		817	224	13	14	1,067
Kern, CA	CHEVRON USA INC	146		78	274	633	26	1,011
Kern, CA	OCCIDENTAL OF ELK HILLS, INC.	144	8	372	1	9	261	651
Kern, CA	CHEVRON USA INC	155	16	195	138	134	89	571
Kern, CA	AERA ENERGY LLC	157		354	60	20	71	506
Los Angeles, CA	LOS ANGELES INT AIRPORT	53		5,485	95	539	852	6,971

 Table 5. NEI 2011 v1 Major Point Source Emissions (tons/year)

		Distance	NEI 2011 v1 Emissions - Tons/Year				ear	
County, State	Facility Name (Facility ID)	monitor (miles)	NH ₃	NO _x	PM _{2.5}	SO_2	VOC	Total
Los Angeles, CA	EXXONMOBIL OIL CORPORATION	49	50	818	322	347	613	2,150
Los Angeles, CA	BP WEST COAST PROD.LLC BP CARSON REF.	45	164	584	312	524	483	2,067
Los Angeles, CA	CHEVRON PRODUCTS CO.	53	48	649	177	379	541	1,794
Los Angeles, CA	TESORO REFINING AND MARKETING CO	45	38	584	153	215	235	1,225
Los Angeles, CA	CONOCOPHILLIPS COMPANY	48	81	583	89	115	241	1,110
Los Angeles, CA	CONOCOPHILLIPS COMPANY	45	1	331	53	287	91	764
Los Angeles, CA	ULTRAMAR INC (NSR USE ONLY)	45	32	275	65	202	179	753
Los Angeles, CA	SCE-VINCENT SUBSTATION	49		604	0	0	0	604
Los Angeles, CA	SCE- ANTELOPE SUBSTATION	66		604	0	0	0	604
Los Angeles, CA	ROBERTSONS READY MIX / PALMDAL	49			508		14	522
Orange, CA	JOHN WAYNE AIRPORT	31		580	16	63	95	753
San Bernardino, CA	MITSUBISHI CEMENT	44		1,920	421	321	39	2,701
San Bernardino, CA	CEMEX - BLACK MOUNTAIN QUARRY	49	10	2,008	189	164	30	2,400
San Bernardino, CA	SEARLES VALLEY MINERAL	122	5	1,865	178	160	33	2,241
San Bernardino, CA	US ARMY NATIONAL TRAINING CTR.	99	0	1,272	213	30	128	1,643
San Bernardino, CA	PG&E TOPOCK COMPRESSOR STATION	178		1,204	14	0	125	1,344
San Bernardino, CA	ACE COGENERATION CO	122	12	620	37	479	4	1,152
San Bernardino, CA	TXI RIVERSIDE CEMENT COMPANY	43		870	221	14	15	1,120
San Bernardino, CA	MAGTFTC MCAGCC TWENTYNINE PALMS	84	1	719	45	68	222	1,055
San Bernardino, CA	TETRA TECHNOLOGIES, INC AMB	122	0	20	836	1	2	859
San Bernardino, CA	ONTARIO INT. AIRPORT	7		550	10	57	80	697
San Diego, CA	San Diego Intl-Lindberg	89		1,156	21	125	165	1,468

Figure 5 shows the major point source emissions (from the 2011 NEI in tons per year) in the area of analysis for Los Angeles-South Coast Air Basin, CA and the relative distances of these sources from the violating monitoring location(s), as depicted by red dots. The actual distance from the point sources to the Los Angeles-South Coast Air Basin nonattainment area DV monitoring site (Mira Loma-Van Buren) is presented in Table 5. The distance from the violating monitoring location is particularly important for directly emitted PM_{2.5}. The influence of directly emitted PM_{2.5} on ambient PM_{2.5} diminishes more than that of gaseous precursors as a function of distance.⁶⁰

As indicated in Figure 5, there are 33 major point sources located in the area of analysis.

⁶⁰ Baker, K. R. and K. M. Foley. A nonlinear regression model estimating single source concentrations of primary and secondarily formed PM_{2.5}. Atmospheric Environment. 45 (2011) 3758-3767.

Figure 5. Major Point Source Emissions in the Area of Analysis for the Los Angeles-South Coast Air Basin, CA Area.

The EPA's analysis of relevant county-level emissions and the geographic locations of the relevant pollutants indicates that, of the twelve counties included in the area of analysis, Los Angeles, San Bernardino, Orange, Riverside, Kern, and San Diego counties in California, and Clark County in Nevada rank the highest for county-level emissions of directly emitted PM_{2.5} and precursors. The intended nonattainment area includes all of Orange County and portions of Los Angeles, San Bernardino, and Riverside counties. The northern portions Los Angeles County and the eastern portions of San Bernardino and Riverside counties are not included in the intended nonattainment area primarily due to topography, the geographic extent of the South Coast Air Basin, and jurisdiction. These topographic and jurisdictional separations between the intended nonattainment area and sources to the north in northern Los Angeles County and Kern County, to the south in San Diego County, and to the east in San Bernardino and Riverside counties are described in further detail in Factor 4 and Factor 5. Clark County, Nevada and its emission sources are a significant distance from the intended nonattainment area and associated monitors, and meteorological data indicates that the emissions in Clark County are less likely to be contributing to violations at monitoring locations in the Los Angeles-South Coast area.

Several counties in the area of analysis are also located significant distances away from the intended nonattainment area and rank low in directly emitted $PM_{2.5}$ and precursors relative to emissions from other counties under evaluation, and meteorological data indicate that the emissions from these counties are less

likely to be contributing to violations at the monitor locations in the Los Angeles-South Coast area. These counties are La Paz and Mohave counties in Arizona, and Inyo County in California. While Ventura and Imperial counties are closer geographically to the intended nonattainment area, emissions of directly emitted PM_{2.5} and precursors from these two counties are 90% and 88% less, respectively, than emissions from Los Angeles County, and are even smaller when compared to emissions from the entire intended nonattainment area. Moreover, the EPA is separately designating a portion of Imperial County as a separate nonattainment area to address violations of the NAAQS that occur in that area.

Population density and degree of urbanization

In this part of the factor analysis, the EPA evaluated the population and vehicle use characteristics and trends of the area as indicators of the probable location and magnitude of non-point source emissions. Rapid population growth in a county on the urban perimeter signifies increasing integration with the core urban area, and indicates that it may be appropriate to include the county associated with area source and mobile source emissions as part of the nonattainment area. Table 6 shows the 2000 and 2010 population, population growth since 2000, and population density for each county in the area.

County, State	Population 2000	Population 2010	% Change from 2000	Land Area (Sq. Miles)	Population Density (per Sq. Mile)	%	Cumulative %
Los Angeles, CA	9.519.338	9.825.761	3%	4.061	2.420	41	41
San Diego, CA	2,813,833	3,103,933	10%	4,200	739	13	53
Orange, CA	2,846,289	3,018,181	6%	789	3,823	12	66
Riverside, CA	1,545,387	2,202,361	43%	7,207	306	9	75
San Bernardino, CA	1,709,434	2,041,626	19%	20,052	102	8	83
Clark, NV	1,375,765	1,953,422	42%	7,910	247	8	91
Kern, CA	661,645	841,687	27%	8,141	103	3	95
Ventura, CA	753,197	825,378	10%	1,845	447	3	98
Mohave, AZ	155,032	200,380	29%	13,312	15	1	99
Imperial, CA	142,361	174,667	23%	4,175	42	1	100
La Paz, AZ	19,715	20,465	4%	4,500	5	0	100
Inyo, CA	17,945	18,531	3%	10,203	2	0	100
Total	21,559,941	24,226,392					

Table 6. Population Growth and Population Density.

Source: U.S. Census Bureau population estimates for 2000 and 2010

Bold = counties (whole or partial) within the intended Los Angeles-South Coast nonattainment area.

Although most of southern California is experiencing rapid population growth, as seen in Table 6 and Figures 6 and 6a, the population growth in the Los Angeles-South Coast, CA area is constrained by terrain.

Reviewing the list of counties in Table 6, the county with the largest population is Los Angeles. The most populated portion of the county falls within the intended nonattainment area. San Diego County's population grew by 10.3% between 2000 and 2010, but given the smaller population actually added a similar total number of people as Los Angeles County added in the same time period.

The entirety of Orange County, CA is in the intended nonattainment area, proximate to violating monitors and although the smallest in terms of land area (789 square miles) among the counties in the area of analysis, Orange County is third in terms of population and is by a wide margin the first in terms of population density. The population of Orange County is integrated with the populations of the surrounding areas in Los Angeles, Riverside, and San Bernardino counties.

Riverside County, CA has an east-west geographic orientation and is hundreds of miles long in this direction. As such, the county has a widely diverse pattern of population distribution, with the western portion of the county, within the intended nonattainment area, reflecting population density that is fairly undifferentiated from that of the highly populated urban pattern of Orange County, which borders Riverside County to the west, while the central portion of the county is more rural in its population pattern, in the Coachella Valley, and the eastern portion has low population in terms of both population density and total population.

San Bernardino County, CA is like Riverside County in that the portion of the county that is within the intended nonattainment area is highly dense in terms of population while the rest of the county is sparse in comparison. San Bernardino County is the largest county in terms of square miles in the United States. The next-largest county is more than a thousand square miles smaller (Coconino County, AZ). Counties in the American Southwest are large for historic reasons having to do with how the nation was settled, and San Bernardino County is typical of that pattern. As such, the county covers a wide diversity of landscape, with the densely populated portion of the county in the southwest, within the intended nonattainment area, more closely integrated to the surrounding areas of Los Angeles, Orange, and Riverside counties, and the desert wilderness areas in much of the rest of the county more separate.

After San Bernardino, Clark County, NV is listed next in Table 6 in terms of 2010 population. However, Clark County's population is part of an adjacent combined statistical area (CSA) and is not economically integrated with the population in the Los Angeles CSA (for further discussion of statistical areas in the area of analysis, see factor 5 below).

Kern County, CA has a smaller but still appreciable population, over 800,000, and a high level of population growth (27%). Generally, due to commuting patterns, Kern County is not economically integrated with the population in the intended nonattainment area. See traffic discussion below.

Ventura County, CA also has a smaller but still appreciable population, with over 800,000 people. And like Kern County, has a high level of population growth (10%). Although it too is outside of the intended nonattainment area, the population of Ventura County is economically integrated with the population in the South Coast Air Basin. The population is fairly continuous and consistent with that of the portion of Los Angeles County that borders Ventura County to the southeast, the portion of Los Angeles County (the southwestern portion) within the South Coast Air Basin. Also see traffic discussion below.

Mohave and La Paz counties in Arizona and Imperial and Inyo counties in California have very small populations compared to the rest of the counties in the area of analysis. These populations are both remote and sparsely distributed within geographically very large counties.

In conclusion, the population that most impacts air quality at the violating monitors in the area of analysis are for the most part included in the intended nonattainment area, and populations outside the area are generally not as dense or not integrated with the population in the intended nonattainment area. Ventura County appears to also be economically integrated with the intended nonattainment area.

Figure 6. 2010 County-Level Population in the Area of Analysis for the Los Angeles-South Coast Air Basin, CA Area.
Figure 6a. 2010 Tract-Level Population in the Area of Analysis for the Los Angeles-South Coast Air Basin, CA Area.

Traffic and Vehicle Miles Travelled

High vehicle miles travelled (VMT) and/or a high number of commuters associated with a county is generally an indicator that the county is an integral part of an urban area. Mobile source emissions of NO_x, VOC, and direct PM may contribute to ambient particulate matter that contributes to monitored violations of the NAAQS in the area. In combination with the population/population density data and the location of main transportation arteries, an assessment of VMT helps identify the probable location of nonpoint source emissions that contribute to violations in the area. Comparatively high VMT in a county outside of the CBSA or CSA signifies integration with the core urban area contained within the CSA or CBSA, and indicates that a county with the high VMT may be appropriate to include in the nonattainment area because emissions from mobile sources in that county contribute to violations in the area. Table 7 shows 2011 VMT while Figure 7 overlays 2011 countylevel VMT with a map of the transportation arteries. The VMT shown is from the Federal Highway Administration.

County, State	Total 2011 VMT	Percent	Cumulative %
Los Angeles, CA	76,095,823,872	37	37
San Diego, CA	27,302,301,628	13	51
Orange, CA	26,418,285,864	13	63
San Bernardino, CA	20,423,645,232	10	73
Riverside, CA	19,110,634,300	9	83
Clark, NV	14,587,496,972	7	90
Kern, CA	8,288,439,996	4	94
Ventura, CA	6,744,473,079	3	97
Mohave, AZ	2,587,178,738	1	98
Imperial, CA	1,771,872,720	1	99
La Paz, AZ	776,932,996	0	100
Inyo, CA	604,078,683	0	100
Total	204,711,164,080		

Table 7. 2011 VMT for the Los Angeles-South Coast Air Basin, CA Area.

http://www.census.gov/hhes/commuting/data/commuting.html

Bold = counties (whole or partial) within the intended Los Angeles-South Coast nonattainment area.

Reviewing the data in Table 7, Los Angeles County has by far the highest amount of VMT. This high level of traffic is a clear indication that Los Angeles County is contributing to violations of the 2012 PM2.5 NAAQS in the South Coast Air Basin. According to Census Bureau statistics for commuter flow between counties for 2006-2010, Los Angeles County has 4.4 million commuters. See:

http://www.census.gov/population/metro/data/other.html. Of those, 4.0 million commuters, or approximately 92%, commute from their residence to a workplace within the county. Nearly half (approximately 45%) of the remaining 0.4 million commuters commute to a workplace in Orange County. The population patterns, described above, further indicate that the commuting patterns in the area of analysis are likely confined to an area within the intended nonattainment area. Likewise, the majority of the VMT in San Bernardino and Riverside counties, given their population densities, is expected to occur within the intended nonattainment area.

In contrast, other portions of these same counties and the rest of the counties in the area of analysis either have low overall VMT or are not integrated with the populated areas within the intended nonattainment area. Mohave and La Paz counties in Arizona and Imperial and Inyo counties in CA are both small in terms of overall VMT as compared to the rest of the area of analysis. Together their VMT amounts to roughly 3% of the total VMT in the area of analysis. Given the relatively small populations in these counties and the distances to any portion of the intended nonattainment area, and considering other factors such as topography and meteorology, it is unlikely that mobile source emissions from Mohave County, AZ, La Paz County, AZ, Imperial County, CA, or Inyo County, CA are contributing to violations of the NAAQS at monitoring locations within the intended nonattainment area.

San Diego County, CA, Kern County, CA, and Clark County, NV are not economically integrated with any portion of the intended nonattainment area. Of 1.4 million commuters in San Diego, only 2% travel to the counties within the South Coast Air Basin (i.e., Los Angeles, Orange, Riverside or San Bernardino counties). Of 894,892 commuters in Clark County, NV, only 0.5% (4,281 commuters) travel to work in any of the other

counties in the area of analysis. Likewise, of 304,506 commuters in Kern County, less than 5% (14,146 commuters) travel to work in any other county in the area of analysis.

Arterial flow, as shown in Figure 7, that otherwise might suggest that expanding a nonattainment area boundary is appropriate, is characteristic of the area's ports (the international ports of Los Angeles and Long Beach) and the role the area plays as the point of origin for goods movement from oceangoing vessels to trucks for distribution in the rest of the nation.

According to the same Census Bureau statistics for commuter flow between counties for 2006-2010, 18% of Ventura County's commuters commuted from their residence to a workplace in Los Angeles or Orange counties. See: <u>http://www.census.gov/population/metro/data/other.html</u>. This could indicate inclusion in the EPA's intended nonattainment area, if it were the only factor the EPA considered.

Figure 7. Overlay of 2011 County-level VMT with Transportation Arteries.

In conclusion, emissions from directly emitted PM_{2.5} and precursors are highest for the four counties included in the nonattainment area, as well as Kern and San Diego counties in California, and Clark County in Nevada. Clark County is geographically distant from the intended nonattainment area, while Kern and San Diego are topographically separated (see Factor 4). Emissions from Imperial and Ventura counties were small in comparison to the intended nonattainment area emissions. Major point sources in the intended nonattainment

area contribute to the monitored violations, and due to topography and meteorology, it is unlikely that those outside of the intended nonattainment area contribute to the monitored violations.

Factor 3: Meteorology

The EPA evaluated available meteorological data to determine how meteorological conditions, including, but not limited to, weather, transport patterns, and stagnation conditions, could affect the fate and transport of directly emitted particulate matter and precursor emissions from sources in the area of analysis. The EPA used two primary tools for this assessment: wind roses and kernel density estimation (KDE). When considered in combination with area PM_{2.5} composition and county-level and facility emissions source location information, wind roses and KDE can help to identify nearby areas contributing to violations at violating monitoring sites.

Wind roses are graphic illustrations of the frequency of wind direction and wind speed. Wind direction can indicate the direction from which contributing emissions are transported; wind speed can indicate the force of the wind and thus the distance from which those emissions are transported. The EPA constructed wind roses from hourly observations of wind direction and wind speed using 2009-2012 data from National Weather Service locations archived at the National Climate Data Center.⁶¹ When developing these wind roses, the EPA also used wind observations collected at meteorological sampling stations collocated at air quality monitoring sites, where these data were available. Figure 8 shows wind roses that the EPA generated from data relevant in the intended Los Angeles-South Coast Air Basin nonattainment area.

⁶¹ ftp.ncdc.noaa.gov/pub/data/noaa or

http://gis.ncdc.noaa.gov/map/viewer/#app=cdo&cfg=cdo&theme=hourly&layers=1&node=gis Quality assurance of the National Weather Service data is described here: *http://www1.ncdc.noaa.gov/pub/data/inventories/ish-qc.pdf*.

Figure 8. Wind Roses in the Area of Analysis for Los Angeles – South Coast Air Basin.

As shown in Figure 8, there is a pattern across the CBSA of predominantly westerly winds, mostly at mid-level speeds of 2 to 6 meters per second, suggesting that potential emission sources in the west upwind direction should be considered for analysis. The roses also suggest less contribution from the east, thus supporting the exclusion of counties to the east, including Clark Co, Nevada and Imperial County, CA.

In addition to wind roses, the EPA also generated kernel density estimation (KDE) plots to represent HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) backward trajectory frequency at violating

monitoring sites.^{62,63} These KDEs are graphical statistical estimations to determine the density of trajectory endpoints at a particular location represented by a grid cell. The EPA used KDEs to characterize and analyze the collection of individual HYSPLIT backward trajectories.⁶⁴ Higher density values, indicated by darker blue colors, indicate a greater frequency of observed trajectory endpoints within a particular grid cell.

Figures 9 shows a HYSPLIT KDE plot for the Los Angeles – South Coast Air Basin summarized by calendar quarter for the 2010-2012 period. Figure 9a shows a HYSPLIT KDE plot for each calendar quarter for the Los Angeles Main St. air monitoring site (AQS number 060651103) in Los Angeles County. Figure 9b shows a HYSPLIT KDE plot for each calendar quarter for the Mira Loma-Van Buren air monitoring site (AQS number 060658005) in Riverside County. The HYSPLIT KDE is weighted in westerly direction, indicating a greater frequency of trajectories passing over grid cells to the west and supporting the intended nonattainment boundaries.

⁶² In some past initial area designations efforts, EPA has used HYSPLIT backward trajectories to assist in determining nonattainment area boundaries. A HYSPLIT backward trajectory is usually depicted on a standard map as a single line, representing the centerline of an air parcel's motion, extending in two dimensional (x,y) space from a starting point and regressing backward in time to a point of origin. Backward trajectories may be an appropriate tool to assist in determining an air parcel's point of origin on a day in which a short-term standard, such as an 8-hour standard or a 24-hour standard, was exceeded. However, for an annual standard, such as the 2012 annual PM_{2.5} NAAQS, every trajectory on every day is important. Plotting a mass of individual daily (e.g., 365 individual back trajectories), or more frequent, HYSPLIT trajectories may not be helpful as this process is likely to result in depicting air parcels originating in all directions from the violating monitoring site.

 ⁶³ HYSPLIT - Hybrid Single Particle Lagrangian Integrated Trajectory Model, *http://www.arl.noaa.gov/HYSPLIT_info.php* ⁶⁴ The KDEs graphically represent the aggregate of HYSPLIT backward trajectories for the years 2010-2012, run every third day (beginning on the first day of monitoring), four times each day, and ending at four endpoint heights.

Los Angeles Quarter One

Los Angeles Quarter Three

Los Angeles Quarter Four

Page 80 of 175

Figures 9b. Q1-Q4: HYSPLIT Kernel Density Estimation Plots – Mira Loma Air Monitor in Riverside County.

Riverside Quarter Two

Page 81 of 175

Riverside Quarter Three

Riverside Quarter Four

Page 82 of 175

Factor 4: Geography/topography

To evaluate the geography/topography factor, the EPA assessed physical features of the area of analysis that might define the airshed and thus affect the formation and distribution of $PM_{2.5}$ concentrations over the area.

Unlike many areas of the Eastern U.S., topography can have a significant impact on pollutant formation and transport in California, and thus can play a more important role in assessing what areas are contributing to monitored violations of the NAAQS. California has historically been divided into fifteen distinct air basins. The South Coast Air Basin consists of Orange County and parts of Los Angeles, Riverside, and San Bernardino counties, and contain the same state lands as EPA's intended Los Angeles-South Coast Air Basin nonattainment area. The South Coast Air Basin forms a low plain, bordered on the west by the Pacific Ocean, and surrounded on the other sides by mountains which channel and confine the airflow. The San Gabriel Mountains lie to the north; the San Bernardino Mountains lie to the north and east, the San Jacinto Mountains to the southeast and the Santa Ana Mountains to the south. While these mountain ranges do not preclude transport from other areas, they are nevertheless high enough of limit contribution from other areas.

Figure 10. Topographic Map in the Area of Analysis for the Los Angeles - South Coast Air Basin.

Factor 5: Jurisdictional boundaries

In defining the boundaries of the intended Los Angeles-South Coast Air Basin nonattainment area, the EPA considered existing jurisdictional boundaries, which can provide easily identifiable and recognized boundaries for purposes of implementing the NAAQS. Existing jurisdictional boundaries often signify the state, local, or tribal governmental organization with the necessary legal authority for carrying out air quality planning and enforcement functions for the intended area. Examples of such jurisdictional boundaries, township boundaries, areas covered by a metropolitan planning organization, state lines, and Reservation boundaries, if applicable. Where existing jurisdictional boundaries were not adequate or appropriate to describe the nonattainment area, the EPA considered other clearly defined and permanent landmarks or geographic coordinates for purposes of identifying the boundaries of the intended designated areas.

The intended nonattainment area has previously established nonattainment area boundaries associated with both the 1997 annual and 2006 24-hour $PM_{2.5}$ NAAQS. The boundary for the nonattainment area for the 1997 annual $PM_{2.5}$ NAAQS and the 2006 24-hour $PM_{2.5}$ NAAQS was the same and included the entirety of Orange County and parts of Los Angeles, San Bernardino and Riverside counties, and is the same boundary as the South Coast Air Basin. The state has recommended the same boundary for the intended 2012 annual $PM_{2.5}$ NAAQS.

The intended nonattainment area comprises a large western portion of the larger Los Angeles-Long Beach-Riverside combined statistical area (CSA). The CSA includes the entirety of Los Angeles, Orange, San Bernardino and Riverside counties, while the intended nonattainment area includes only portions of some of these counties. Transportation planning is performed by the Southern California Association of Governments (SCAG), whose jurisdictional area includes Los Angeles, Orange, Riverside, San Bernardino, Imperial and Ventura counties. The EPA's analysis indicates that the excluded portions of Los Angeles, San Bernardino, and Riverside counties are less likely to be contributing to the violations in the area as a whole due to topography and meteorology. The intended nonattainment area for the 2012 PM_{2.5} NAAQS is within the jurisdictional boundaries of the South Coast Air Quality Management District, and is also consistent with our analysis of the air quality data (Factor 1), meteorology (Factor 3), and topography (Factor 4).

The intended Los Angeles-South Coast Air Basin nonattainment area also includes Indian country of the following tribes: the Cahuilla Band of Mission Indians of the Cahuilla Reservation, Morongo Band of Mission Indians, Ramona Band of Cahuilla, and Soboba Band of Luiseno Indians. As defined at 18 U.S.C. 1151, "Indian country" refers to: "(a) all land within the limits of any Indian reservation under the jurisdiction of the United States Government, notwithstanding the issuance of any patent, and, including rights-of-way running through the reservation, (b) all dependent Indian communities within the borders of the United States whether within the original or subsequently acquired territory thereof, and whether within or without the limits of a state, and (c) all Indian allotments, the Indian titles to which have not been extinguished, including rights-of-way running through the same." The EPA recognizes the sovereignty of tribal governments, and has attempted to take the desires of the tribes into account in establishing appropriate nonattainment area boundaries. At this time, we have not received recommendations from these tribes.

The Santa Rosa Band of Cahuilla Indians (Santa Rosa Cahuilla) has contiguous areas of Indian country in both the Los Angeles-South Coast Air Basin nonattainment area and in Riverside County. We intend to designate all of Santa Rosa Cahuilla as "unclassifiable/attainment" consistent with surrounding Riverside County.

The Pechanga Band of Luiseño Mission Indians of the Pechanga Reservation (Pechanga) has contiguous areas of Indian country in both the Los Angeles-South Coast Air Basin and San Diego County. The EPA intends to designate all of Pechanga's Indian country as "unclassifiable," separate from the surrounding state areas. See the "Technical Analysis for Pechanga Band of Luiseño Mission Indians of the Pechanga Reservation" for more information.

Figure 11. EPA's Intended Nonattainment Boundaries for the Los Angeles – South Coast Air Basin Area and Nearby Tribes.

Conclusion for Los Angeles - South Coast Air Basin Area

Based on the assessment of factors described above, both individually and in combination, the EPA has preliminarily concluded that the following counties or portions of counties should be included as part of the Los Angeles – South Coast Air Basin nonattainment area because they are either violating the 2012 annual PM_{2.5} NAAQS or contributing to a violation in a nearby area: Los Angeles (partial), Orange, Riverside (partial), and San Bernardino (partial) counties. The relevant portions of Los Angeles, Orange, Riverside, and San Bernardino will be the same as those previously designated nonattainment for the 2006 24-hour and 1997 annual PM_{2.5} NAAQS and follow the area contained within the South Coast Air Basin: the southwest portion of Los Angeles County, all of Orange County, the westernmost portion of Riverside, and the southwestern portion of San Bernardino County. The EPA concurs with the State's recommendation for the designation and the boundaries for this area.

An evaluation of information relevant to Factor 1 shows that the air quality monitoring sites in Los Angeles, Riverside, and San Bernardino counties indicate violations of the 2012 annual PM_{2.5} NAAQS based on the 2013 DVs; therefore these counties or portions of counties are included in the nonattainment area. Orange County is a nearby county that does not have violating monitoring sites, but the EPA has concluded that emissions from this county contribute to the particulate matter concentrations in violation of the 2012 annual PM_{2.5} NAAQS through emissions from point sources, non-point sources (i.e., area sources), and from mobile source emissions.

Consideration of data relevant to Factor 2 indicates that Los Angeles and San Bernardino counties have among the highest emissions of directly emitted $PM_{2.5}$ and/or $PM_{2.5}$ precursors in the area, and all counties or portions of counties in the intended nonattainment area have relatively large of amounts of these emissions that can contribute to the violations of the 2012 annual $PM_{2.5}$ NAAQS through emissions from point sources, non-point sources (i.e., area sources), and mobile sources. While Ventura is economically integrated with the intended nonattainment area and shares commuters with Orange County and Los Angeles County, Ventura does not appear to have substantial emissions of $PM_{2.5}$ and/or $PM_{2.5}$ precursors. Thus, evaluation of Factor 2 suggests that inclusion of Ventura is not necessary for this area.

Factor 3 suggests that the greatest potential contribution of emissions is from the regions immediately to the west of the violating monitors, which provides further support for the intended nonattainment boundary for the Los Angeles-South Coast Air Basin.

As discussed with respect to Factor 4, the topography of this area is particularly relevant to evaluation of the appropriate boundaries for this nonattainment area. The Los Angeles-South Coast Air Basin is bordered on the west by the Pacific Ocean, and surrounded on the other sides by mountains which channel and confine the airflow. The location of the mountain ranges that border the airshed indicate that it is appropriate to include only portions of Los Angeles, San Bernardino, and Riverside counties and all of Orange County within the designated nonattainment area.

Finally, an assessment of information relevant to Factor 5 further supports the intended Los Angeles- South Coast Air Basin nonattainment area due to previous historical nonattainment boundary designations for both $PM_{2.5}$ and ozone and local air district jurisdiction.

Only portions of Los Angeles, Riverside, and San Bernardino counties are included in the intended Los Angeles-South Coast Air Basin nonattainment area because of air quality data (Factor 1), meteorology (Factor 3), topography (Factor 4), and jurisdictional boundaries (Factor 5). The northeastern portion of the Los Angeles County, and the eastern portions of Riverside and San Bernardino do not have a violating monitoring site. Also, the portions of the counties excluded from the intended nonattainment are separated by topographical barriers. Considering topography and meteorology, it is unlikely these excluded portions of Los Angeles, Riverside, and San Bernardino counties are contributing to the NAAQS violations at monitoring locations within the intended nonattainment area. The main factors that the EPA considered when determining the appropriateness of the intended Los Angeles-South Coast Air Basin nonattainment area were air quality data (Factor 1), meteorology (Factor 3) geography/topography (Factor 4), and jurisdiction (Factor 5).

Also, the EPA intends to include the areas of Indian country of the following tribes as part of the Los Angeles-South Coast Air Basin nonattainment area for the 2012 annual PM_{2.5} NAAQS: the Cahuilla Band of Mission Indians of the Cahuilla Reservation, Morongo Band of Mission Indians, Ramona Band of Cahuilla, and Soboba Band of Luiseno Indians.

3.3 Area Background and Overview – Plumas County, CA

Figure 1 is a map of the EPA's intended nonattainment boundary for the nonattainment area located in Plumas County, CA. The map shows the location and design values of ambient air quality monitoring locations, county and other jurisdictional boundaries and other information, such as 2006 24-hour PM_{2.5} NAAQS nonattainment boundaries. As shown in Figure 1a, the EPA's area of analysis considered in this section includes Plumas County (which does not include any core-based statistical areas (CBSAs)), as well as all adjacent counties (Butte, Shasta, Tehama, Lassen, Sierra, and Yuba counties).

Figure 1.EPA's Intended Nonattainment Boundaries for the Plumas County, CA Area

The EPA must designate as nonattainment areas that violate the NAAQS and nearby areas that contribute to the violation in the violating area. Data from a monitor located in Plumas County shows a violation of the 2012 PM_{2.5} NAAQS, therefore a portion of this county is included in the nonattainment area. As explained below, the EPA is intending to designate only a portion of Plumas County as nonattainment, based upon an analysis of various factors such as the location of emission sources and topography. As shown in Figure 1a, the EPA evaluated each county located near the county with a violating monitoring site based on the five factors and other relevant information. The following sections describe this five factor analysis process. While the factors are presented individually, they are not independent. The five factor analysis process carefully considers their interconnections and the dependence of each factor on one or more of the others.

Figure 1a. Area of Analysis for the Plumas County, CA Intended Nonattainment Area

Factor 1: Air Quality Data

All data collected during the year are important when determining contributions to an annual standard such as the 2012 annual $PM_{2.5}$ NAAQS. Compliance with an annual NAAQS is dependent upon monitor readings throughout the year, including days with monitored ambient concentrations below the level of the NAAQS. For the 2012 annual $PM_{2.5}$ NAAQS, the annual mean is calculated as the mean of quarterly means. A high quarter can drive the mean for an entire year, which, in turn, can drive an elevated 3-year DV. Although all data are important, seasonal or episodic emissions can provide insight as to relative contributors to measured $PM_{2.5}$ concentrations. For these reasons, for the Factor 1 air quality analysis, the EPA assessed and characterized air quality at, and in the proximity of, the violating monitoring site locations first, by evaluating trends and the spatial extent of measured concentrations at monitors in the area of analysis, and then, by identifying the conditions most associated with high average concentration levels of $PM_{2.5}$ mass in the area of analysis.

In most cases, the EPA assessed air quality data on a seasonal, or quarterly, basis.¹ The EPA also identified the spatial extent of these high PM_{2.5} concentrations. The mass and composition at the design value location represents contributions from various emission sources including local, area-wide (which may comprise nearby urban and rural areas) and regional sources. To determine the source mix (by mass) at the design value monitoring site, the EPA examined the chemical composition of the monitored PM_{2.5} concentrations by pairing each violating FRM/FEM/ARM monitoring site with a collocated or nearby Chemical Speciation Network (CSN) monitoring site or sites. Then, the EPA contrasted the approximated mass composition at the design value monitoring site with data collected at IMPROVE² and other monitoring locations whose data are representative of regional background.^{3,4} This comparison of local/area-wide chemical composition data to regional chemical composition data derives an "urban increment," which helps differentiate the influence of more distant emissions sources from the influence of closer emissions sources, thus representing the portion of the measured violation that is associated with nearby emission contributions.^{5,6,7}

⁴ The urban monitors were paired with any rural sites within a 150 mile radius of an urban site to calculate spatial means of the quarterly averages of each species. If there were no rural sites within 150 miles, then the nearest rural site was used alone. That rural mean was then subtracted from the quarterly mean of the urban site to get the increment. Negative values were simply replaced with zeros.

States: Report V, June 2011. Chapter 7 – Urban Excess in PM_{2.5} Speciated Aerosol Concentrations,

http://vista.cira.colostate.edu/improve/Publications/Reports/2011/PDF/Chapter7.pdf.

www.epa.gov/pmdesignations/1997standards/documents/final/TSD/Ch3.pdf.

¹ Although compliance with the annual NAAQS depends on contributions from all days of the year, examining data on a quarterly or seasonal basis can inform the relationship between the temporal variability of emissions and meteorology and the resulting PM_{2.5} mass and composition. In some areas of the country where there may be noticeable month-to-month variations in average PM_{2.5}, the quarterly averages may not adequately represent seasonal variability. In these areas, air quality data may be aggregated and presented by those months that best correspond to the local "seasons" in these areas. ² IMPROVE stands for Interagency Monitoring for Protected Visual Environments and is an aerosol monitoring network in mostly rural and remote areas.

³ The "urban increment" analysis assesses and characterizes the increase in seasonal and annual average PM_{2.5} mass and chemical constituents observed at violating monitoring site(s) relative to monitoring sites outside the area of analysis (which represent background concentrations). Developing the urban increment involves pairing a violating FRM/FEM/ARM monitor with a collocated monitor or nearby monitor with speciation data. EPA made every effort to pair these data to represent the same temporal and spatial scales. However, in some cases, the paired violating and CSN "urban" monitoring locations were separated by some distance such that the included urban CSN site(s) reflect(s) a different mixture of emissions sources, which could lead to misinterpretations. To generally account for differences in PM_{2.5} mass between the violating site and the nearby CSN site(s), EPA determined material balance of the PM_{2.5} composition at the violating site by assigning the extra measured PM_{2.5} mass to the carbon components of PM_{2.5}. Where the general urban increment approach may be misleading, or in situations where non-carbonaceous emissions are believed to be responsible for a local PM_{2.5} concentration gradient, EPA used alternative analyses to reflect the mix of urban and rural sources contributing to the measured concentrations at violating monitoring sites.

⁵ In most, but not all, cases, the violating design value monitoring site is located in an urban area. Where the violating monitor is not located in an urban area, the "urban increment" represents the difference between local and other nearby emission sources in the vicinity of the violating monitoring location and more regional sources.

⁶ Hand, et. al. Spatial and Seasonal Patterns and Temporal Variability of Haze and its Constituents in the United

⁷ US EPA, Office of Air Quality Planning and Standards, December 2004. (2004) Area Designations for 1997 Fine Particle (PM_{2.5}) Standards, Technical Support Document for State and Tribal Air Quality Fine Particle (PM_{2.5}) Designations, Chapter 3, Urban Excess Methodology. Available at

<u>PM_{2.5} Design Values and Total Mass Measurements</u> – The EPA examined ambient PM_{2.5} air quality monitoring data represented by the DVs at the violating monitoring site and at other monitors in the area of analysis. The EPA calculated DVs based on air quality data for the most recent 3 consecutive calendar years of quality-assured, certified air quality data from suitable FEM/FRM/ARM monitoring sites in the EPA's Air Quality System (AQS). For this designations analysis, the EPA used data for the 2011-2013 period (i.e., the 2013 design value), which are the most recent years with fully-certified air quality standard. The 2012 annual PM_{2.5} NAAQS is met at a monitoring site when the 3-year average annual mean concentration is 12.0 micrograms per cubic meter (μ g/m³) or less (e.g., 12.1 μ g/m³ or greater is a violation). A DV is only valid if minimum data completeness criteria are met or when other regulatory data processing provisions are satisfied (See 40 CFR part 50 Appendix N). Table 2 identifies the current design value(s) (i.e., the 2013 DV) and the most recent two design values based on all monitoring sites in the area of analysis for the Plumas County intended nonattainment area.⁸ Where a county has more than one monitoring location, the county design value is indicated in red type.

County, State	Monitor Site ID	Site Name	State Rec NA?	09-11 DV	10-12 DV	11-13 DV
Plumas, CA	060631006	Quincy	No	9.4	9.1	10.2
Plumas, CA	060631010 ^c	Portola North Substation ^c	No	10.3	11.5	12.8
Butte, CA	060070008 ^d	Chico-East ^d	No	10.1	9.5	10.1
Lassen, CA	N/A		No	No monitor		
Shasta, CA	060890004	Redding	No	5.3	5.3	5.7
Shasta, CA	NA	Redding-Buckeye	No	6.5	6.3	6.2
Shasta, CA	NA	Redding-Toyon	No	4.0	4.3	4.9 ^b
Sierra, CA	N/A		No	No monitor		
Tehama, CA	61030006	Red Bluff	No	10.5 ^b	9.8 ^b	8.1
Yuba, CA	N/A		No	No monitor		

Table 2. Air Quality Data collected at Regulatory Monitors (all DV levels in µg/m³)^a

^a Where a county has more than one monitoring location, the county design value is indicated in red type.

^b The listed design value is not valid due to completeness issues.

^c In July 2013, the Portola-Nevada Street site (AQS ID 060631009) was relocated to the Portola North Substation site (AQS ID 060631010). The data listed for Plumas County is a combination of data from Portola-Nevada Street site from 2009 through June 2013, and from Portola North Substation from July 2013 through the remainder of 2013. ^d In July 2012, the Chico-Manzanita site (AQS ID 060070002) was relocated to the Chico East site (AQS ID 060070008).

The data listed for Butte County is a combination of data from Chico-Manzanita from 2009 through June 2012, and from Chico East from July 2012 through 2013.

⁸ In certain circumstances, one or more monitoring locations within a monitoring network may not meet the network technical requirements set forth in 40 CFR 58.11(e), which states, "State and local governments must assess data from Class III PM_{2.5} FEM and ARM monitors operated within their network using the performance criteria described in table C-4 to subpart C of part 53 of this chapter, for cases where the data are identified as not of sufficient comparability to a collocated FRM, and the monitoring agency requests that the FEM or ARM data should not be used in comparison to the NAAQS. These assessments are required in the monitoring agency's annual monitoring network plan described in §58.10(b) for cases where the FEM or ARM is identified as not of sufficient comparability to a collocated FRM...."

In addition to the FEM/FRM/ARM monitoring sites identified in Table 2 whose collected data are used to calculate DVs, the Northern Sierra Air Pollution Control District and National Park Service also operate the nonregulatory monitoring locations identified in Table 2a. The Paradise, Gridley and Chester sites were established for informational purposes, and the Lassen Volcanic National Park site is an IMPROVE site, established to evaluate visibility impacts on Class I areas. These monitors are not required per 40 CFR 58.20 to be compared to the NAAQS. Although these nonregulatory monitors are not eligible for comparison to the NAAQS, the data collected may help define an appropriate boundary for areas with emissions sources or activities that potentially contribute to ambient fine particle concentrations at the violating monitor.

Within Plumas County, the Portola monitor is in the south of the county within the Portola Valley. The Quincy monitor is further north near the center of the county. The non-regulatory Chester monitor is the northernmost PM_{2.5} monitor in Plumas County. The California Air Resources Board (CARB) recommendation states that the coefficient of divergence and other statistical analyses indicate emissions that affect readings at the Quincy monitor do not likely directly impact the Portola monitor. While the Chester non-regulatory monitor indicates elevated PM_{2.5} concentrations, the aforementioned CARB statement that emissions impacting a monitor north of Portola do not likely impact the Portola monitor, likely applies in this area as well. The analysis of concentrations measured at the Portola monitor versus the Quincy monitor, coupled with topographic considerations (discussed further in Factor 4) and low mixing height suggests emissions outside of Portola Valley do not contribute to the violating monitor.

County, State	Monitor Site ID	Site Name	State Rec NA?	09-11 DV	10-12 DV	11-13 DV
Butte, CA	060072002	Paradise	No	9.0	9.4	10.1
Butte, CA	060074001	Gridley	No	10.6	10.0	10.4
Plumas, CA	060631007	Chester	No	9.1ª	11.6	13.1
Shasta, CA	060893003	Lassen Volcanic NP	No	2.7	2.6	2.4

Table 2a. Air Quality Data Collected at Nonregulatory Monitors (all DV levels in µg/m³)

^a One or more years of data are not complete.

The Figure 1 map, shown previously, identifies the Plumas County intended nonattainment area and the monitoring location with a 2011-2013 violating DV. As indicated on the map, the area has one violating monitoring site located in the city of Portola in Plumas County. The 2013 DV at Portola is the first time the DV for Plumas County has been above $12 \ \mu g/m^3$ since 2005. There is one other monitoring location in Plumas County, in Quincy, which is located north-east of the city of Portola, which does not currently record violations of the PM_{2.5} standard.

Seasonal variation can highlight those conditions most associated with high average concentration levels of $PM_{2.5}$. Figure 2 shows quarterly mean $PM_{2.5}$ concentrations for the most recent 3-year period for the highest DV monitoring sites and other, non-violating, monitoring sites in each county within the area of analysis. This graphical representation is particularly relevant when assessing air quality data for an annual standard, such as the 2012 annual $PM_{2.5}$ NAAQS, because, as previously stated, the annual mean is calculated as the mean of quarterly means and a high quarter can drive the mean for an entire year, which, in turn, can drive an elevated 3-year DV.

Figure 2. Plumas County Area of Analysis Monitor - PM_{2.5} Quarterly Means for 2011-2013

As shown, there is consistent seasonal temporal variation across the 3-year period for the Portola Substation, Chico-East Ave, and Quincy-N. Church Street monitors. Quarterly values across the period are relatively higher in quarter one (Q1) and quarter four (Q4) (October-March) for these monitors. This signature is most pronounced at the Portola North Substation monitor where quarterly means in Q1 and Q4, 2011-2013, range from 15.2-24.0 μ g/m³ whereas in quarter two (Q2) and quarter three (Q3) the mean concentrations range from 4.8-6.6 μ g/m³. Both the Redding-Health Department and Red Bluff monitors do not exhibit this seasonality as strongly, though both peak in Q4 of 2011 and trend similarly across the three-year period.

 $\underline{PM_{2.5} \text{ Composition Measurements}}$ - To assess potential emissions contributions for each violating monitoring location, the EPA determined the various chemical species comprising total $PM_{2.5}$ to identify the chemical constituents over the analysis area, which can provide insight into the types of emission sources impacting the monitored concentration. To best describe the $PM_{2.5}$ at the violating monitoring location, the EPA first adjusted the chemical speciation measurement data from a monitoring location at or near the violating FRM monitoring site using the SANDWICH approach to account for the amount of $PM_{2.5}$ mass constituents retained in the FRM

measurement.^{9,10,11,12} In particular, this approach accounts for losses in fine particle nitrate and increases in sulfate mass associated with particle bound water. Figure 3a illustrates the fraction of each $PM_{2.5}$ chemical constituent at the Portola North Substation monitoring site based on annual averages for the years 2010-2012.

Figure 3b shows annual and quarterly chemical composition profiles and illustrates any seasonal or episodic contributors to $PM_{2.5}$ mass. This "increment analysis," combined with the other factor analyses, can provide additional insight as to which sources or factors may contribute at a greater level. Simply stated, this analysis can help identify nearby sources of emissions that contribute to the violation at the violating monitoring site.

⁹ SANDWICH stands for measured Sulfate, Adjusted Nitrate, Derived Water, Inferred Carbonaceous mass Hybrid Material Balance Approach." The SANDWICH adjustment uses an FRM mass construction methodology that results in reduced nitrates (relative to the amount measured by routine speciation networks), higher mass associated with sulfates (reflecting water included in gravimetric FRM measurements) and a measure of organic carbonaceous mass derived from the difference between measured PM_{2.5} and its non-carbon components. This characterization of PM_{2.5} mass also reflects crustal material and other minor constituents. The resulting characterization provides a complete mass closure for the measured FRM PM_{2.5} mass, which can be different than the data provided directly by the speciation measurements from the CSN network.

¹⁰ Frank, N. H., SANDWICH Material Balance Approach for PM_{2.5} Data Analysis, National Air Monitoring Conference, Las Vegas, Nevada, November 6-9, 2006. *http://www.epa.gov/ttn/amtic/files/2006conference/frank.pdf*.

¹¹ Frank, N. H., The Chemical Composition of PM_{2.5} to support PM Implementation, EPA State /Local/Tribal Training Workshop: PM_{2.5} Final Rule Implementation and 2006 PM_{2.5} Designation Process, Chicago IL, June 20-21, 2007, *http://www.epa.gov/ttn/naaqs/pm/presents/pm2.5_chemical_composition.pdf*.

¹² Frank, N. H. Retained Nitrate, Hydrated Sulfates, and Carbonaceous Mass in Federal Reference Method Fine Particulate Matter for Six Eastern U.S. Cities. J. Air & Waste Manage. Assoc. 2006 56:500–511.

Figure 3b. Plumas County Annual and Quarterly Average PM_{2.5} Species (2010-2012)^a

^a Adjusted to FRM Total $PM_{2.5}$ indicates that the speciation profile and total mass depicted in this figure are the result of the urban increment calculation for the particular FRM monitor.

Figures 3a and 3b show that organic mass (OM) accounts for over seventy-five percent of the PM_{2.5} mass on an annual basis, and elemental carbon (EC), sulfates and crustal mass (CM) are the next largest contributors at 9.8%, 7.5% and 6.5% respectively. The percent contribution of OM is even larger (over 80%) during Q1 and Q4 when the PM_{2.5} concentrations are the highest. Sulfates and CM contribute about 15-25 percent during Q2 and Q3, but less than five percent during Q1 and Q4. The percent contributions of EC and nitrates to measured PM_{2.5} mass are about ten percent under one percent, respectively, and are relatively constant throughout the year. This suggests that for the Q1 and Q4, which include the winter months, organic mass is the overwhelmingly predominant source of PM_{2.5} and, as discussed in Factor 2, is likely related to emissions from residential wood burning. A letter from the Northern Sierra Air Quality Management District, dated June 18, 2014, supports this conclusion. It cites the diurnal pattern of the PM_{2.5} concentrations that peak around the two times people use their wood stoves most: from 5:00pm to 12:00am, and from 5:00 am to 8:00 am.¹³ The CARB recommendation indicates that levoglucosan and PM_{2.5} concentrations are correlated, affirming the source of high concentrations as emissions from wood burning.

The EPA assessed seasonal and annual average $PM_{2.5}$ constituents at monitoring sites within the area relative to monitoring sites outside of the analysis area to account for the difference between regional background concentrations of $PM_{2.5}$, and the concentrations of $PM_{2.5}$ in the area of analysis, also known as the "urban increment." This analysis differentiates between the influences of emissions from sources in nearby areas and in more distant areas on the violating monitor. Estimating the urban increment in the area helps to illuminate the amount and type of particles at the violating monitor that are most likely to be the result of sources of emissions in nearby areas, as opposed to impacts of more distant or regional sources of emissions. Figure 4a includes pie charts showing the annual and quarterly chemical mass constituents of the urban increment. The quarterly pie charts correspond to the high-concentration quarters identified in Figure 2. Evaluating these high concentration

¹³ P.1-4 and attachment 2, letter from Gretchen Bennitt, Executive Director, Northern Sierra Air Quality Management District's Board of Directors, to Gwen Yashimura, U.S. EPA Region IX. June 18, 2014.

quarters can help identify composition of $PM_{2.5}$ during these times. Note that in these charts, sulfates and nitrates have been adjusted to represent their mass in measured $PM_{2.5}$.

Figure 4a. Plumas County Urban Increment Analysis for 2010-2012.

Figure 4b. Plumas County Average Urban Increment Analysis for 2010-2012.

Plumas County has one regulatory monitoring site with a DV exceeding the NAAQS. In addition, the DV monitoring site as well as surrounding sites have clear seasonal peaks in ambient $PM_{2.5}$ concentrations in Q1 and Q4.

In reviewing the speciation data derived for the Portola North Substation monitor, organic mass is the predominant species throughout the year, though the percent contribution is largest in Q1 and Q4. Sulfates, CM and EC are small components of the measured PM_{2.5} mass and nitrate is a negligible component of the measured PM_{2.5} mass throughout the year. This suggests that for the high concentration quarters, Q1 and Q4, which include the winter months, organic mass related to emissions from residential wood burning is the predominant contributor to PM_{2.5} mass measured by the FRM monitor at Portola. The results of the urban increment analysis for the Portola monitor are similar to the adjusted speciation measurements, indicating a somewhat consistent source mix throughout the area. However, there is a substantial increase in the contribution of OM in the annual mean and quarters 1 and 4, indicating that there is likely an additional contribution from a source closer to the DV monitoring site. This supports the conclusions from the speciation data that residential wood burning is a dominant source of high PM_{2.5} concentrations.

Factor 2: Emissions and Emissions-related Data

In this designations process, for each area with a violating monitoring site, the EPA evaluated the emissions data from nearby areas using emissions related data for the relevant counties to assess each county's potential contribution to PM_{2.5} concentrations at the violating monitoring site or monitoring sites in the area under evaluation. The EPA examined emissions of identified sources or source categories of direct PM_{2.5}, the major components of direct PM_{2.5} (organic mass, elemental carbon, crustal material (and/or individual trace metal compounds)), primary nitrate and primary sulfate, and precursor gaseous pollutants (i.e., SO₂, NO_X, total VOC, and NH₃). The EPA also considered the distance of those sources of emissions from the violating monitoring site. While direct PM_{2.5} emissions and its major carbonaceous components are generally associated with sources near violating PM_{2.5} monitoring sites, the gaseous precursors tend to have a more regional influence (although the EPA is mindful of the potential local NO_X and VOC emissions contributions to PM_{2.5} from mobile and

stationary sources) and transport from neighboring areas can contribute to higher $PM_{2.5}$ levels at the violating monitoring sites.

Emissions Data

For this factor, the EPA reviewed data from the 2011 National Emissions Inventory (NEI) version 1 (see <u>http://www.epa.gov/ttn/chief/net/2011inventory.html</u>). For each county in the area of analysis, the EPA examined the magnitude of county-level emissions reported in the NEI. These county-level emissions represent the sum of emissions from the following general source categories: point sources, non-point (i.e., area) sources, nonroad mobile, on-road mobile, and fires. In some instances, non-anthropogenic sources of emissions such as wildfires account for large portions of the emissions inventory data presented below. The EPA also looked at the geographic distribution of major point sources of the relevant pollutants.¹⁴ Significant emissions levels from sources in a nearby area indicate the potential for the area to contribute to monitored violations.

To further analyze area emissions data, the EPA also developed a summary of direct PM_{2.5}, components of direct PM_{2.5}, and precursor pollutants, which is available at *http://www.epa.gov/pmdesignations/2012standards/docs/nei2011v1pointnei2008v3county.xlsx*.

When considered with the urban increment analysis in Factor 1, evaluating the components of direct PM_{2.5} and precursor gases can help identify specific sources or source types contributing to elevated concentrations at violating monitoring sites and thus assist in identifying appropriate area boundaries. In general, directly emitted particulate organic carbon (POC) and VOCs¹⁵ contribute to PM_{2.5} organic mass (OM); directly emitted EC contributes to PM_{2.5} EC; NO_X, NH₃ and directly emitted nitrate contribute to PM_{2.5} nitrate mass; SO₂, NH₃ and directly emitted sulfate contribute to PM_{2.5} sulfate mass; and directly emitted crustal material and metal oxides contribute to PM_{2.5} crustal matter.^{16,17} The EPA believes that the quantities of those nearby emissions as potential contributors to the PM_{2.5} violating monitors are somewhat proportional to the PM_{2.5} chemical constituents in the estimated urban increment. Thus, directly emitted POC is more important per ton than SO₂, partially because POC emissions are already PM_{2.5} whereas SO₂ must convert to PM_{2.5} and not all of the emitted SO₂ undergoes this conversion.

Table 3a provides a county-level emissions summary (i.e., the sum of emissions from the following general source categories: point sources, non-point (i.e., area) sources, nonroad mobile, on-road mobile, and fires) of directly emitted $PM_{2.5}$ and precursor species for the county with the violating monitoring site and nearby counties considered for inclusion in the Plumas County, CA area. Table 3b summarizes the directly emitted components of $PM_{2.5}$ for the same counties in the area of analysis for the Plumas County, CA area. This information will be paired with the Urban Increment composition previously shown in Figures 4a and 4b.

From Air Pollution to Climate Change, 1st edition, J. Wiley, New York.

¹⁴ For purposes of this designations effort, "major" point sources are those whose sum of PM precursor emissions ($PM_{2.5} + NOx + SO_2 + VOC + NH_3$) are greater than 500 tons per year based on NEI 2011v1.

¹⁵ As previously mentioned, nearby VOCs are presumed to be a less important contributor to PM_{2.5} OM than POC.

¹⁶ See, Seinfeld J. H. and Pandis S. N. (2006) *Atmospheric Chemistry and Physics: From Air Pollution to Climate Change*, 2nd edition, J. Wiley, New York. See also, Seinfeld J. H. and Pandis S. N. (1998) *Atmospheric Chemistry and Physics:*

¹⁷ USEPA Report (2004), The Particle Pollution Report: Current Understanding of Air Quality and Emissions through 2003, found at: *http://www.epa.gov/airtrends/aqtrnd04/pm.html*.

County, State	Total NH3	Total NOx	Total Direct PM _{2.5}	Total SO ₂	Total VOC	Total
Shasta, CA	2,578	8,847	2,723	206	9,301	23,653
Butte, CA	2,471	6,847	2,886	181	10,195	22,580
Lassen, CA	1,863	1,961	2,320	237	6,646	13,026
Tehama, CA	1,500	4,346	1,632	134	4,762	12,375
Plumas, CA	1,191	2,138	2,013	200	6,291	11,833
Yuba, CA	940	2,181	1,881	146	5,966	11,114
Sierra, CA	485	324	1,200	87	3,789	5,885

Table 3a. County-Level Emissions of Directly Emitted PM_{2.5} and Precursors (tons/year)

Table 3b. (County-Level	Emissions for	Components o	f Directly I	Emitted PM _{2.5}	(tons/year) ¹⁸
	00 ang 20,01		e on pontento o		2.5	(

County, State	РОМ	EC	PSO ₄	PNO ₃	PCrustal	Residual	Total Direct
Butte, CA	1,880	287	27	15	243	435	2,886
Shasta, CA	1,872	333	44	19	148	308	2,723
Lassen, CA	1,714	226	30	15	94	241	2,320
Plumas, CA	1,588	216	16	16	53	124	2,013
Yuba, CA	1,414	196	12	14	84	160	1,881
Tehama, CA	1,126	204	16	11	102	174	1,632
Sierra, CA	931	118	12	5	24	109	1,200

Table 3b breaks down the direct $PM_{2.5}$ emissions value from Table 3a into its components. These data will also be compared with the previously presented Urban Increment composition.

Using the previously described relationship between directly emitted and precursor gases and the measured mass to evaluate data presented in Tables 3a and 3b, the EPA identified the following components warranting additional review: PM_{2.5}, VOC, POM and Crustal. The EPA then looked at the contribution of these constituents of interest from each of the counties included in the area of analysis as shown in Tables 4a-d.

	Emissions in average tons/yr					
County, State	PM2.5	Pct.	Cumulative %			
Butte, CA	2,886	20	20			
Shasta, CA	2,723	19	38			
Lassen, CA	2,320	16	54			
Plumas, CA	2,013	14	68			
Yuba, CA	1,881	13	81			
Tehama, CA	1,632	11	92			
Sierra, CA	1,200	8	100			

 Table 4a. County-Level PM2.5 Emissions (tons/year)

¹⁸ Data are based on the 2011 and 2018 Emissions Modeling Platform Data Files and Summaries (*ftp://ftp.epa.gov/EmisInventory/2011v6/v1platform*) available at: *http://www.epa.gov/ttn/chief/emch/index.html#2011* (accessed 02/26/14).

	Emissions in average tons/yr					
County, State	VOC	Pct.	Cumulative %			
Butte, CA	10,195	22	22			
Shasta, CA	9,301	20	42			
Lassen, CA	6,646	14	56			
Plumas, CA	6,291	13	69			
Yuba, CA	5,966	13	82			
Tehama, CA	4,762	10	92			
Sierra, CA	3,789	8	100			

Table 4b. County-Level VOC Emissions (tons/year)

Table 4c. County-Level POM Emissions (tons/year)

	Emissions in average tons/yr						
County, State	РОМ	Pct.	Cumulative %				
Butte, CA	1,880	18	18				
Shasta, CA	1,872	18	36				
Lassen, CA	1,714	16	52				
Plumas, CA	1,588	15	67				
Yuba, CA	1,414	13	80				
Tehama, CA	1,126	11	91				
Sierra, CA	931	9	100				

Table 4d. County-Level Crustal Emissions (tons/year)

	Emissions in average tons/yr					
County, State	SO ₂	Pct.	Cumulative %			
Butte, CA	243	33	33			
Shasta, CA	148	20	52			
Tehama, CA	102	14	66			
Lassen, CA	94	13	79			
Yuba, CA	84	11	90			
Plumas, CA	53	7	97			
Sierra, CA	24	3	100			

Tables 4a-d above show a pattern in county-level emissions in the area of analysis, whereby the least emissions are from Sierra County and the most are in Butte and Shasta counties.

A letter from the Northern Sierra Air Quality Management District, dated June 18, 2014, cites wood burning for residential heating in wood stoves and fireplaces, open burn piles for yard waste disposal, and prescribed burning in nearby federal lands performed by the U.S. Forest Service and a railroad switching yard as the sources affecting PM_{2.5} concentrations in Portola. The letter also states that natural gas is not available in Portola

but is available in other communities in the area, such as Quincy.¹⁹ Lack of alternate fuel sources such as natural gas likely results in more people using wood stoves for heating and cooking in Portola versus in communities that have access to other fuel sources.

In addition to reviewing county-wide emissions of $PM_{2.5}$ and $PM_{2.5}$ precursors in the area of analysis, the EPA also reviewed emissions from major point sources located in the area of analysis. The magnitude and location of these sources can help inform nonattainment boundaries.

There are no major point sources within the area of analysis (Plumas, Butte, Lassen, Shasta, Sierra, Tehama, and Yuba counties), however, there are several biomass facilities and other lumber-related sources of emissions in these counties. As there are no major point sources located in the area of analysis (as defined in a previous footnote, for purposes of this designations effort, "major" point sources are those whose sum of PM precursor emissions ($PM_{2.5} + NOx + SO_2 + VOC + NH_3$) are greater than 500 tons per year based on NEI 2011v1), major point sources are unlikely to contribute to monitored violations of the 2012 $PM_{2.5}$ NAAQS at the Portola monitoring site.

In summary, the EPA's analysis of relevant county-level emissions and the geographic locations of the relevant pollutants showed that major point sources are not contributing to violations in Plumas County of the 2012 PM_{2.5} NAAQS, and that the main type of source contributing to these violations is residential wood burning. While there are likely other areas where substantial amounts of wood burning occur, the impacts tend to be highly localized due to rough terrain and winter meteorology, and are not expected to contribute to the violations in Portola, as discussed further in Factors 3 and 4.

Population density and degree of urbanization

In this part of the factor analysis, the EPA evaluated the population and vehicle use characteristics and trends of the area as indicators of the probable location and magnitude of non-point source emissions. Rapid population growth in a county on the urban perimeter signifies increasing integration with the core urban area, and indicates that it may be appropriate to include the county associated with area source and mobile source emissions as part of the nonattainment area. Table 5 shows the 2000 and 2010 population, population growth since 2000, and population density for each county in the area.

¹⁹ P.1-4 and attachment 2, letter from Gretchen Bennitt, Executive Director, Northern Sierra Air Quality Management District's Board of Directors, to Gwen Yashimura, U.S. EPA Region IX. June 18, 2014.

				Land	Population		
County, State	Population 2000	Population 2010	% Change from 2000	Area (Sq. Miles)	(per Sq. Mile)	%	Cumulative %
Butte, CA	203,171	219,968	8%	1,639	134	37	37
Shasta, CA	163,256	177,324	9%	3,785	47	30	67
Yuba, CA	60,219	72,366	20%	631	115	12	79
Tehama, CA	56,039	63,666	14%	2,951	22	11	90
Lassen, CA	33,828	34,820	3%	4,557	8	6	96
Plumas, CA	20,824	19,940	-4%	2,554	8	3	99
Sierra, CA	3,555	3,226	-9%	953	3	1	100
Total	540,892	591,310					

 Table 5. Population Growth and Population Density.

Source: U.S. Census Bureau population estimates for 2000 and 2010

As seen in Table 5, Plumas County has a small population and it is declining. Plumas County and the adjacent county to the south, Sierra County, are the only two counties in the area of analysis that have declining populations. However, Lassen County to the north has a similarly small population density, with only 34,820 people in a county that is 4,557 square miles. These three counties have some of the smallest population densities in the nation. Although the adjacent Yuba County has a higher degree of population growth (20%), compared to all other counties in the area of analysis, and Butte, Shasta and Tehama counties also are experiencing population growth, it is not in a pattern that is associated with the population in Plumas County, which is spread throughout this large (2,554 square miles) county. Yuba County's population, for example, is associated with Yuba City-Marysville in the central portion of the two-county Sutter County and Yuba County area. Butte and Shasta counties do have much higher population than Plumas County suggesting the potential for contribution from those counties, but those populations are much farther away and emission activity from those counties is less likely to contribute to the violations in Plumas County.

Figure 5. 2010 County-Level Population in the Area of Analysis for the Plumas County, CA Area.

Figure 5a. 2010 Tract-Level Population in the Area of Analysis for the Plumas County, CA Area

Page 103 of 175

As shown in Figure 5 and in more detail in Figure 5a, the population of Plumas County is small and sparse.

Traffic and Vehicle Miles Travelled

High vehicle miles travelled (VMT) and/or a high number of commuters associated with a county is generally an indicator that the county is an integral part of an urban area. Mobile source emissions of NO_x, VOC, and direct PM may contribute to ambient particulate matter that contributes to monitored violations of the NAAQS in the area. In combination with the population/population density data and the location of main transportation arteries, an assessment of VMT helps identify the probable location of nonpoint source emissions that contribute to violations in the area. Comparatively high VMT in a county outside of the CBSA or CSA signifies integration with the core urban area contained within the CSA or CBSA, and indicates that a county with the high VMT may be appropriate to include in the nonattainment area because emissions from mobile sources in that county contribute to violations in the area. Table 6 shows 2011 VMT while Figure 6 overlays 2011 countylevel VMT with a map of the transportation arteries. VMT information shown below comes from the Federal Highway Administration.

County, State	Total 2011 VMT	Percent	Cumulative %
Shasta, CA	2,423,021,028	34	34
Butte, CA	1,803,224,860	25	59
Tehama, CA	1,096,503,798	15	74
Yuba, CA	779,782,024	11	85
Lassen, CA	775,933,492	11	96
Plumas, CA	216,739,350	3	99
Sierra, CA	74,257,303	1	100
Total	7,169,461,855		

Table 6. 2011	VMT for	the Plumas	County,	CA Area.
---------------	---------	------------	---------	----------

http://www.census.gov/hhes/commuting/data/commuting.html

Figure 6. Overlay of 2011 County-level VMT with Transportation Arteries.

Figure 6 shows that there are no major transportation arteries within Plumas County. The county is isolated in terms of its population. According to Census Bureau statistics for commuter flow between counties for 2006-2010, Plumas County has 8,744 commuters. See: <u>http://www.census.gov/population/metro/data/other.html</u>. Of these, 7,260, or 83%, commute to work within the county. Only 30 commuters commute to Plumas County from Shasta County; 220 from Lassen County; 81 from Sierra County, the closest county in the area of analysis to the violating monitor in Plumas County; no commuters in Yuba County commute to Plumas County; 314 from Butte County, to the west; and again, no commuters in Glenn County commute to Plumas County.

In summary, with respect to emissions sources in the area of analysis for Plumas County, there are no major point sources. Emissions that impact monitored $PM_{2.5}$ concentrations are likely related to residential burning activities. The population in most of the area of analysis is sparse and widely distributed, typical of relatively uninhabited areas of the American West. In this area, the EPA believes that most of the emissions that are contributing to the violations in Plumas County occur within the portion of the county that EPA is intending to designate as nonattainment.

Factor 3: Meteorology

The EPA evaluated available meteorological data to determine how meteorological conditions, including, but not limited to, weather, transport patterns, and stagnation conditions, could affect the fate and transport of directly emitted particulate matter and precursor emissions from sources in the area of analysis. The EPA generally uses wind roses for this analysis; however, there is no National Weather Service or comparable meteorological data available within the narrow Portola Valley.

Prevailing winds in the Portola Valley are from the southwest during the day, with stagnant wind conditions at night. The average low temperature for the 6-month period of October through March is 21.8°F with frost conditions experienced an average of 218 days per year²⁰. At night the ground cools, creating a shallow surface-based inversion, since air near the ground is cooler than that above. This, along with the valley's steep topography, inhibits mixing and confines pollutants to a relatively shallow layer near the ground. The low sunangle and climatologically dominant high pressure over Northern California, allow for little heat or wind to break the inversion. As such, high PM_{2.5} concentrations at the Portola monitor mostly occur in the wintertime during evening through morning hours and are confined to the Portola Valley, supporting the limited portion of Plumas County as the appropriate nonattainment boundary.

EPA generated kernel density estimation (KDE) plots to represent HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) backward trajectory frequency at violating monitoring sites.^{21,22} These KDEs are graphical statistical estimations to determine the density of trajectory endpoints at a particular location represented by a grid cell. The EPA used KDEs to characterize and analyze the collection of individual HYSPLIT backward trajectories.²³ Higher density values, indicated by darker blue colors, indicate a greater frequency of observed trajectory endpoints within a particular grid cell. Figure 7 shows a HYSPLIT KDE plot for the Portola-Nevada Street air monitoring site (AQS ID 060631009) in Plumas County summarized by calendar quarter for the 2010-2012 period. These trajectories are not conclusive due to the coarse grid resolution (40kmx40km) of the Eta Data Assimilation System (EDAS) data driving the HYSPLIT trajectories. The valley containing Portola is at most 20 km wide. The data are not resolved enough to portray the wintertime stagnation that is a key feature of local Portola meteorology.

²² HYSPLIT - Hybrid Single Particle Lagrangian Integrated Trajectory Model,

http://www.arl.noaa.gov/HYSPLIT_info.php

²³ The KDEs graphically represent the aggregate of HYSPLIT backward trajectories for the years 2010-2012, run every third day (beginning on the first day of monitoring), four times each day, and ending at four endpoint heights.

²⁰ P.2-5, letter from Gretchen Bennitt, Executive Director, Northern Sierra Air Quality Management District's Board of Directors, to Gwen Yashimura, U.S. EPA Region IX. June 18, 2014

²¹ In some past initial area designations efforts, EPA has used HYSPLIT backward trajectories to assist in determining nonattainment area boundaries. A HYSPLIT backward trajectory is usually depicted on a standard map as a single line, representing the centerline of an air parcel's motion, extending in two dimensional (x,y) space from a starting point and regressing backward in time to a point of origin. Backward trajectories may be an appropriate tool to assist in determining an air parcel's point of origin on a day in which a short-term standard, such as an 8-hour standard or a 24-hour standard, was exceeded. However, for an annual standard, such as the 2012 annual PM_{2.5} NAAQS, every trajectory on every day is important. Plotting a mass of individual daily (e.g., 365 individual back trajectories), or more frequent, HYSPLIT trajectories may not be helpful as this process is likely to result in depicting air parcels originating in all directions from the violating monitoring site.

Figures 7. Quarter 1-Quarter 4: HYSPLIT Kernel Density Estimation Plots for the Portola –Nevada Street Monitoring Station.

Factor 4: Geography/topography

To evaluate the geography/topography factor, the EPA assessed physical features of the area of analysis that might define the airshed and thus affect the formation and distribution of $PM_{2.5}$ concentrations over the area.

The town of Portola (elevation 4890 feet) lies in Plumas County in the northern Sierra Nevada Mountains near the southern border of the Cascade Range. The Middle Fork of the Feather River runs through the center of Portola (See Figure 8b). The topography of Plumas County is highly variable, including mountain peaks
(>7,000 ft) and valleys with extreme slopes and differences in altitude. This topography affects and directs airflow, causing shallow vertical mixing, and creating areas of high pollutant concentrations by hindering dispersion. The Portola area is geographically isolated from other areas by rugged mountains, forming a bowl-shaped valley. There is a distinct range with 6000-7000 ft peaks separating Portola from Quincy, 32 miles to the west-northwest.²⁴ To the east the Feather River provides a narrow air corridor from the Portola Valley into the expansive Sierra Valley (See Figure 8b). While high PM_{2.5} concentrations within the Portola Valley could enter the Sierra Valley, these concentrations would be quickly diluted limiting their effect on unmonitored concentrations in that area.

Figure 8. Topographical Map of Northern California (a) and of Plumas County. County boundaries and AQS stations are shown.

(a) Northern California

Monitor Violating 2013 annual PM_{2.5} NAAQS in 2011-2013

Monitor Attaining 2013 annual PM₂₅ NAAQS in 2011-2013

(b) Plumas County

Factor 5: Jurisdictional boundaries

In defining the boundaries of the intended Plumas County nonattainment area, the EPA considered existing jurisdictional boundaries, which can provide easily identifiable and recognized boundaries for purposes of implementing the NAAQS, as well as recommendations from the state and local air district. On June 18, 2014, Northern Sierra Air Quality Management District (the District) provided its recommendation to EPA, recommending that EPA designate the Portola Valley, following the existing state standard nonattainment area, as the federal nonattainment area²⁵. The District's recommendation was accompanied by a five-factor analysis.

On July 2, 2014, CARB provided an additional recommendation to its November 2013 State recommendation. The additional recommendation provided a recommendation for nonattainment for Plumas County, CA, based on complete air quality monitoring data for 2013 that was not available at the time of its initial recommendation. The State's letter recommended the same area as the District recommended, and also included a five-factor analysis in support of its recommended boundary.²⁶

²⁵Letter from Gretchen Bennitt, Executive Director, Northern Sierra Air Quality Management District to Gwen Yoshimura, U.S. EPA Region 9 Air Division Air Quality Analysis Office, dated June 18, 2014.

²⁶Letter from Richard Corey, Executive Officer, Air Resources Board, to Jared Blumenfeld, Regional Administrator, U.S. EPA Region 9, dated July 2, 2014.

Existing jurisdictional boundaries often signify the state or local governmental organization with the necessary legal authority for carrying out air quality planning and enforcement functions for the intended area. Examples of such jurisdictional boundaries include existing/prior nonattainment area boundaries for particulate matter, county lines, air district boundaries, township boundaries, areas covered by a metropolitan planning organization, state lines, and Reservation boundaries, if applicable. Where existing jurisdictional boundaries were not adequate or appropriate to describe the nonattainment area, the EPA considered other clearly defined and permanent landmarks or geographic coordinates for purposes of identifying the boundaries of the intended designated areas.

The intended Plumas County nonattainment area is the same as the State's recommended partial-county area, which is currently designated by the State as a $PM_{2.5}$ nonattainment area for the State of California's $PM_{2.5}$ standard. The State of California's $PM_{2.5}$ standard is set at an annual arithmetic mean of 12 µg/m³. This area is defined by the State's hydrological "super planning watershed" areas in Plumas County, CA, as described below, and the Sierra-Plumas county line to the south.

Plumas County's air quality is managed by the Northern Sierra Air Quality Management District, which also manages the air quality of Sierra and Nevada Counties. Plumas County is in the northeastern part of California and is part of the Mountain Counties Air Basin. The Mountain Counties Air Basin includes nine counties: Plumas, Sierra, Nevada, Placer, El Dorado, Amador, Calaveras, Tuolumne and Mariposa. There is no metropolitan planning organization (MPO) for Plumas County or for the state-recommended partial-county area.

The Office of Management and Budget's December 2009 delineations of core-based statistical areas (CBSAs) does not consider Plumas County a CBSA. Plumas County is surrounded by six counties with a wide range of CBSA/CSA delineations: Sierra County (not a CBSA), Lassen County (micro-CBSA), Tehama County (micro-CBSA), Butte County (metro-CBSA), Yuba County (part of Sacramento-CSA), and Shasta County (metro-CBSA). This diversity of delineations is in keeping with EPA's assessment that Plumas County is not interconnected with any of the surrounding counties. Neither Plumas County itself, nor the county to the south, Sierra County, have populations that are large enough to be delineated as a micropolitan CBSA.

The State designated the intended nonattainment area as nonattainment for the State's $PM_{2.5}$ ambient air quality standard in 2003. Since that time, air quality in the area has been managed by cooperation between federal, state and local authorities and businesses, regarding programs ranging from limits on open burning to requirements for EPA certified wood-burning appliances for home change of ownership, to an agreement with the railway not to idle their diesel engines in Portola. See District recommendation, pages 3 and 4.

The State's nonattainment area consists of one whole watershed, as defined by the State, and several partial watersheds. To the northeast, the entirety of the State's "super planning watershed" # 55183301 (Humbug Valley) includes the city of Portola as well as all or part of the cities of Delleker, Iron Horse, Beckworth, Lake Davis, Mohawk Vista, C-Road, Clio and Valley Ranch. To the south, the Plumas County portion of watershed # 55183302 (Sulpher Creek) includes the city of Whitehawk and the remainder of Valley Ranch. To the southwest, the Plumas County portion of watershed # 55183303 (Frazier Creek) includes another portion of Mohawk Vista and the remainders of D-Road and Clio and a portion of Graeagle. To the west, the Plumas County portion of watershed # 55183304 (Eureka Lake) includes the remainders of Graeagle and Mohawk Vista, Plumas Eureka and most of Johnsville. The remainder of the intended nonattainment area is

unincorporated. See District recommendation Attachment 1, map of the Portola Valley State $PM_{2.5}$ Nonattainment Area; see also the attachment to the State's recommendation, page 16.

The intended nonattainment area does not include portions of Indian country.

Conclusion for Plumas County Area

Based on the assessment of factors described above, both individually and in combination, the EPA has preliminarily concluded that the following partial county should be included as part of the Plumas County nonattainment area because portions of the county are either violating the 2012 annual $PM_{2.5}$ NAAQS or contributing to a violation at a nearby monitoring site: Plumas County (partial), including Portola Valley and the city of Portola, and as defined by the existing state standard nonattainment area. The EPA concurs with the state's recommendation for this area.

An evaluation of design value and speciation information relevant to Factor 1 shows that the air quality monitoring sites in Plumas County indicate violations of the 2012 annual $PM_{2.5}$ NAAQS based on the 2013 DVs, likely primarily due to local sources of residential burning; therefore a portion of the county is included in the nonattainment area.

Information relevant to Factor 2 indicates that there are no large sources in the area of analysis. The likely source contributing the most to the particulate matter concentrations which result in violations of the 2012 annual $PM_{2.5}NAAQS$ in Portola are residential burning activities, which tend to affect a very localized area when they occur in a topographically- and meteorologically-contained area such as the Portola Valley.

Factor 3 suggests that the greatest potential contribution of emissions is from the area contained within the valley with the violating monitor due to the meteorological conditions of stagnant, wintertime inversions during the quarters with the highest $PM_{2.5}$ concentrations. Although there may be similar sources of emissions elsewhere in the area of analysis, geographic distance and topographical barriers in combination with this meteorology make it less likely that those emissions contribute to the violations in the Portola Valley in Plumas County.

As discussed with respect to Factor 4, the topography of the region is highly variable, including mountain peaks (>7,000 ft) and valleys with extreme slopes and differences in altitude. The Portola Valley area is geographically isolated from other areas by rugged mountains, forming a bowl-shaped valley. This topography affects and directs airflow, causes shallow vertical mixing, and creates areas of high pollutant concentrations by hindering dispersion, especially in the Portola area. Finally, an assessment of information relevant to Factor 5 further supports the intended Plumas County nonattainment area due to local air district jurisdiction and the existing State nonattainment area.

Only a portion of Plumas County is included in the intended Plumas County nonattainment area. The remainder of the county does not have sources of emissions or emissions activity that are likely to be contributing to the violating monitor in the Portola Valley. The main factors that the EPA considered when determining the appropriateness of the intended Plumas County nonattainment area were Air Quality Data (Factor 1), Meteorology (Factor 3), Geography/Topography (Factor 4), and Jurisdiction (Factor 5).

3.4 Area Background and Overview – San Joaquin Valley, CA

Figure 1 is a map of the EPA's intended nonattainment boundary for the San Joaquin Valley. The map shows the location and design values of ambient air quality monitoring locations, county and other jurisdictional boundaries and existing 1997 annual and 2006 24-hour PM_{2.5} NAAQS nonattainment boundaries. As shown in Figure 1a, the EPA's area of analysis considered in this section includes the counties in the San Joaquin Valley Air Basin (consisting of San Joaquin, Stanislaus, Merced, Madera, Fresno, Kings, and Tulare counties, as well as the western portion of Kern County), and all counties adjacent to the San Joaquin Valley Air Basin (Alameda, Amador, Calaveras, Contra Costa, Inyo, Los Angeles, Mariposa, Mono, Monterey, Sacramento, San Benito, San Bernardino, San Luis Obispo, Santa Barbara, Santa Clara, Tuolumne, and Ventura counties) as part of the area of analysis. The San Joaquin Valley Air Basin includes the Fresno-Madera combined statistical area (CSA), and the entireties of the Stockton, Modesto, Merced, Hanford-Corcoran, and Visalia-Porterville metropolitan statistical areas (MSA). The entirety of Kern County forms the Bakersfield-Delano MSA.

For purposes of the 1997 annual PM_{2.5} NAAQS, this area was designated nonattainment. The boundary for the nonattainment area for the 1997 annual PM_{2.5} NAAQS included the entire counties of Fresno, Kings, Madera, Merced, San Joaquin, Stanislaus and Tulare and a portion of Kern County. For purposes of the 2006 24-hour PM_{2.5} NAAQS, this area was designated nonattainment. The boundary for the nonattainment area for the 2006 24-hour PM_{2.5} NAAQS also included the entire counties of Fresno, Kings, Madera, Merced, San Joaquin, Stanislaus and Tulare and a portion of Kern County. The boundary for the nonattainment area for the 2006 24-hour PM_{2.5} NAAQS also included the entire counties of Fresno, Kings, Madera, Merced, San Joaquin, Stanislaus and Tulare and a portion of Kern County. The boundary for the intended 2012 annual PM_{2.5} NAAQS is the same as the nonattainment area boundary for the 1997 annual PM_{2.5} NAAQS and the 2006 24-hour PM_{2.5} NAAQS. This intended nonattainment area includes areas of Indian country of the following federally recognized tribes: Big Sandy Rancheria of Western Mono Indians, Cold Springs Rancheria of Mono Indians of California, Northfork Rancheria of Mono Indians of California, Picayune Rancheria of Chuckchansi Indians of California, Santa Rosa Indian Community of the Santa Rosa Rancheria, Table Mountain Rancheria of California, and Tule River Indian Tribe of the Tule River Reservation.

Figure 1.EPA's Intended Nonattainment Boundaries for the San Joaquin Valley, CA Area

The EPA must designate as nonattainment areas that violate the NAAQS and nearby areas that contribute to the violation in the violating area. Eight counties - San Joaquin, Stanislaus, Merced, Madera, Fresno, Kings, Tulare, and Kern counties, show a violation of the 2012 PM_{2.5} NAAQS, therefore the first seven counties listed and a portion of Kern County are included in the nonattainment area. As shown in Figure 1a, the EPA evaluated each county as well as those counties located near the counties with a violating monitoring site based on the five factors and other relevant information. The following sections describe this five factor analysis process. While the factors are presented individually, they are not independent. The five factor analysis process carefully considers their interconnections and the dependence of each factor on one or more of the others.

Figure 1a. Area of Analysis for the San Joaquin Valley, CA Intended Nonattainment Area

Factor 1: Air Quality Data

All data collected during the year are important when determining contributions to an annual standard such as the 2012 annual PM_{2.5} NAAQS. Compliance with an annual NAAQS is dependent upon monitor readings throughout the year, including days with monitored ambient concentrations below the level of the NAAQS. For the 2012 annual PM_{2.5} NAAQS, the annual mean is calculated as the mean of quarterly means. A high quarter can drive the mean for an entire year, which, in turn, can drive an elevated 3-year DV. Although all data are important, seasonal or episodic emissions can provide insight as to relative contributors to measured PM_{2.5} concentrations. For these reasons, for the Factor 1 air quality analysis, the EPA assessed and characterized air quality at, and in the proximity of, the violating monitoring site locations first, by evaluating trends and the spatial extent of measured concentrations at monitors in the area of analysis, and then, by identifying the conditions most associated with high average concentration levels of PM_{2.5} mass in the area of analysis.

In most cases, the EPA assessed air quality data on a seasonal, or quarterly, basis.²⁷ The EPA also identified the spatial extent of these high PM_{2.5} concentrations. The mass and composition at the design value location represents contributions from various emission sources including local, area-wide (which may comprise nearby urban and rural areas) and regional sources. To determine the source mix (by mass) at the design value monitoring site, the EPA examined the chemical composition of the monitored PM_{2.5} concentrations by pairing each violating FRM/FEM/ARM monitoring site with a collocated or nearby Chemical Speciation Network (CSN) monitoring site or sites. Then, the EPA contrasted the approximated mass composition at the design value monitoring site with data collected at IMPROVE²⁸ and other monitoring locations whose data are representative of regional background.^{29,30} This comparison of local/area-wide chemical composition data to regional chemical composition data derives an "urban increment," which helps differentiate the influence of more distant emissions sources from the influence of closer emissions sources, thus representing the portion of the measured violation that is associated with nearby emission contributions.^{31,32,33}

in mostly rural and remote areas.

²⁹ The "urban increment" analysis assesses and characterizes the increase in seasonal and annual average PM_{2.5} mass and chemical constituents observed at violating monitoring site(s) relative to monitoring sites outside the area of analysis (which represent background concentrations). Developing the urban increment involves pairing a violating FRM/FEM/ARM monitor with a collocated monitor or nearby monitor with speciation data. EPA made every effort to pair these data to represent the same temporal and spatial scales. However, in some cases, the paired violating and CSN "urban" monitoring locations were separated by some distance such that the included urban CSN site(s) reflect(s) a different mixture of emissions sources, which could lead to misinterpretations. To generally account for differences in PM_{2.5} mass between the violating site and the nearby CSN site(s), EPA determined material balance of the PM_{2.5} composition at the violating site by assigning the extra measured PM_{2.5} mass to the carbon components of PM_{2.5}. Where the general urban increment approach may be misleading, or in situations where non-carbonaceous emissions are believed to be responsible for a local PM_{2.5} concentration gradient, EPA used alternative analyses to reflect the mix of urban and rural sources contributing to the measured concentrations at violating monitoring sites.

³⁰ The urban monitors were paired with any rural sites within a 150 mile radius of an urban site to calculate spatial means of the quarterly averages of each species. If there were no rural sites within 150 miles, then the nearest rural site was used alone. That rural mean was then subtracted from the quarterly mean of the urban site to get the increment. Negative values were simply replaced with zeros.

³¹ In most, but not all, cases, the violating design value monitoring site is located in an urban area. Where the violating monitor is not located in an urban area, the "urban increment" represents the difference between local and other nearby emission sources in the vicinity of the violating monitoring location and more regional sources.

³² Hand, et. al. Spatial and Seasonal Patterns and Temporal Variability of Haze and its Constituents in the United States: Report V, June 2011. Chapter 7 – Urban Excess in PM_{2.5} Speciated Aerosol Concentrations,

http://vista.cira.colostate.edu/improve/Publications/Reports/2011/PDF/Chapter7.pdf.

³³ US EPA, Office of Air Quality Planning and Standards, December 2004. (2004) Area Designations for 1997 Fine Particle (PM_{2.5}) Standards, Technical Support Document for State and Tribal Air Quality Fine Particle (PM_{2.5}) Designations, Chapter 3, Urban Excess Methodology. Available at

www.epa.gov/pmdesignations/1997standards/documents/final/TSD/Ch3.pdf.

²⁷ Although compliance with the annual NAAQS depends on contributions from all days of the year, examining data on a quarterly or seasonal basis can inform the relationship between the temporal variability of emissions and meteorology and the resulting $PM_{2.5}$ mass and composition. In some areas of the country where there may be noticeable month-to-month variations in average $PM_{2.5}$, the quarterly averages may not adequately represent seasonal variability. In these areas, air quality data may be aggregated and presented by those months that best correspond to the local "seasons" in these areas. ²⁸ IMPROVE stands for Interagency Monitoring for Protected Visual Environments and is an aerosol monitoring network

<u>PM_{2.5} Design Values and Total Mass Measurements</u> – The EPA examined ambient PM_{2.5} air quality monitoring data represented by the DVs at the violating monitoring site and at other monitors in the area of analysis. The EPA calculated DVs based on air quality data for the most recent 3 consecutive calendar years of quality-assured, certified air quality data from suitable FEM/FRM/ARM monitoring sites in the EPA's Air Quality System (AQS). For this designations analysis, the EPA used data for the 2011-2013 period (i.e., the 2013 design value), which are the most recent years with fully-certified air quality standard. The 2012 annual PM_{2.5} NAAQS is met at a monitoring site when the 3-year average annual mean concentration is 12.0 micrograms per cubic meter (μ g/m³) or less (e.g., 12.1 μ g/m³ or greater is a violation). A DV is only valid if minimum data completeness criteria are met or when other regulatory data processing provisions are satisfied (See 40 CFR part 50 Appendix N). Table 2 identifies the current design value(s) (i.e., the 2013 DV) and the most recent two design values based on all monitoring sites in the area of analysis for the San Joaquin Valley intended nonattainment area.³⁴ Where a county has more than one monitoring location, the county design value is indicated in red type.

County, State	Monitor Site ID	Site Name	State Rec NA?	09-11 DV	10-12 DV	11-13 DV
Fresno, CA	060190011	Fresno – Garland ^d	Yes	14.5	14.3	15.4
Fresno, CA	060192009	Tranquillity	Yes	-	7.4	7.8
Fresno, CA	060195001	Clovis	Yes	17	16	16.4
Fresno, CA	060195025	Fresno-Pacific	Yes	14.5	13.8	14.7
Kern, CA	060290011	Mojave-Poole	No	5.3 ^b	5.7 ^b	7.0 ^b
Kern, CA	060290014	Bakersfield- California Avenue	Yes	16.5	14.5	16.4
Kern, CA	060290015	Ridgecrest	No	5.5 ^b	5.3 ^b	5.4 ^b
Kern, CA	060290016	Bakersfield-Planz	Yes	18.2	15.6	17.3
Kings, CA	060310004	Corcoran	Yes	16.2	15.8 ^b	15.0 ^b
Kings, CA	060311004	Hanford	Yes	16.3 ^b	15.8	17.0
Madera, CA	060392010	Madera-City	Yes	20.5 ^b	19	18.1
Merced, CA	060470003	Merced-Coffee	Yes	18.2	14.3	13.3
Merced, CA	060472510	Merced-M St	Yes	11.7	10.4	11.1
San Joaquin, CA	060771002	HAZELTON-HD, STOCKTON	Yes	11.1	11.4	13.8
San Joaquin, CA	060772010	Manteca	Yes	14.2 ^b	12.1 ^b	10.2

Table 2. Air Quality Data collected at Regulatory Monitors (all DV levels in µg/m³)^a

³⁴ In certain circumstances, one or more monitoring locations within a monitoring network may not meet the network technical requirements set forth in 40 CFR 58.11(e), which states, "State and local governments must assess data from Class III PM_{2.5} FEM and ARM monitors operated within their network using the performance criteria described in table C-4 to subpart C of part 53 of this chapter, for cases where the data are identified as not of sufficient comparability to a collocated FRM, and the monitoring agency requests that the FEM or ARM data should not be used in comparison to the NAAQS. These assessments are required in the monitoring agency's annual monitoring network plan described in §58.10(b) for cases where the FEM or ARM is identified as not of sufficient comparability to a collocated FRM...."

County State	Monitor Site ID	Site Name	State Rec	09-11 DV	10-12 DV	11-13 DV
County, State		Modesto-14th	INA:	12.2h	10-12 DV	11-15 DV
Stanislaus, CA	060990005	Street	Yes	13.2 °	12.9	13.6
Stanislaus, CA	060990006	Turlock	Yes	15.3	14.9	15.7
Tulare, CA	061072002	Visalia - N. Church	Yes	15.2	14.8	16.6
Amador, CA	N/A	N/A	No		No monitor	
Alameda, CA	060010007	Livermore - Rincon	No	8.2	7.3	7.6
Alameda, CA	060010009	Oakland East	No	9	9.1	10.0
Alameda, CA	060010011	Oakland West	No	na	7 ^b	9.9 ^b
Calaveras, CA	060090001	SAN ANDREAS - GOLD STRIKE ROAD	No	7.3	7.6	8.4
Contra Costa, CA	060130002	Concord	No	7.8	7.2	7.4
Contra Costa, CA	060131004	San Pablo - Rumrill	No	n/a	7.3 ^b	9.6
Inyo, CA	060271003	Keeler	No	7.3	7.3	7.5
Los Angeles, CA	060370002	Azusa	Yes ^c	12 ^b	11.3 ^b	11.2
Los Angeles, CA	060371002 ^e	Burbank ^e	Yes ^c	13.9	12.9	12.8
Los Angeles, CA	060371103 ^e	Los Angeles (Main St.) ^e	Yes ^c	13.5	13.1	13.0
Los Angeles, CA	060371201	Reseda	Yes ^c	10.6	10.3	10.2
Los Angeles, CA	060371302	Compton	Yes ^c	13.4	12.4	12.2
Los Angeles, CA	060371602	Pico Rivera #2	Yes ^c	13.3	12.3	12.0
Los Angeles, CA	060372005	Pasadena	Yes ^c	11.1 ^b	10.4 ^b	10.4 ^b
Los Angeles, CA	060374002 °	Long Beach (North) ^e	Yes ^c	11.5	10.8	11.1
Los Angeles, CA	060374004 °	Long Beach E Pacific Coast Hwy ^e	Yes ^c	11.2	10.7	11.0
Los Angeles, CA	060379033	Lancaster	No	6.9 ^b	6.2 ^b	6.1 ^b
Mariposa, CA	N/A	N/A	No		No monitor	
Mono, CA	N/A	N/A	No		No monitor	
Monterey, CA	060531003	Salinas 3	No	6.1	6.1	6.1
Monterey, CA	060530002	Carmel Valley	No	n/a	n/a	5.9 ^b
Monterey, CA	060530008	King City 2	No	n/a	n/a	6.3 ^b
Sacramento, CA	060670006	Sacramento-Del Paso Manor	No	10	9.5	10.4
Sacramento, CA	060670010	Sacramento-1309 T Street	No	9.2	8.8	9.5
Sacramento, CA	060674001	Sacramento- Health Dept.	No	9.2	8.7	9.3
San Benito, CA	060690002	Hollister 2	No	5.6	5.4	5.5
San Bernardino, CA	060710025	Ontario Fire Station	Yes ^c	13.7	12.9	12.6

County, State	Monitor Site ID	Site Name	State Rec NA?	09-11 DV	10-12 DV	11-13 DV
San Bernardino, CA	060710306	Victorville -Park Avenue	No	7.7 ^b	6.9 ^b	6.8 ^b
San Bernardino, CA	060712002	Fontana	Yes ^c	12.9	12.4	12.6
San Bernardino, CA	060718001	Big Bear	Yes ^c	8.9	8.3	8.7
San Bernardino, CA	060719004	San Bernardino	Yes ^c	12.1	11.7	11.8
San Luis Obispo, CA	060792004	Unocal - Nipomo	No	8.2 ^b	8.2	8.7
San Luis Obispo, CA	060792006	SAN LUIS OBISPO	No	6.1	6.1	6.6
San Luis Obispo, CA	060792007	MESA CAL FIRE STATION 22	No	11 ^b	10.5 ^b	11.3
San Luis Obispo, CA	060798001	ATASCADERO CITY FIRE DEPARTMENT	No	7.7	6.6	7.0
Santa Barbara, CA	060830011	Santa Barbara- National Guard Armory	No	9.9	9.5	9.5
Santa Barbara, CA	060831008	RELOCATED FROM ARB SITE AT 500 S. BROADWAY	No	6.9	7.2	7.6
Santa Clara, CA	060850002	Gilroy - 9th St	No	8.4	7.9	8
Santa Clara, CA	060850005	San Jose - Jackson St.	No	9.6	9.3	10.3
Tuolumne, CA	N/A	N/A	No	No monitor		
Ventura, CA	061110007	THOUSAND OAKS	No	9.3	8.9	9.1
Ventura, CA	061110009	PIRU	No	8.5	8.6	8.1
Ventura, CA	061111004	OJAI	No	na	9.5 ^b	9.0 ^b
Ventura, CA	061112002	SIMI VALLEY	No	9.3	8.9	9.1
Ventura, CA	061113001	EL RIO	No	9.2	8.7	9.0

^aWhere a county has more than one monitoring location, the county design value is indicated in red type.

^b The listed design value is not valid.

^c State recommended nonattainment as part of a separate nonattainment area. See the section of this document titled: "Area Background and Overview" for Los Angeles-South Coast Air Basin.

^d At the end of 2011, the Fresno-First Street site (AQS ID 060190008) was relocated to the Fresno-Garland site (AQS ID 060190011). The design values listed combine data from Fresno-First Street through 2011 and data from Fresno-Garland from 2012 and 2013.

^e The EPA is currently reviewing a request to exclude data from Class III FEM monitors for comparison to the NAAQS per 40 CFR 58.11(e) at this site. Should this request be approved, the DVs will be recalculated with these data excluded.

In addition to the FEM/FRM/ARM monitoring sites identified in Table 2 whose collected data are used to calculate DVs, San Joaquin Valley Air Pollution Control District, California Air Resources Board, and the National Parks Service also operate special purpose monitoring locations identified in Table 2a. The Huron, Lebec-Beartrap Road, Yosemite NP-Visitor Center, Sequoia and Kings Canyon NP-Ash Mountain, and Porterville sites were established for informational purposes, and the remaining sites in Table 2a are IMPROVE sites, established to evaluate visibility impacts on Class I areas. These monitors are not required per 40 CFR 58.20 to be compared to the NAAQS. Although these nonregulatory monitors are not eligible for comparison to

the NAAQS, the data collected may help define an appropriate boundary for areas with emissions sources or activities that potentially contribute to ambient fine particle concentrations at the violating monitors.

County, State	Monitor Site ID	Site Name	State Rec NA?	09-11 DV	10-12 DV	11-13 DV
Fresno, CA	060192008	Huron	Yes	14.4 ^a	13.6 ^a	13.6 ^a
Fresno, CA	060199000	Kaiser	Yes	3.0	2.9	2.8ª
Inyo, CA	060270101	DEATH VALLEY NM	No	3.4	3.4	3.1ª
Kern, CA	060292009	Lebec-Beartrap Rd	Yes	6.9 ^a	7.5ª	7.8 ^a
Kern, CA	060299001	Lebec-Peace Valley Rd Kern County	Yes	4.6	4.6	4.5ª
Los Angeles, CA	060379034	Lebec-Peace Valley Rd LA County	Yes	3.2ª	2.7ª	2.8ª
Mariposa, CA	060430003	Yosemite NP- Turtleback Dome	No	3.4	3.3	3.3ª
Mariposa, CA	060431001	YOSEMITE NP- Visitor Center	No	10.3ª	9.8ª	10.2ª
Mono, CA	060519000	Hoover	No	2.2	2.2	2.2ª
San Benito, CA	060690003	Pinnacles NM	No	3.9	3.7	3.9ª
San Bernardino, CA	060719002	Joshua Tree NM- Black Rock Canyon	No	3.8	3.5	3.5ª
Tulare, CA	061070009	Sequoia and Kings Canyon NP- Ash Mountain	Yes	9.9ª	9.0	8.3ª
		ASH MOUNTIAN, SEQUOIA NATIONAL				
Tulare, CA	061071001	PARK	Yes	6.4	6.4	6.2ª
Tulare, CA	061072010	Porterville	Yes	-	15.4 ^a	16.4

Table 2a. Air Quality Data Collected at Nonregulatory Monitors (all DV levels in µg/m³)

^a One or more years of data are not complete.

The Figure 1 map, shown previously, identifies the San Joaquin Valley intended nonattainment area, the existing PM_{2.5} nonattainment area boundaries, and monitoring locations with 2011-2013 violating DVs. As indicated on the map, there are 12 violating monitoring sites located within the San Joaquin Valley intended nonattainment area. One or more monitors within each county of the intended nonattainment area have persistently shown a violation for the 2009-2011, 2010-2012, and 2011-2013 DV periods. Within San Joaquin County, a monitor in the city of Stockton has violated for the 2011-2013 DV period while to the south of this monitor within the same county, the Manteca monitor did not violate for the same DV period. Within Merced County near the center of the city of Merced there is a monitor located on M Street that has not shown a violation for the 2009-2012 DV periods while to the south-east a monitor on Coffee Avenue has persistently shown a violation for the 2009-2011, 2010-2012, and 2011-2013 DV periods. Within Fresno

County all monitors persistently violate for the 2009-2011, 2010-2012, and 2011-2013 DV periods with the exception of a background monitor west of the city of Fresno near the city of Tranquillity which has not shown a violation for the 2010-2012 and 2011-2013 DV periods. Within the western portion of Kern County that is included as part of the San Joaquin Valley intended nonattainment area, all monitors in the city of Bakersfield have persistently shown a violation for the 2009-2011, 2010-2012, and 2011-2013 DV periods. Two monitors, located in the cities of Mojave and Ridgecrest, with non-valid design values exist in the eastern portion of Kern County that is not included as part of the San Joaquin Valley intended nonattainment area, including Stanislaus, Madera, Kings, and Tulare counties, only contain monitors that have shown a violation for the 2011-2013 DV period. Within the area of analysis several violating monitors exist in Los Angeles and San Bernardino counties. We intend to designate these areas nonattainment as part of a separate nonattainment area. (See the "Area Background and Overview - Los Angeles-South Coast Air Basin, CA" section of this document.) No other monitors in the area of analysis have shown valid violations.

Seasonal variation can highlight those conditions most associated with high average concentration levels of PM_{2.5}. Figure 2 shows quarterly mean PM_{2.5} concentrations for the most recent 3-year period for the highest DV monitoring site in the intended nonattainment area (Madera-City), as well as from the highest DV monitoring site in each county outside of the intended nonattainment area but within the area of analysis (i.e. the counties bordering the intended nonattainment area). For Kern, which is intended to be designated as a partial nonattainment county as part of the San Joaquin Valley nonattainment area, one monitor (Mojave-Poole) is also included in Figure 2 from the intended unclassifiable/attainment portion of the county. Figure 2a shows quarterly mean PM_{2.5} concentrations for the most recent 3-year period for all monitoring sites within the San Joaquin Valley intended nonattainment area, and excludes sites from surrounding counties outside the intended nonattainment area is shown as a black line. This graphical representation is particularly relevant when assessing air quality data for an annual standard, such as the 2012 annual PM_{2.5} NAAQS, because, as previously stated, the annual mean is calculated as the mean of quarterly means and a high quarter can drive the mean for an entire year, which, in turn, can drive an elevated 3-year DV.

Figure 2. San Joaquin Valley Area of Analysis Monitors - PM_{2.5} Quarterly Means for 2011-2013

Figure 2a. San Joaquin Valley Intended Nonattainment Area Monitors - PM_{2.5} Quarterly Means for 2011-2013

As shown, quarter four (Q4) of 2013 recorded the highest concentration average within the San Joaquin Valley followed by Q4 2011. Peak concentrations within the San Joaquin Valley for the 3-year period occurred in Q4 or quarter one (Q1).

 $\underline{PM}_{2.5}$ Composition Measurements - To assess potential emissions contributions for each violating monitoring location, the EPA determined the various chemical species comprising total $PM_{2.5}$ to identify the chemical constituents over the analysis area, which can provide insight into the types of emission sources impacting the monitored concentration. To best describe the $PM_{2.5}$ at the violating monitoring location, the EPA first adjusted the chemical speciation measurement data from a monitoring location at or near the violating FRM monitoring site using the SANDWICH approach to account for the amount of $PM_{2.5}$ mass constituents retained in the FRM

measurement.^{35,36,37,38} In particular, this approach accounts for losses in fine particle nitrate and increases in sulfate mass associated with particle bound water. Figure 3a illustrates the fraction of each PM_{2.5} chemical constituent estimated at the Madera design value monitoring site using the speciation sampler from the nearby Fresno-Garland monitoring site based on annual averages for the years 2010-2012.

³⁵ SANDWICH stands for measured Sulfate, Adjusted Nitrate, Derived Water, Inferred Carbonaceous mass Hybrid Material Balance Approach." The SANDWICH adjustment uses an FRM mass construction methodology that results in reduced nitrates (relative to the amount measured by routine speciation networks), higher mass associated with sulfates (reflecting water included in gravimetric FRM measurements) and a measure of organic carbonaceous mass derived from the difference between measured PM_{2.5} and its non-carbon components. This characterization of PM_{2.5} mass also reflects crustal material and other minor constituents. The resulting characterization provides a complete mass closure for the measured FRM PM_{2.5} mass, which can be different than the data provided directly by the speciation measurements from the CSN network.

³⁶ Frank, N. H., SANDWICH Material Balance Approach for PM_{2.5} Data Analysis, National Air Monitoring Conference, Las Vegas, Nevada, November 6-9, 2006. *http://www.epa.gov/ttn/amtic/files/2006conference/frank.pdf*.

³⁷ Frank, N. H., The Chemical Composition of PM_{2.5} to support PM Implementation, EPA State /Local/Tribal Training Workshop: PM_{2.5} Final Rule Implementation and 2006 PM_{2.5} Designation Process, Chicago IL, June 20-21, 2007, *http://www.epa.gov/ttn/naaqs/pm/presents/pm2.5_chemical_composition.pdf*.

³⁸ Frank, N. H. Retained Nitrate, Hydrated Sulfates, and Carbonaceous Mass in Federal Reference Method Fine Particulate Matter for Six Eastern U.S. Cities. J. Air & Waste Manage. Assoc. 2006 56:500–511.

Figure 3a. San Joaquin Valley Annual Average PM_{2.5} Chemical Constituents (2010-2012)

Figure 3b shows annual and quarterly chemical composition profiles and illustrates any seasonal or episodic contributors to PM_{2.5} mass. This "increment analysis," combined with the other factor analyses, can provide additional insight as to which sources or factors may contribute at a greater level. Simply stated, this analysis can help identify nearby sources of emissions that contribute to the violation at the violating monitoring sites.

Figure 3b. San Joaquin Valley Annual and Quarterly Average PM_{2.5} Species (2010-2012)^a

^aAdjusted to FRM Total $PM_{2.5}$ indicates that the speciation profile and total mass depicted in this figure are the result of the urban increment calculation for the particular FRM monitor.

Figure 3b shows that organic carbonaceous mass (OM) is the predominant species contributing over fifty percent of the total mass throughout the year. Nitrates are the second largest component in the annual mean,

contributing 21 percent followed by sulfates contributing 14 percent. Nitrates contribute most during quarter one (Q1) and quarter four (Q4), when the total $PM_{2.5}$ concentration is highest, but not as much to quarter two (Q2) and quarter three (Q3). Sulfates contribute about thirty percent of the total mass in Q2 and Q3. Crustal material (CM) and elemental carbon contribute only six percent each to the total mass on an annual average, although CM does contribute over ten percent of the total mass in Q2 and Q3. This suggests that OM sources contribute at a greater level than any other species on an annual basis, while nitrates and sulfates also contribute annually and have even higher impacts in the colder and warmer months, respectively. Sources emitting CM also seem to contribute most in Q2 and Q3. Based on speciation measurements at the Modesto, Visalia and Bakersfield-California Avenue sites, the magnitude of the contribution of each species varies somewhat throughout the San Joaquin Valley, however, OM is consistently the largest contributor, followed by nitrates and sulfates.

The EPA assessed seasonal and annual average $PM_{2.5}$ constituents at monitoring sites within the area relative to monitoring sites outside of the analysis area to account for the difference between regional background concentrations of $PM_{2.5}$, and the concentrations of $PM_{2.5}$ in the area of analysis, also known as the "urban increment." This analysis differentiates between the influences of emissions from sources in nearby areas and in more distant areas on the violating monitor. Estimating the urban increment in the area helps to illuminate the amount and type of particles at the violating monitor that are most likely to be the result of sources of emissions in nearby areas, as opposed to impacts of more distant or regional sources of emissions. Figure 4a includes pie charts showing the annual and quarterly chemical mass constituents of the urban increment estimated for the Madera design value monitoring site. Evaluating the average urban increment in each quarter can help identify composition of $PM_{2.5}$ at the design value site. Note that in these charts, the individual components have been adjusted to represent their retained mass in FRM-measured $PM_{2.5}$ as described for Figures 3a and 3b above.

Figure 4a. San Joaquin Valley Urban Increment Analysis for 2010-2012.

Figure 4b. San Joaquin Valley Average Urban Increment Analysis for 2010-2012.

Each county in the San Joaquin Valley intended nonattainment area has one or more monitoring site with a 2011-2013 DV exceeding the NAAQS. Seasonal peaks in ambient $PM_{2.5}$ concentrations for monitoring sites within the San Joaquin Valley tend to occur in quarters four and one.

In reviewing the urban increment analysis for the San Joaquin Valley DV monitor, the results are similar to the adjusted speciation measurements, indicating a somewhat consistent source mix throughout the area. There is an increase in the contribution of OM indicating that it may have an additional contribution from a source closer to the DV monitoring site. This analysis points in general to contributions from direct PM_{2.5} or PM_{2.5} precursors from sources throughout the region, with an increased contribution of OM from sources closer to the DV monitoring site.

Factor 2: Emissions and Emissions-related Data

In this designations process, for each area with a violating monitoring site, the EPA evaluated the emissions data from nearby areas using emissions related data for the relevant counties to assess each county's potential contribution to PM_{2.5} concentrations at the violating monitoring site or monitoring sites in the area under evaluation. Similar to the air quality analysis, these data were examined on a seasonal basis. The EPA examined emissions of identified sources or source categories of direct PM_{2.5}, the major components of direct PM_{2.5} (organic mass, elemental carbon, crustal material (and/or individual trace metal compounds)), primary nitrate and primary sulfate, and precursor gaseous pollutants (i.e., SO₂, NO_x, total VOC, and NH₃). The EPA also considered the distance of those sources of emissions from the violating monitoring site. While direct PM_{2.5} emissions and its major carbonaceous components are generally associated with sources near violating PM_{2.5} monitoring sites, the gaseous precursors tend to have a more regional influence (although the EPA is mindful of

the potential local NO_X and VOC emissions contributions to $PM_{2.5}$ from mobile and stationary sources) and transport from neighboring areas can contribute to higher $PM_{2.5}$ levels at the violating monitoring sites.

Emissions Data

For this factor, the EPA reviewed data from the 2011 National Emissions Inventory (NEI) version 1 (see *http://www.epa.gov/ttn/chief/net/2011inventory.html*). For each county in the area of analysis, the EPA examined the magnitude of county-level emissions reported in the NEI. These county-level emissions represent the sum of emissions from the following general source categories: point sources, non-point (i.e., area) sources, nonroad mobile, on-road mobile, and fires. In some instances, non-anthropogenic sources of emissions such as wildfires account for large portions of the emissions inventory data presented below. The EPA also looked at the geographic distribution of major point sources of the relevant pollutants.³⁹ Significant emissions levels from sources in a nearby area indicate the potential for the area to contribute to monitored violations.

To further analyze area emissions data, EPA also developed a summary of direct PM_{2.5}, components of direct PM_{2.5}, and precursor pollutants, which is available at *http://www.epa.gov/pmdesignations/2012standards/docs/nei2011v1pointnei2008v3county.xlsx*.

When considered with the urban increment analysis in Factor 1, evaluating the components of direct PM_{2.5} and precursor gases can help identify specific sources or source types contributing to elevated concentrations at violating monitoring sites and thus assist in identifying appropriate area boundaries. In general, directly emitted particulate organic carbon (POC) and VOCs⁴⁰ contribute to PM_{2.5} organic mass (OM); directly emitted EC contributes to PM_{2.5} EC; NO_X, NH₃ and directly emitted nitrate contribute to PM_{2.5} nitrate mass; SO₂, NH₃ and directly emitted sulfate contribute to PM_{2.5} sulfate mass; and directly emitted crustal material and metal oxides contribute to PM_{2.5} crustal matter. ^{41,42} The EPA believes that the quantities of those nearby emissions as potential contributors to the PM_{2.5} violating monitors are somewhat proportional to the PM_{2.5} chemical constituents in the estimated urban increment. Thus, directly emitted POC is more important per ton than SO₂, partially because POC emissions are already PM_{2.5} whereas SO₂ must convert to PM_{2.5} and not all of the emitted SO₂ undergoes this conversion.

Table 3a provides a county-level emissions summary (i.e., the sum of emissions from the following general source categories: point sources, non-point (i.e., area) sources, nonroad mobile, on-road mobile, and fires) of directly emitted $PM_{2.5}$ and precursor species for the county with the violating monitoring site and nearby counties considered for inclusion in the San Joaquin Valley, CA area. Table 3b summarizes the directly emitted components of $PM_{2.5}$ for the same counties in the area of analysis for the San Joaquin Valley, CA area. This information will be paired with the Urban Increment composition previously shown in Figures 4a and 4b.

 $^{^{39}}$ For purposes of this designations effort, "major" point sources are those whose sum of PM precursor emissions (PM_{2.5} + NOx + SO₂ + VOC + NH₃) are greater than 500 tons per year based on NEI 2011v1.

⁴⁰ As previously mentioned, nearby VOCs are presumed to be a less important contributor to PM_{2.5} OM than POC.

⁴¹ See, Seinfeld J. H. and Pandis S. N. (2006) Atmospheric Chemistry and Physics: From Air Pollution to Climate Change,

²nd edition, J. Wiley, New York. See also, Seinfeld J. H. and Pandis S. N. (1998) *Atmospheric Chemistry and Physics: From Air Pollution to Climate Change*, 1st edition, J. Wiley, New York.

⁴² USEPA Report (2004), The Particle Pollution Report: Current Understanding of Air Quality and Emissions through 2003, found at: <u>http://www.epa.gov/airtrends/aqtrnd04/pm.html</u>.

County, State	Total NH3	Total NOx	Total Direct PM _{2.5}	Total SO ₂	Total VOC	Total
Los Angeles, CA	19,205	143,295	16,929	7,888	117,854	305,172
Tulare, CA	34,722	13,621	22,462	1,624	67,387	139,817
Kern, CA	26,732	41,723	12,303	3,060	47,172	130,990
San Bernardino, CA	12,974	67,255	11,665	1,934	35,543	129,371
Fresno, CA	20,412	24,503	4,465	657	20,780	70,817
San Joaquin, CA	26,692	21,199	2,551	1,256	13,696	65,394
Santa Clara, CA	2,969	24,824	4,996	747	26,637	60,172
Alameda, CA	2,002	29,385	4,755	1,057	21,260	58,460
Contra Costa, CA	2,411	20,752	5,928	5,516	17,536	52,143
Sacramento, CA	4,446	19,759	3,779	353	21,444	49,782
Stanislaus, CA	16,609	11,670	2,164	478	13,147	44,067
Merced, CA	17,829	10,967	1,666	138	7,039	37,639
Monterey, CA	4,222	12,236	2,800	472	12,784	32,514
Ventura, CA	3,604	11,652	2,084	291	13,937	31,568
Kings, CA	14,315	5,717	865	98	3,418	24,414
Santa Barbara, CA	1,517	9,943	1,487	544	10,808	24,299
Madera, CA	5,610	6,857	1,899	217	5,979	20,561
San Luis Obispo, CA	1,910	6,285	1,855	273	7,699	18,022
Tuolumne, CA	1,186	2,512	3,380	373	10,301	17,752
Mariposa, CA	1,153	939	3,430	263	10,340	16,126
Calaveras, CA	650	1,453	1,242	85	4,520	7,951
Amador, CA	392	1,650	1,258	72	2,868	6,240
San Benito, CA	941	2,752	464	24	1,596	5,777
Mono, CA	784	634	888	78	2,691	5,074
Inyo, CA	1,468	932	922	199	1,505	5,026

 Table 3a. County-Level Emissions of Directly Emitted PM2.5 and Precursors (tons/year)

County, State	РОМ	EC	PSO ₄	PNO ₃	PCrustal	Residual	Total Direct
Tulare, CA	16,794	2,179	295	39	668	2,488	22,462
Los Angeles, CA	6,953	2,968	692	63	1,942	4,310	16,929
Kern, CA	6,863	1,862	324	65	1,204	1,987	12,303
San Bernardino, CA	3,237	1,512	344	48	2,765	3,760	11,665
Contra Costa, CA	2,406	794	354	53	941	1,381	5,928
Santa Clara, CA	1,851	585	115	16	1,031	1,398	4,996
Alameda, CA	1,403	632	135	12	971	1,603	4,755
Fresno, CA	1,986	621	95	14	764	985	4,465
Sacramento, CA	2,344	441	57	16	357	565	3,779
Mariposa, CA	2,667	331	39	8	52	335	3,430
Tuolumne, CA	2,514	315	47	15	139	349	3,380
Monterey, CA	1,621	356	51	13	318	441	2,800
San Joaquin, CA	1,039	381	87	9	456	579	2,551
Stanislaus, CA	976	280	62	7	348	491	2,164
Ventura, CA	1,138	384	35	6	218	303	2,084
Madera, CA	1,034	228	47	6	186	398	1,899
San Luis Obispo, CA	1,118	195	26	5	192	320	1,855
Merced, CA	714	279	18	5	321	328	1,666
Santa Barbara, CA	721	248	29	5	222	262	1,487
Amador, CA	852	116	30	10	59	191	1,258
Calaveras, CA	941	127	9	6	34	126	1,242
Inyo, CA	201	69	21	3	303	325	922
Mono, CA	647	85	12	2	36	106	888
Kings, CA	206	141	11	2	262	244	865
San Benito, CA	179	67	14	1	76	127	464

Table 3b. County-Level Emissions for Components of Directly Emitted PM_{2.5} (tons/year)⁴³

Table 3b breaks down the direct $PM_{2.5}$ emissions value from Table 3a into its components. These data will also be compared with the previously presented Urban Increment composition.

Using the previously described relationship between directly emitted and precursor gases and the measured mass to evaluate data presented in Tables 3a and 3b, the EPA identified the following components warranting additional review: NH₃, NOx, PM_{2.5}, SO₂, VOC, POM, PSO₄, PNO₃, Crustal and Residual. The EPA then looked at the contribution of these constituents of interest from each of the counties included in the area of analysis as shown in Tables 4a-j.

⁴³ Data are based on the 2011 and 2018 Emissions Modeling Platform Data Files and Summaries (*ftp://ftp.epa.gov/EmisInventory/2011v6/v1platform*) available at: *http://www.epa.gov/ttn/chief/emch/index.html#2011* (accessed 02/26/14).

	Emissions in average tons/yr					
County, State	NH3	Pct.	Cumulative %			
Tulare, CA	34,722	15	15			
Kern, CA	26,732	12	27			
San Joaquin, CA	26,692	12	39			
Fresno, CA	20,412	9	48			
Los Angeles, CA	19,205	9	57			
Merced, CA	17,829	8	65			
Stanislaus, CA	16,609	7	72			
Kings, CA	14,315	6	79			
San Bernardino, CA	12,974	6	84			
Madera, CA	5,610	2	87			
Sacramento, CA	4,446	2	89			
Monterey, CA	4,222	2	91			
Ventura, CA	3,604	2	92			
Santa Clara, CA	2,969	1	94			
Contra Costa, CA	2,411	1	95			
Alameda, CA	2,002	1	96			
San Luis Obispo, CA	1,910	1	96			
Santa Barbara, CA	1,517	1	97			
Inyo, CA	1,468	1	98			
Tuolumne, CA	1,186	1	98			
Mariposa, CA	1,153	1	99			
San Benito, CA	941	0	99			
Mono, CA	784	0	100			
Calaveras, CA	650	0	100			
Amador, CA	392	0	100			

Table 4a. County-Level NH₃ Emissions (tons/year)

	Emissions in average tons/yr					
County, State	NOx	Pct.	Cumulative %			
Los Angeles, CA	143,295	29	29			
San Bernardino, CA	67,255	14	43			
Kern, CA	41,723	8	51			
Alameda, CA	29,385	6	57			
Santa Clara, CA	24,824	5	62			
Fresno, CA	24,503	5	67			
San Joaquin, CA	21,199	4	72			
Contra Costa, CA	20,752	4	76			
Sacramento, CA	19,759	4	80			
Tulare, CA	13,621	3	82			
Monterey, CA	12,236	2	85			
Stanislaus, CA	11,670	2	87			
Ventura, CA	11,652	2	90			
Merced, CA	10,967	2	92			
Santa Barbara, CA	9,943	2	94			
Madera, CA	6,857	1	95			
San Luis Obispo, CA	6,285	1	97			
Kings, CA	5,717	1	98			
San Benito, CA	2,752	1	98			
Tuolumne, CA	2,512	1	99			
Amador, CA	1,650	0	99			
Calaveras, CA	1,453	0	99			
Mariposa, CA	939	0	100			
Inyo, CA	932	0	100			
Mono, CA	634	0	100			

Table 4b. County-Level NOx Emissions (tons/year)

	Emis	Emissions in average tons/yr					
County, State	PM2.5	Pct.	Cumulative %				
Tulare, CA	22,462	19	19				
Los Angeles, CA	16,929	15	34				
Kern, CA	12,303	11	44				
San Bernardino, CA	11,665	10	55				
Contra Costa, CA	5,928	5	60				
Santa Clara, CA	4,996	4	64				
Alameda, CA	4,755	4	68				
Fresno, CA	4,465	4	72				
Sacramento, CA	3,779	3	75				
Mariposa, CA	3,430	3	78				
Tuolumne, CA	3,380	3	81				
Monterey, CA	2,800	2	83				
San Joaquin, CA	2,551	2	86				
Stanislaus, CA	2,164	2	87				
Ventura, CA	2,084	2	89				
Madera, CA	1,899	2	91				
San Luis Obispo, CA	1,855	2	92				
Merced, CA	1,666	1	94				
Santa Barbara, CA	1,487	1	95				
Amador, CA	1,258	1	96				
Calaveras, CA	1,242	1	97				
Inyo, CA	922	1	98				
Mono, CA	888	1	99				
Kings, CA	865	1	100				
San Benito, CA	464	0	100				

Table 4c. County-Level PM_{2.5} Emissions (tons/year)

	Emissions in average tons/yr					
County, State	SO ₂	Pct.	Cumulative %			
Los Angeles, CA	7,888	28	28			
Contra Costa, CA	5,516	20	48			
Kern, CA	3,060	11	59			
San Bernardino, CA	1,934	7	66			
Tulare, CA	1,624	6	72			
San Joaquin, CA	1,256	5	77			
Alameda, CA	1,057	4	81			
Santa Clara, CA	747	3	83			
Fresno, CA	657	2	86			
Santa Barbara, CA	544	2	88			
Stanislaus, CA	478	2	89			
Monterey, CA	472	2	91			
Tuolumne, CA	373	1	92			
Sacramento, CA	353	1	94			
Ventura, CA	291	1	95			
San Luis Obispo, CA	273	1	96			
Mariposa, CA	263	1	97			
Madera, CA	217	1	97			
Inyo, CA	199	1	98			
Merced, CA	138	0	99			
Kings, CA	98	0	99			
Calaveras, CA	85	0	99			
Mono, CA	78	0	100			
Amador, CA	72	0	100			
San Benito, CA	24	0	100			

Table 4d. County-Level SO₂ Emissions (tons/year)

	Emissions in average tons/yr					
County, State	VOC	Pct.	Cumulative %			
Los Angeles, CA	117,854	24	24			
Tulare, CA	67,387	14	37			
Kern, CA	47,172	9	47			
San Bernardino, CA	35,543	7	54			
Santa Clara, CA	26,637	5	59			
Sacramento, CA	21,444	4	63			
Alameda, CA	21,260	4	68			
Fresno, CA	20,780	4	72			
Contra Costa, CA	17,536	4	75			
Ventura, CA	13,937	3	78			
San Joaquin, CA	13,696	3	81			
Stanislaus, CA	13,147	3	84			
Monterey, CA	12,784	3	86			
Santa Barbara, CA	10,808	2	88			
Mariposa, CA	10,340	2	90			
Tuolumne, CA	10,301	2	93			
San Luis Obispo, CA	7,699	2	94			
Merced, CA	7,039	1	95			
Madera, CA	5,979	1	97			
Calaveras, CA	4,520	1	98			
Kings, CA	3,418	1	98			
Amador, CA	2,868	1	99			
Mono, CA	2,691	1	99			
San Benito, CA	1,596	0	100			
Inyo, CA	1,505	0	100			

Table 4e. County-Level VOC Emissions (tons/year)

	Emissions in average tons/yr					
County, State	РОМ	Pct.	Cumulative %			
Tulare, CA	16,794	28	28			
Los Angeles, CA	6,953	12	39			
Kern, CA	6,863	11	51			
San Bernardino, CA	3,237	5	56			
Mariposa, CA	2,667	4	60			
Tuolumne, CA	2,514	4	65			
Contra Costa, CA	2,406	4	69			
Sacramento, CA	2,344	4	72			
Fresno, CA	1,986	3	76			
Santa Clara, CA	1,851	3	79			
Monterey, CA	1,621	3	82			
Alameda, CA	1,403	2	84			
Ventura, CA	1,138	2	86			
San Luis Obispo,	1 1 1 9	2	00			
	1,110	2	80			
San Joaquin, CA	1,037	2	<u>مع</u>			
Madera, CA	1,034	2	91			
Stanislaus, CA	970	2	93			
Calaveras, CA	941	2	94			
Amador, CA	852	1	96			
Santa Barbara, CA	721	1	97			
Merced, CA	714	1	98			
Mono, CA	647	1	99			
Kings, CA	206	0	99			
Inyo, CA	201	0	100			
San Benito, CA	179	0	100			

Table 4f. County-Level POM Emissions (tons/year)

	Emissions in average tons/yr					
County, State	PSO ₄ Pct. Cumulative					
Los Angeles, CA	692	24	24			
Contra Costa, CA	354	12	36			
San Bernardino, CA	344	12	47			
Kern, CA	324	11	58			
Tulare, CA	295	10	68			
Alameda, CA	135	5	73			
Santa Clara, CA	115	4	77			
Fresno, CA	95	3	80			
San Joaquin, CA	87	3	83			
Stanislaus, CA	62	2	85			
Sacramento, CA	57	2	87			
Monterey, CA	51	2	89			
Madera, CA	47	2	90			
Tuolumne, CA	47	2	92			
Mariposa, CA	39	1	93			
Ventura, CA	35	1	94			
Amador, CA	30	1	95			
Santa Barbara, CA	29	1	96			
San Luis Obispo, CA	26	1	97			
Inyo, CA	21	1	98			
Merced, CA	18	1	98			
San Benito, CA	14	0	99			
Mono, CA	12	0	99			
Kings, CA	11	0	100			
Calaveras, CA	9	0	100			

Table 4g. County-Level PSO₄ Emissions (tons/year)

	Emissions in average tons/yr				
County, State	PNO ₃	Pct.	Cumulative %		
Kern, CA	65	15	15		
Los Angeles, CA	63	15	30		
Contra Costa, CA	53	12	42		
San Bernardino, CA	48	11	53		
Tulare, CA	39	9	62		
Sacramento, CA	16	4	66		
Santa Clara, CA	16	4	70		
Tuolumne, CA	15	4	73		
Fresno, CA	14	3	76		
Monterey, CA	13	3	79		
Alameda, CA	12	3	82		
Amador, CA	10	2	85		
San Joaquin, CA	9	2	87		
Mariposa, CA	8	2	89		
Stanislaus, CA	7	2	90		
Ventura, CA	6	1	92		
Madera, CA	6	1	93		
Calaveras, CA	6	1	95		
Merced, CA	5	1	96		
Santa Barbara, CA	5	1	97		
San Luis Obispo, CA	5	1	98		
Inyo, CA	3	1	99		
Mono, CA	2	0	99		
Kings, CA	2	0	100		
San Benito, CA	1	0	100		

Table 4h. County-Level PNO₃ Emissions (tons/year)

	Emissions in average tons/yr				
County, State	Crustal	Pct.	Cumulative %		
San Bernardino, CA	2,765	20	20		
Los Angeles, CA	1,942	14	34		
Kern, CA	1,204	9	43		
Santa Clara, CA	1,031	7	50		
Alameda, CA	971	7	57		
Contra Costa, CA	941	7	64		
Fresno, CA	764	6	69		
Tulare, CA	668	5	74		
San Joaquin, CA	456	3	77		
Sacramento, CA	357	3	80		
Stanislaus, CA	348	3	83		
Merced, CA	321	2	85		
Monterey, CA	318	2	87		
Inyo, CA	303	2	89		
Kings, CA	262	2	91		
Santa Barbara, CA	222	2	93		
Ventura, CA	218	2	94		
San Luis Obispo, CA	192	1	96		
Madera, CA	186	1	97		
Tuolumne, CA	139	1	98		
San Benito, CA	76	1	99		
Amador, CA	59	0	99		
Mariposa, CA	52	0	99		
Mono, CA	36	0	100		
Calaveras, CA	34	0	100		
San Bernardino, CA	2,765	20	20		

Table 4i. County-Level Crustal Emissions (tons/year)

	Emissions in average tons/yr					
County, State	Residual	Pct.	Cumulative %			
Los Angeles, CA	4,310	18	18			
San Bernardino, CA	3,760	16	34			
Tulare, CA	2,488	11	45			
Kern, CA	1,987	8	54			
Alameda, CA	1,603	7	60			
Santa Clara, CA	1,398	6	66			
Contra Costa, CA	1,381	6	72			
Fresno, CA	985	4	77			
San Joaquin, CA	579	2	79			
Sacramento, CA	565	2	81			
Stanislaus, CA	491	2	84			
Monterey, CA	441	2	85			
Madera, CA	398	2	87			
Tuolumne, CA	349	1	89			
Mariposa, CA	335	1	90			
Merced, CA	328	1	91			
Inyo, CA	325	1	93			
San Luis Obispo, CA	320	1	94			
Ventura, CA	303	1	95			
Santa Barbara, CA	262	1	97			
Kings, CA	244	1	98			
Amador, CA	191	1	98			
San Benito, CA	127	1	99			
Calaveras, CA	126	1	100			
Mono, CA	106	0	100			

Table 4j. County-Level Residual Emissions (tons/year)

Table 3a shows county-level emissions of directly-emitted PM_{2.5} and PM_{2.5} precursors. Counties within the intended San Joaquin Valley nonattainment area are shown in bold, while bordering counties are shown in plain text. Of the twenty-five counties within and bordering the nonattainment area, the five with the highest emissions of directly-emitted PM_{2.5} and PM_{2.5} precursors are Los Angeles and San Bernardino counties to the south of the intended nonattainment area, Tulare and Kern counties which fall within the intended nonattainment area, and Alameda County to the west of San Joaquin Valley. As discussed in Factor 4, San Joaquin Valley is topographically separated from bordering counties by mountain ranges to the west, south and east. Emissions from these bordering counties are therefore are less likely to contribute to monitored violations within the San Joaquin Valley.

In addition to reviewing county-wide emissions of $PM_{2.5}$ and $PM_{2.5}$ precursors in the area of analysis, the EPA also reviewed emissions from major point sources located in the area of analysis. The magnitude and location of these sources can help inform nonattainment boundaries. Table 5 provides facility-level emissions of direct

Bold = counties (whole or partial) within the intended San Joaquin Valley nonattainment area.

PM_{2.5}, components of direct PM_{2.5}, and precursor pollutants (given in tons per year) from major point sources located in the area of analysis for the San Joaquin Valley, CA area. Table 5 also shows the distance from the facility to the San Joaquin Valley nonattainment area DV monitoring site (Madera-City). These major sources may be closer to another violating monitor within the intended San Joaquin Valley nonattainment area.

		Distance	NEI 2011 v1 Emissions - Tons/Year					Year
County, State	Facility Name (Facility ID)	monitor (miles)	NH ₃	NOx	PM _{2.5}	SO_2	VOC	Total
Alameda, CA	Metropolitan Oakland In	131		941	20	97	156	1,215
Amador, CA	SIERRAPINE LTD AMPINE DIVISION	107		83	414	0	263	760
Contra Costa, CA	SHELL MARTINEZ REFINERY	136	0	1,036	832	1,160	1,228	4,256
Contra Costa, CA	CHEVRON PRODUCTS COMPANY	146	128	835	590	367	1,008	2,929
Contra Costa, CA	TESORO REFINING AND MARKETING	134	0	1,023	137	470	587	2,217
Contra Costa, CA	PHILLIPS 66 CARBON PLANT	141		507	13	1,151	0	1,671
Contra Costa, CA	PHILLIPS 66 COMPANY - SAN FRAN	143	55	309	112	411	156	1,044
Kern, CA	CALIFORNIA PORTLAND CEMENT CO.	164		2,204	168	790	6	3,168
Kern, CA	NATIONAL CEMENT CO	164		817	224	13	14	1,067
Kern, CA	CHEVRON USA INC	123		78	274	633	26	1,011
Kern, CA	OCCIDENTAL OF ELK HILLS, INC.	120	8	372	1	9	261	651
Kern, CA	CHEVRON USA INC	112	16	195	138	134	89	571
Kern, CA	AERA ENERGY LLC	111		354	60	20	71	506
Los Angeles, CA	LOS ANGELES INT AIRPORT	227		5,485	95	539	852	6,971
Los Angeles, CA	EXXONMOBIL OIL CORPORATION	234	50	818	322	347	613	2,150
Los Angeles, CA	BP WEST COAST PROD.LLC BP CARSON REF.	239	164	584	312	524	483	2,067
Los Angeles, CA	CHEVRON PRODUCTS CO.	229	48	649	177	379	541	1,794
Los Angeles, CA	TESORO REFINING AND MARKETING CO	241	38	584	153	215	235	1,225
Los Angeles, CA	CONOCOPHILLIPS COMPANY	241	81	583	89	115	241	1,110
Los Angeles, CA	CONOCOPHILLIPS COMPANY	240	1	331	53	287	91	764
Los Angeles, CA	ULTRAMAR INC (NSR USE ONLY)	242	32	275	65	202	179	753
Los Angeles, CA	SCE-VINCENT SUBSTATION	202		604	0	0	0	604
Los Angeles, CA	SCE- ANTELOPE SUBSTATION	185		604	0	0	0	604
Los Angeles, CA	ROBERTSONS READY MIX / PALMDAL	201			508		14	522
Sacramento, CA	Sacramento Internationa	147		586	11	66	90	752
Sacramento, CA	KIEFER LANDFILL	125	376	69	14	16	136	610
San Bernardino, CA	MITSUBISHI CEMENT	253		1,920	421	321	39	2,701
San Bernardino, CA	CEMEX - BLACK MOUNTAIN QUARRY	230	10	2,008	189	164	30	2,400
San Bernardino, CA	SEARLES VALLEY MINERAL	169	5	1,865	178	160	33	2,241
San Bernardino, CA	US ARMY NATIONAL TRAINING CTR.	220	0	1,272	213	30	128	1,643
San Bernardino, CA	PG&E TOPOCK COMPRESSOR STATION	347		1,204	14	0	125	1,344
San Bernardino, CA	ACE COGENERATION CO	169	12	620	37	479	4	1,152
San Bernardino, CA	TXI RIVERSIDE CEMENT COMPANY	222		870	221	14	15	1,120
San Bernardino, CA	MAGTFTC MCAGCC TWENTYNINE PALMS	292	1	719	45	68	222	1,055

 Table 5. NEI 2011 v1 Major Point Source Emissions (tons/year)

		Distance	NEI 2011 v1 Emissions - Tons/Year					
County, State	Facility Name (Facility ID)	monitor (miles)	NH ₃	NOx	PM _{2.5}	SO_2	voc	Total
San Bernardino, CA	TETRA TECHNOLOGIES, INC. – AMB	320	0	20	836	1	2	859
San Bernardino, CA	ONTARIO INT. AIRPORT	242		550	10	57	80	697
San Joaquin, CA	PILKINGTON NORTH AMERICA, INC	91		632	82	69	1	783
San Joaquin, CA	OWENS-BROCKWAY GLASS CONTAINER	96		404	21	226	0	652
Santa Clara, CA	LEHIGH SOUTHWEST CEMENT COMPAN	116		1,755	17	492	71	2,335
Santa Clara, CA	Norman Y. Mineta San Jo	109		575	12	65	96	748
Stanislaus, CA	GROVER LANDSCAPE SERVICES	83	10	1	1	0	624	636
Stanislaus, CA	GALLO GLASS COMPANY	70		195	49	284	3	532

Bold = counties (whole or partial) within the intended San Joaquin Valley nonattainment area.

Figure 5 shows the major point source emissions (from the 2011 NEI in tons per year) in the area of analysis for San Joaquin Valley, CA and the relative distances of these sources from the violating monitoring location(s), as depicted by red dots. The actual distance from the major point sources to the DV monitoring location is presented in Table 5). The distance from the violating monitoring location is particularly important for directly emitted $PM_{2.5}$ on ambient $PM_{2.5}$ diminishes more than that of gaseous precursors as a function of distance.⁴⁴

As listed in Table 5 and shown in Figure 5, there are 42 major point sources located in the area of analysis. Major point sources located in air basins outside the San Joaquin Valley Air Basin (consisting of San Joaquin, Stanislaus, Merced, Madera, Fresno, Kings, and Tulare counties, as well as the western portion of Kern County) are not expected to impact air quality within the San Joaquin Valley because of the topography of the air basin (see Factors 3 and 4). This includes sources located in the eastern portion of Kern County, and in San Bernardino, Los Angeles, Santa Clara, Alameda, Contra Costa, Sacramento and Amador counties.

Ventura, Santa Barbara, San Luis Obispo, Monterey, San Benito, Calaveras, Tuolumne, Mariposa, Mono and Inyo counties have no major point sources.

⁴⁴ Baker, K. R. and K. M. Foley. *A nonlinear regression model estimating single source concentrations of primary and secondarily formed PM*_{2.5}. Atmospheric Environment. 45 (2011) 3758-3767.

Figure 5. Major Point Source Emissions in the Area of Analysis for the San Joaquin Valley, CA Area.

In summary, the EPA's analysis of the geographic locations of the relevant pollutants showed that point sources located outside the San Joaquin Valley are typically over 100 miles from the intended nonattainment area's DV monitor and are located outside of the airshed for this area and thus are less likely to contribute to the violations in the San Joaquin Valley.

Population density and degree of urbanization

In this part of the factor analysis, the EPA evaluated the population and vehicle use characteristics and trends of the area as indicators of the probable location and magnitude of non-point source emissions. Rapid population growth in a county on the urban perimeter signifies increasing integration with the core urban area, and indicates that it may be appropriate to include the county associated with area source and mobile source emissions as part of the nonattainment area. Table 6 shows the 2000 and 2010 population, population growth since 2000, and population density for each county in the area.
			% Change		Population		
	Population	Population	from	Land Area	Density (per		Cumulative
County, State	2000	2010	2000	(Sq. Miles)	Sq. Mile)	%	%
Los Angeles, CA	9,519,338	9,825,761	3%	4,061	2,420	41	41
San Bernardino, CA	1,709,434	2,041,626	19%	20,052	102	9	50
Santa Clara, CA	1,682,585	1,786,540	6%	1,291	1,384	8	57
Alameda, CA	1,443,741	1,513,586	5%	738	2,052	6	64
Sacramento, CA	1,223,499	1,422,316	16%	966	1,473	6	70
Contra Costa, CA	948,816	1,052,887	11%	720	1,462	4	74
Fresno, CA	799,407	932,696	17%	5,963	156	4	78
Kern, CA	661,645	841,687	27%	8,141	103	4	82
Ventura, CA	753,197	825,378	10%	1,845	447	3	85
San Joaquin, CA	563,598	687,516	22%	1,399	491	3	88
Stanislaus, CA	446,997	515,326	15%	1,494	345	2	90
Tulare, CA	368,021	443,218	20%	4,824	92	2	92
Santa Barbara, CA	399,347	424,403	6%	2,737	155	2	94
Monterey, CA	401,762	416,335	4%	3,322	125	2	95
San Luis Obispo, CA	246,681	269,954	9%	3,304	82	1	97
Merced, CA	210,554	256,877	22%	1,929	133	1	98
Kings, CA	129,461	152,301	18%	1,391	109	1	98
Madera, CA	123,109	151,177	23%	2,136	71	1	99
San Benito, CA	53,234	55,583	4%	1,389	40	0	99
Tuolumne, CA	54,501	55,162	1%	2,235	25	0	99
Calaveras, CA	40,554	45,488	12%	1,020	45	0	100
Amador, CA	35,100	37,829	8%	593	64	0	100
Inyo, CA	17,945	18,531	3%	10,203	2	0	100
Mariposa, CA	17,130	18,254	7%	1,451	13	0	100
Mono, CA	12,853	14,268	11%	3,044	5	0	100
Total	21,862,509	23,804,699					

Table 6. Population Growth and Population Density.

Source: U.S. Census Bureau population estimates for 2000 and 2010

Bold = counties (whole or partial) within the intended San Joaquin Valley nonattainment area.

As with point sources discussed above, population in adjacent air basins is not expected to impact air quality in the San Joaquin Valley due to the topography and meteorology of the air basin (see Factors 3 and 4). As Table 6 and Figure 6 show, there is a high degree of urbanization in the San Joaquin Valley Air Basin, as there is in a number of counties adjacent to the air basin. Population growth within the eight counties included in the intended San Joaquin Valley nonattainment area has been around twenty percent from 2000 to 2010. While Figure 6 gives the appearance that there are populations immediately adjacent to the air basin, given the topography of the air basin, populations within and outside the air basin are separated by large distances and mountain ranges and thus are unlikely to reflect as much contribution to violations in the San Joaquin Valley.

Figure 6. 2010 County-Level Population in the Area of Analysis for the San Joaquin Valley, CA Area.

Figure 6a shows a closer view of the northern portion of the area of analysis. Tract-level population data (tracts as defined by the U.S. Census Bureau) show that the population in the EPA's intended nonattainment area is fairly contained within the intended nonattainment area. Amador and Calaveras counties are shown to the northeast of San Joaquin County, shown in the center of the figure. Amador and Calaveras counties would at first appear to be an exception, as if they both had large, contiguous populations with San Joaquin County, however, their populations are small (around 80,000 total for the two counties) and are not as likely to be contributing to violations of the 2012 PM_{2.5}NAAQS in the San Joaquin Valley intended nonattainment area. See traffic discussion below. Otherwise, tract-level population data shown in Figure 6a show a clear pattern of denser population in the central portion of the San Joaquin Valley, along the Highway 99 corridor.

Figure 6a. 2010 Tract-Level Population in the Northern Portion of the Area of Analysis for the San Joaquin Valley, CA Area.

Figure 6b shows similar tract level population data for the central portion of the area of analysis. As in Figure 6a, the trend of population clustered along the Highway 99 corridor continues in this central portion of the San Joaquin Valley.

Figure 6b. 2010 Tract-Level Population in the Central Portion of the Area of Analysis for the San Joaquin Valley, CA Area.

Figure 6c shows similar tract level data as above for the north and central portions of the area of analysis. In the southern portion of San Joaquin Valley, census tracts follow the curvature of the southern portion of the valley. There is a clear lack of population contiguity between population in the valley, centered in the city of Bakersfield in the western (San Joaquin Valley) portion of Kern County and the more sparsely populated areas to the east, west and south. There is also a clear separation between the high density populations of Los Angeles County and the city of Bakersfield. See Factor 4 for topographical reasons for this separation.

Figure 6c. 2010 Tract-Level Population in the Southern Portion of the Area of Analysis for the San Joaquin Valley, CA Area.

Traffic and Vehicle Miles Travelled

High vehicle miles travelled (VMT) and/or a high number of commuters associated with a county is generally an indicator that the county is an integral part of an urban area. Mobile source emissions of NO_x, VOC, and direct PM may contribute to ambient particulate matter that contributes to monitored violations of the NAAQS in the area. In combination with the population/population density data and the location of main transportation arteries, an assessment of VMT helps identify the probable location of nonpoint source emissions that contribute to violations in the area. Comparatively high VMT in a county outside of the CBSA or CSA signifies integration with the core urban area contained within the CSA or CBSA, and indicates that a county with the high VMT may be appropriate to include in the nonattainment area because emissions from mobile sources in that county contribute to violations in the area. Table 7 shows 2011 VMT while Figure 7 overlays 2011 countylevel VMT with a map of the transportation arteries. VMT information presented is from the Federal Highway Administration.

County, State	Total 2011 VMT	Percent	Cumulative %
Los Angeles, CA	76,095,823,872	38	38
San Bernardino, CA	20,423,645,232	10	48
Santa Clara, CA	14,809,943,116	7	56
Alameda, CA	12,771,269,214	6	62
Sacramento, CA	10,784,648,568	5	68
Contra Costa, CA	8,414,684,420	4	72
Kern, CA	8,288,439,996	4	76
Fresno, CA	7,576,060,237	4	80
Ventura, CA	6,744,473,079	3	83
San Joaquin, CA	6,435,426,334	3	87
Monterey, CA	3,981,084,587	2	89
Stanislaus, CA	3,718,885,802	2	90
Tulare, CA	3,478,307,796	2	92
Santa Barbara, CA	3,441,832,537	2	94
San Luis Obispo, CA	2,656,494,099	1	95
Merced, CA	2,612,728,520	1	97
Madera, CA	1,821,119,189	1	97
Kings, CA	1,318,583,674	1	98
Inyo, CA	604,078,683	0	98
Tuolumne, CA	602,697,848	0	99
Amador, CA	593,212,816	0	99
San Benito, CA	569,721,719	0	99
Mono, CA	502,386,471	0	100
Calaveras, CA	501,779,972	0	100
Mariposa, CA	382,208,742	0	100
Total	199,129,536,523		

Table 7. 2011 VMT for the San Joaquin Valley, CA Area.

http://www.census.gov/hhes/commuting/data/commuting.html

Bold = counties (whole or partial) within the intended San Joaquin Valley nonattainment area.

Table 7 lists all the counties in the area of analysis, ranked by the level of VMT in each county. The data shown in the table can be characterized as having three regimes or groups of VMT levels, each separated from the next by a factor of 10. With under one million VMT each, the counties listed at the bottom of the table (starting with Inyo County down to Mariposa County) can be discounted for discussion of this table. Together their VMT accounts for less than 2% of the VMT for the entire area of analysis.

The group of counties with a mid-range of VMT (Contra Costa County to Kings County, as listed in Table 7) each have between one and ten million VMT. Kings County has 1.3 million VMT and Contra Costa County has 8.4 million VMT. Of these thirteen counties, seven (Fresno, San Joaquin, Stanislaus, Tulare, Merced, Madera and Kings) are entirely within the intended nonattainment area. Kern County has 8.2 million VMT, the second highest of this middle group of counties. The western portion of Kern County has the bulk of the VMT for the county and is the portion that is included in the intended nonattainment area.

The remaining counties in this mid-range (Contra Costa, Ventura, Monterey, Santa Barbara and San Luis Obispo), as well as the counties listed with the highest VMT (Los Angeles, San Bernardino, Santa Clara, Alameda and Sacramento), are all in separate air basins and are not as likely to contribute to violations of the 2012 PM2.5 NAAQS in the San Joaquin Valley Air Basin. Los Angeles County is the highest ranked county in Table 7 and is adjacent, to the south, of Kern County, the western portion of which includes the city of Bakersfield. According to Census Bureau statistics for commuter flow between counties for 2006-2010, Los Angeles County has 4.4 million commuters. See: http://www.census.gov/population/metro/data/other.html. Of those, a mere 728 commute to a workplace anywhere in Kern County. These 728 commuters are also a small group when compared to the total number of commuters in Kern County (304,506 commuters).

To the north of the EPA's intended San Joaquin Valley nonattainment area, Sacramento County has 9,767 commuters, or about 1.6% of Sacramento's commuters, who commute to workplaces in counties in the intended area. Other adjacent counties in the area of analysis have significantly fewer commuters traveling to counties in the intended nonattainment area, for example: Alameda County (990 commuters), Contra Costa (567 commuters). Regarding the counties with the lowest VMT in Table 7, only a handful of commuters commute to workplace destinations within the San Joaquin Valley. Inyo County, for example has a total of seven commuters working in the air basin. Of Amador County's 13,776 commuters, 588 travel to work in the air basin. Taken together, all commuters from outside the intended nonattainment area are a small fraction of the nearly 1.5 million commuters whose commute originate within counties in the intended nonattainment area.

While individuals commuting into the San Joaquin Valley air basin might not result in contribution to violations of the 2012 PM_{2.5} NAAQS inside the air basin, there is a great deal of commerce in the form of goods movement from the ports of Los Angeles and Long Beach that is trucked through the San Joaquin Valley Air Basin and no doubt contributes to such violations. However, these emissions occur both in the upstream (in terms of the flow of goods movement) greater Los Angeles area, that is, the South Coast Air Basin, which the EPA intends to designate nonattainment as the Los Angeles-South Coast Air Basin nonattainment area, as well as in the San Joaquin Valley Air Basin. These two air basins are separated by a mountain range and a high-elevation mountain pass. To the extent these emissions are occurring as a result of transportation routes that go through the San Joaquin Valley, those routes will be within the boundaries of the designated nonattainment area and the question of what controls may or may not be appropriate for such emissions will be evaluated in the context of the subsequent development of the attainment plan for the area.

In summary for "Factor 2: Emissions and Emissions-related Data," the EPA's intended nonattainment area for the 2012 PM_{2.5} NAAQS includes the counties and the Kern-County partial-county area that violate and contribute to nearby violations in those counties. The EPA's intended nonattainment area comprises the entirety of the San Joaquin Valley Air Basin. This air basin contains point and non-point sources of PM_{2.5} and precursor emissions, and the related population and VMT associated with other emissions activity that all contribute to the monitored violations in the intended area. Population growth within the air basin was around twenty percent from 2000 to 2010. The EPA analyzed the data relevant to counties in the area of analysis that are adjacent to the intended nonattainment area and has determined that there is less likely to be contribution from emissions in those adjacent areas for a number of reasons, but most particularly because they are occurring in separate airsheds and thus are less likely to contribute to violations in the San Joaquin Valley airshed. In addition, EPA is designating several of the adjacent counties as a separate nonattainment area due to their violations or contribution to other nearby violating areas in a separate airshed. Populations in adjacent areas are not extensions of urban areas within the intended nonattainment area. Although Los Angeles to the south and Sacramento to the north of the intended nonattainment area represent large urbanized areas near the San Joaquin Valley, neither area contributes significant commuter traffic to counties within the San Joaquin Valley. EPA is designating the South Coast Air Basin (consisting of Orange County and portions Los Angeles, Riverside, and San Bernardino counties) as a separate nonattainment area based on violations in that airshed. The unique meteorology and topography discussed in Factors 3 and 4 below describes why it is less likely that the

emissions from the Sacramento area are contributing to the violations throughout the San Joaquin Valley Air Basin.

Factor 3: Meteorology

The EPA evaluated available meteorological data to determine how meteorological conditions, including, but not limited to, weather, transport patterns, and stagnation conditions, could affect the fate and transport of directly emitted particulate matter and precursor emissions from sources in the area of analysis. The EPA used two primary tools for this assessment: wind roses and kernel density estimation (KDE). When considered in combination with area PM_{2.5} composition and county-level and facility emissions source location information, wind roses and KDE can help to identify nearby areas contributing to violations at violating monitoring sites.

Wind roses are graphic illustrations of the frequency of wind direction and wind speed. Wind direction can indicate the direction from which contributing emissions are transported; wind speed can indicate the force of the wind and thus the distance from which those emissions are transported. The EPA constructed wind roses from hourly observations of wind direction and wind speed using 2009-2012 data from National Weather Service locations archived at the National Climate Data Center.⁴⁵ When developing these wind roses, the EPA also used wind observations collected at meteorological sampling stations collocated at air quality monitoring sites, where these data were available. Figure 8 shows wind roses that the EPA generated from data relevant in the northern (top) and southern (bottom) San Joaquin Valley area.

As shown in Figure 8, wind flow in the San Joaquin Valley most frequently comes from the northwest, at low wind speeds between 2-6 meters per second. This is consistent with the geographic orientation of the San Joaquin Valley and its relationship to the Golden Gate (at the mouth of San Francisco Bay), the key route for air flow between the Pacific Ocean and the Central Valley of California. These data suggest that potential emission sources in the northwest upwind direction should be considered for analysis.

⁴⁵ *ftp.ncdc.noaa.gov/pub/data/noaa* or

http://gis.ncdc.noaa.gov/map/viewer/#app=cdo&cfg=cdo&theme=hourly&layers=1&node=gis Quality assurance of the National Weather Service data is described here: *http://www1.ncdc.noaa.gov/pub/data/inventories/ish-qc.pdf*.

Figure 8. Wind Roses in the Area of Analysis for the (a) Northern and (b) Southern San Joaquin Valley. (a) Northern San Joaquin Valley

(b) Southern San Joaquin Valley

Page 154 of 175

In addition to wind roses, the EPA also generated kernel density estimation (KDE) plots to represent HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) backward trajectory frequency at violating monitoring sites.^{46,47} These KDEs are graphical statistical estimations to determine the density of trajectory endpoints at a particular location represented by a grid cell. The EPA used KDEs to characterize and analyze the collection of individual HYSPLIT backward trajectories.⁴⁸ Higher density values, indicated by darker blue colors, indicate a greater frequency of observed trajectory endpoints within a particular grid cell. Figure 9 shows a HYSPLIT KDE plot for the San Joaquin Valley area summarized by calendar quarter for the 2010-2012 period. The HYSPLIT KDE is weighted in the west-northwesterly direction, indicating a greater frequency of trajectories passing over grid cells to the west and northwest. Here we show three representative stations in the North (Modesto-14th Street Station), Central (Fresno-Garland Station) and Southern (Bakersfield-Planz Station) San Joaquin Valley.

For the Modesto-14th Street station, representing the northern San Joaquin Valley, the HYPSPLIT KDE plot suggest greatest potential contribution of emissions from Modesto and the regions immediately to the northwest, Tracey and Stockton in all quarters, with additional contributions from Concord and Livermore in the Bay Area in quarters 2 and 3 (Figure 9a). For the Fresno-Garland station, representing the central San Joaquin Valley, the HYPSPLIT KDE plots suggest greatest potential contribution of emissions from Fresno and Madera in all quarters, with additional contributions from regions to the northwest extending to Merced and Modesto in quarters 2 and 3 (Figure 9b). For the Bakersfield-Planz station, representing the southern San Joaquin Valley, the HYPSPLIT KDE plot suggest greatest potential contribution of emissions from Bakersfield and regions just to the northwest for all quarters (Figure 9c).

In summary, for the violating San Joaquin Valley monitors, the HYPSPLIT KDE plots and wind roses suggest greatest potential contribution of emissions is from the regions immediately to the west-northwest of the monitors. While there is interchange of air between San Joaquin Valley and the Sacramento Valley to the north and the San Francisco Bay Area to the northwest, San Joaquin Valley's unique flow patterns make it meteorologically distinct from those areas. While there is no topographic barrier between the San Joaquin Valley and the Sacramento Valley to the north, and at times there can be transport between them, generally the air flow from the Pacific Ocean through the Golden Gate toward the east tends to bifurcate where the two valleys meet, providing some degree of separation much of the time.

⁴⁶ In some past initial area designations efforts, EPA has used HYSPLIT backward trajectories to assist in determining nonattainment area boundaries. A HYSPLIT backward trajectory is usually depicted on a standard map as a single line, representing the centerline of an air parcel's motion, extending in two dimensional (x,y) space from a starting point and regressing backward in time to a point of origin. Backward trajectories may be an appropriate tool to assist in determining an air parcel's point of origin on a day in which a short-term standard, such as an 8-hour standard or a 24-hour standard, was exceeded. However, for an annual standard, such as the 2012 annual PM_{2.5} NAAQS, every trajectory on every day is important. Plotting a mass of individual daily (e.g., 365 individual back trajectories), or more frequent, HYSPLIT trajectories may not be helpful as this process is likely to result in depicting air parcels originating in all directions from the violating monitoring site.

 ⁴⁷ HYSPLIT - Hybrid Single Particle Lagrangian Integrated Trajectory Model, *http://www.arl.noaa.gov/HYSPLIT_info.php* ⁴⁸ The KDEs graphically represent the aggregate of HYSPLIT backward trajectories for the years 2010-2012, run every third day (beginning on the first day of monitoring), four times each day, and ending at four endpoint heights.

9a) HYSPLIT Kernel Density Estimation Plots for the northern San Joaquin Valley, Modesto-14th Street Station (AQS # 060990005)

9a) HYSPLIT Kernel Density Estimation Plots for the northern San Joaquin Valley, Modesto-14th Street Station (AQS # 060990005) (continued)

9b) HYSPLIT Kernel Density Estimation Plots for the Central San Joaquin Valley, Fresno-Garland Station (AQS # 060190011)

9b) HYSPLIT Kernel Density Estimation Plots for the Central San Joaquin Valley, Fresno-Garland Station (AQS # 060190011) (continued)

9c) HYSPLIT Kernel Density Estimation Plots for the southern San Joaquin Valley, Bakersfield-Planz Station (AQS # 060290016)

9c) HYSPLIT Kernel Density Estimation Plots for the southern San Joaquin Valley, Bakersfield-Planz Station (AQS # 060290016) (continued)

Page 161 of 175

Factor 4: Geography/topography

To evaluate the geography/topography factor, the EPA assessed physical features of the area of analysis that might define the airshed and thus affect the formation and distribution of $PM_{2.5}$ concentrations over the area.

The San Joaquin Valley is the southern half of the large, flat Central Valley of California, extending from the Sacramento-San Joaquin Delta in the north to the Tehachapi Mountains in the south, and from the various California coastal ranges (from the Diablo in the north to the Santa Ynez in the south) in the west to the Sierra Nevada in the east (see Figure 10).

Except to the north, the San Joaquin Valley is surrounded on all sides by tall mountains. These ranges tend to restrict air flow and ventilation. Mountains also run through Kern County, separating it into an eastern and western portion. As shown in Figure 10, this topography makes it unlikely that the small emissions in the eastern portion of the county contribute to the western part that has violating monitors and is included in the nonattainment area. While there is no topographic barrier between the San Joaquin Valley and the Sacramento Valley to the north, air masses tend to bifurcate where the two valleys meet, providing a degree of separation much of the time. Additionally, periods of high PM_{2.5} concentrations in the San Joaquin Valley are often associated with stagnation and low wind speeds, limiting the influence of air masses outside of the proposed boundary.

The San Joaquin Valley has long suffered from some of the United States' worst air pollution. This pollution, exacerbated by stagnant weather, comes mainly from diesel-and gasoline-fueled vehicles, residential wood burning, and agricultural operations such as dairies and field-tilling that occur widely throughout the counties in the intended nonattainment area. Consideration of this factor supports the intended nonattainment boundary for the San Joaquin Valley.

Figure 10. Topographical Map of San Joaquin Valley. County and nonattainment area for the PM_{2.5} NAAQS boundaries are shown.

Factor 5: Jurisdictional boundaries

In defining the boundaries of the intended San Joaquin Valley nonattainment area, the EPA considered existing jurisdictional boundaries, which can provide easily identifiable and recognized boundaries for purposes of implementing the NAAQS. Existing jurisdictional boundaries often signify the state, local, or tribal governmental organization with the necessary legal authority for carrying out air quality planning and enforcement functions for the intended area. Examples of such jurisdictional boundaries include existing/prior nonattainment area boundaries for particulate matter, county lines, air district boundaries, township boundaries, areas covered by a metropolitan planning organization, state lines, and Reservation boundaries, if applicable. Where existing jurisdictional boundaries were not adequate or appropriate to describe the nonattainment area, The EPA considered other clearly defined and permanent landmarks or geographic coordinates for purposes of identifying the boundaries of the intended designated areas.

The San Joaquin Valley area has previously established nonattainment boundaries associated with both the 1997 annual and 2006 24-hour PM_{2.5} NAAQS. The boundary for the nonattainment area for the 1997 annual PM_{2.5} NAAQS and the 2006 24-hour PM_{2.5} NAAQS was the same and included the entire counties of Fresno, Kings, Madera, Merced, San Joaquin, Stanislaus and Tulare and a portion of Kern County. The state has recommended the same boundary for the intended 2012 annual PM_{2.5} NAAQS.

The intended San Joaquin Valley area includes the Fresno-Madera combined statistical area (CSA), and the entireties of the Stockton, Modesto, Merced, Hanford-Corcoran, and Visalia-Porterville metropolitan statistical areas (MSA). The entirety of Kern County forms the Bakersfield-Delano MSA; however, only the western portion is being included as part of the intended San Joaquin Valley area. The intended boundary for the San Joaquin Valley as the same as the jurisdictional boundary for San Joaquin Valley Air Pollution Control District and the San Joaquin Valley Air Basin.

The boundary between western and eastern Kern County is a generally north-south line bisecting the county along the Sierra Nevada mountain range. The eastern portion of Kern County is under the jurisdiction of the Kern County Air Pollution Control District. It contains part of the Sierra Nevada mountain range and lands east of the Sierras, within the Mojave Desert Air Basin. The eastern portion of Kern County is less likely to be contributing to violating monitors in the San Joaquin Valley Air Basin due to the lower population and VMT discussed in Factor 2, combined with the separation between the airsheds due to the mountain range discussed in Factor 4.

San Joaquin Valley also includes Indian country of the following tribes: Big Sandy Rancheria of Western Mono Indians, Cold Springs Rancheria of Mono Indians of California, Northfork Rancheria of Mono Indians of California, Picayune Rancheria of Chuckchansi Indians of California, Santa Rosa Indian Community of the Santa Rosa Rancheria, Table Mountain Rancheria of California, and Tule River Indian Tribe of the Tule River Reservation. Indian country within the nonattainment areas are shown in Figure 1. As defined at 18 U.S.C. 1151, "Indian country" refers to: "(a) all land within the limits of any Indian reservation under the jurisdiction of the United States Government, notwithstanding the issuance of any patent, and, including rights-of-way running through the reservation, (b) all dependent Indian communities within the borders of the United States whether within the original or subsequently acquired territory thereof, and whether within or without the limits of a state, and (c) all Indian allotments, the Indian titles to which have not been extinguished, including rightsof-way running through the same." The EPA recognizes the sovereignty of tribal governments, and has attempted to take the desires of the tribes into account in establishing appropriate nonattainment area boundaries. At this time, we have not received recommendations from these tribes.

Figure 11. EPA's Intended Nonattainment Boundaries for the San Joaquin Valley Area and Nearby Tribes.

Conclusion for San Joaquin Valley Area

Based on the assessment of factors described above, both individually and in combination, the EPA has preliminarily concluded that the following counties or portions of counties should be included as part of the San Joaquin Valley nonattainment area because they are either violating the 2012 annual $PM_{2.5}$ NAAQS or contributing to a violation in a nearby area: San Joaquin, Stanislaus, Merced, Madera, Fresno, Kings, Tulare, and Kern (partial) counties. The EPA concurs with the state's recommendation for this area and notes that this is the same area that is included in the San Joaquin Valley nonattainment area for both the 2006 24-hour and 1997 annual $PM_{2.5}$ NAAQS.

An evaluation of Factor 1 shows that the air quality monitoring sites in San Joaquin, Stanislaus, Merced, Madera, Fresno, Kings, Tulare, and Kern counties indicate violations of the 2012 annual PM_{2.5} NAAQS based on the 2013 DVs; therefore these counties or portions of counties are included in the nonattainment area. Factor 2 shows that Tulare and Kern counties have among the highest emissions of directly emitted PM_{2.5} and/or PM_{2.5} precursors in the area, population growth from 2000 to 2010 was around twenty percent for all counties in the

intended nonattainment area, and there is not significant commuting between Sacramento and San Joaquin Valley. Factor 2 also shows that all counties in the intended nonattainment area contribute to the particulate matter concentrations which result in violations of the 2012 annual PM_{2.5} NAAQS through emissions from point sources, non-point sources (e.g. area sources), and mobile sources. Factor 3 suggests that the greatest potential contribution of emissions is from the regions immediately to the west-northwest of the monitors. As discussed in Factors 3 and 4, the San Joaquin Valley is surrounded on all sides by tall mountains, except to the north where generally the air flow from the Pacific Ocean through the Golden Gate toward the east tends to bifurcate where the two valleys meet, providing some degree of separation between the San Joaquin Valley and the Sacramento Valley much of the time. Finally, an assessment of Factor 5 further supports the intended San Joaquin Valley nonattainment area due to previous nonattainment boundary designations and local air district jurisdiction.

Only a portion of Kern County is included in the intended San Joaquin Valley nonattainment area because of jurisdictional boundaries (Factor 5), and because the sources in the eastern portion of Kern are less likely to be contributing because they are relatively small and there is topographic separation between the air basins (Factors 2 and 4). The main factors that the EPA considered when determining the appropriateness of the intended San Joaquin Valley nonattainment area were Air Quality Data (Factor 1), Meteorology (Factor 3), Geography/Topography (Factor 4), and Jurisdiction (Factor 5).

Also, the EPA intends to include the areas of Indian country of the following tribes as part of the San Joaquin Valley nonattainment area for the 2012 annual PM_{2.5} NAAQS: Big Sandy Rancheria of Western Mono Indians, Cold Springs Rancheria of Mono Indians of California, Northfork Rancheria of Mono Indians of California, Picayune Rancheria of Chuckchansi Indians of California, Santa Rosa Indian Community of the Santa Rosa Rancheria, Table Mountain Rancheria of California, and Tule River Indian Tribe of the Tule River Reservation.

3.5 Area Background and Overview – Pechanga Band of Luiseno Mission Indians of the Pechanga **Reservation (Pechanga)**

Figure 1 is a map of the EPA's intended unclassifiable boundary for the Pechanga area. The map shows the location and design values of ambient air quality monitoring sites, county and existing 1997 annual and 2006 24-hour PM_{2.5} NAAQS nonattainment boundaries. The EPA's area of analysis considered in this section includes Pechanga as well as all adjacent counties (Riverside and San Diego counties). See Figure 1a below.

For purposes of the 1997 annual PM_{2.5} NAAQS and for purposes of the 2006 24-hour PM_{2.5} NAAQS, the Pechanga area was designated nonattainment as part of the larger Los Angeles-South Coast Air Basin.

The EPA must designate as nonattainment areas that violate the NAAQS and nearby areas that contribute to the violation in the violating area. In December 2013, Pechanga recommended that their area of Indian country be designated as "unclassifiable" for the 2012 annual PM2.5 NAAQS (letter from Mark Macarro, Tribal Chairman, Pechanga Band of Luiseño Indians, to Jared Blumenfeld, Regional Administrator, U.S. EPA Region IX, December 17, 2013).

The EPA intends to designate Pechanga as "unclassifiable" for the 2012 annual PM_{2.5} NAAQS. The closest monitors are not violating but other monitors in adjacent counties indicate the potential for violation. As will be discussed more in Factor 2 and elsewhere in this document, due to the low level of emissions the EPA does not expect sources within Pechanga's boundaries to be contributing to violations at currently violating monitors. For these reasons, the EPA cannot determine based on available information whether the area is meeting or not meeting the NAAQS. As shown in Figure 1a, the EPA evaluated data in Pechanga and each county located near Pechanga based on the five factors and other relevant information. The following sections describe this five factor analysis process. While the factors are presented individually, they are not independent. The five factor analysis process carefully considers their interconnections and the dependence of each factor on one or more of the others.

Factor 1: Air Quality Data

All data collected during the year are important when determining contributions to an annual standard such as the 2012 annual $PM_{2.5}$ NAAQS. Compliance with an annual NAAQS is dependent upon monitor readings throughout the year, including days with monitored ambient concentrations below the level of the NAAQS. For the 2012 annual $PM_{2.5}$ NAAQS, the annual mean is calculated as the mean of quarterly means. A high quarter can drive the mean for an entire year, which, in turn, can drive an elevated 3-year DV. Although all data are important, seasonal or episodic emissions can provide insight as to relative contributors to measured $PM_{2.5}$ concentrations. For these reasons, for the Factor 1 air quality analysis, the EPA first assessed and characterized

air quality at, and in the proximity of, the monitoring site at Pechanga, by evaluating spatial extent of measured concentrations at monitors in the area of analysis.

<u>PM_{2.5} Design Values and Total Mass Measurements</u> - The EPA examined ambient PM_{2.5} air quality monitoring data represented by the DVs at the monitoring sites in the area of analysis. The EPA calculated DVs based on air quality data for the most recent 3 consecutive calendar years of quality-assured, certified air quality data from suitable FEM/FRM/ARM monitoring sites in the EPA's Air Quality System (AQS). For this designations analysis, the EPA used data for the 2011-2013 period (i.e., the 2013 design value), which are the most recent years with fully-certified air quality data. A monitor's DV is the metric or statistic that indicates whether that monitor attains a specified air quality standard. The 2012 annual PM_{2.5} NAAQS is met at a monitoring site when the 3-year average annual mean concentration is 12.0 micrograms per cubic meter (μ g/m³) or less (e.g., 12.1 μ g/m³ or greater is a violation). A DV is only valid if minimum data completeness criteria are met or when other regulatory data processing provisions are satisfied (See 40 CFR part 50 Appendix N). Table 2 identifies the current design values (i.e., the 2013 DV) and the most recent two design values based on all monitoring sites in the area of analysis for the Pechanga intended unclassifiable area, as well as nearby Orange County.⁴⁹ Where a county has more than one monitoring location, the county design value is indicated in red type.

⁴⁹ In certain circumstances, one or more monitoring locations within a monitoring network may not meet the network technical requirements set forth in 40 CFR 58.11(e), which states, "State and local governments must assess data from Class III PM_{2.5} FEM and ARM monitors operated within their network using the performance criteria described in table C-4 to subpart C of part 53 of this chapter, for cases where the data are identified as not of sufficient comparability to a collocated FRM, and the monitoring agency requests that the FEM or ARM data should not be used in comparison to the NAAQS. These assessments are required in the monitoring agency's annual monitoring network plan described in §58.10(b) for cases where the FEM or ARM is identified as not of sufficient comparability to a collocated FRM...."

County State	Monitor Site ID	Site Name	State Rec	09-11 DV	10-12 DV	11-13 DV
Pechanga	060650009	Pechanga	No	8.5 ^b	7.8 ^b	7.7
Orange, CA	060590007 ^f	Anaheim ^f	Yes	11.2	10.8	10.7
Orange, CA	060592022	Mission Viejo	Yes	8.7	8.1	8.2
Riverside, CA	060651003	Riverside	Yes ^e	12	11.4	11.5
Riverside, CA	060652002	Indio	No	7.3	7.2	7.7
Riverside, CA	060655001	Palm Springs	No	6.2	6.2	6.4
Riverside, CA	$060658001^{\rm f}$	Rubidoux ^f	Yes ^e	14.2	13.6	13.4
Riverside, CA	060658005 ^f	Mira Loma-Van Buren ^f	Yes ^e	16.2	15.6	15.1
San Diego, CA	060730001	Chula Vista	No	10.3	9.8	9.9
San Diego, CA	060730003	El Cajon	No	11.8	10.6°	10.6 ^c
San Diego, CA	060731002	Escondido	No	10.7	10.5°	10.7 ^c
San Diego, CA	060731010	San Diego - Downtown	No	11.0	10.8 ^c	10.8°
San Diego, CA	060731016 ^d	San Diego-Kearny Villa Road ^d	No	9.4	8.9	8.7

Table 2. Air Quality Data collected at Regulatory Monitors (all DV levels in µg/m³)^a

^a Where a county has more than one monitoring location, the county design value is indicated in red type. ^b The listed design value is not valid due to completeness issues

^c This design value does not include data from Class III FEM monitors that the EPA has approved as not eligible for comparison to the NAAQS per 40 CFR 58.11(e).

^d In February 2012, the San Diego-Overland (Kearny Mesa) site (060730006) was relocated to the San Diego-Kearny Villa Road site (060731016). The data listed for the San-Diego-Kearny Villa Road site is a combination of data from San Diego-Overland from 2009 through February 17, 2012, and from San-Diego-Kearny Villa Road from February 21, 2012 through 2013.

^e State recommended nonattainment as part of a separate nonattainment area. See the section of this document titled "Area Background and Overview – Los Angeles-South Coast Air Basin" for more information.

^f The EPA is currently reviewing a request to exclude data from Class III FEM monitors for comparison to the NAAQS per 40 CFR 58.11(e) at this site. Should this request be approved, the DV will be recalculated with these data excluded.

In addition to the FEM/FRM/ARM monitoring sites identified in Table 2 whose collected data are used to calculate DVs, additional nonregulatory monitors exist in the area of analysis, identified in Table 2a. The Temecula, Lake Elsinore and Pala sites were established for informational purposes, and the Agua Tibia site is an IMPROVE site established to evaluate visibility impacts on the Agua Tibia Wilderess Area and are not required per 40 CFR 58.20 to be compared to the NAAQS. Although these nonregulatory monitors are not eligible for comparison to the NAAQS, the data collected may help define an appropriate boundary for areas with emissions sources or activities that potentially contribute to ambient fine particle concentrations at the violating monitors.

County, State	Monitor Site ID	Site Name	State Rec NA?	09-11 DV	10-12 DV	11-13 DV
Riverside, CA	060650016	Temecula	Y	-	-	8.5ª
Riverside, CA	060659000	Agua Tibia	N	5.1	4.9	4.7 ^a
Riverside, CA	060659000	Lake Elsinore	Y	11.6	10.9	10.6
San Diego, CA	060731201	Pala	N	-	-	9.4

Table 2a. Air Quality Data Collected at Nonregulatory Monitors (all DV levels in µg/m³)

^a One or more years of data are not complete.

The Figure 1 map, shown previously, identifies the Pechanga intended unclassifiable area, and nearby monitoring sites. As indicated on the map, there is one violating monitoring site located approximately 40 miles to the north of Pechanga in Riverside County near Mira Loma.

Pechanga does not have a violating monitoring site within its boundary and a review of all available data from the surrounding counties, specifically from San Diego County and the Temecula monitoring site in Riverside County, suggest that an unclassifiable designation for Pechanga is appropriate.

Factor 2: Emissions and Emissions-related Data

The EPA evaluated emissions of nitrogen oxides (NO_x), volatile organic compounds (VOC), and other emissions-related data that provide information on areas contributing to violating monitors.

Pechanga's areas of Indian country consist of 6,700 acres, home to approximately 800 tribal members. Pechanga has one large stationary source of PM_{2.5} precursor emissions, the Pechanga Casino and Resort, within the tribal boundaries. Other sources of PM_{2.5} precursor emissions include local traffic to and from the casino/resort, parking structures, golf course, gas station, and a recreational vehicle (RV) park. In its June 23, 2009 letter to the EPA regarding a previous designations effort, for the 2008 ozone NAAQS, Pechanga provided emission inventories for stationary sources, area sources, and on-road mobile sources. Pechanga estimated the stationary source emissions of NO_x to be 0.012 tons per day and VOC to be 0.0015 tons per day in 2007. Actual emissions from the Pechanga Casino and Resort (a current Clean Air Act Title V major source) reported to the EPA were 6.5 tons per year of NO_x in 2010 and less than 1 ton per year of VOC in 2010. See letter from Syndi Smallwood to Deborah Jordan, November 4, 2011. In contrast, emissions from the adjacent Los Angeles-South Coast nonattainment area are over 240,000 tons per year of NO_x and over 200,000 tons per year of VOC with a population of over 17 million people. Emissions from the adjacent San Diego County are over 42,000 tons per year of NO_x and over 60,000 tons per year of VOC with a population of over 3 million people. See area analysis for the Los Angeles-South Coast, CA intended nonattainment area for further information. The relative amount of emissions in the Los Angeles-South Coast nonattainment area compared to Pechanga's emissions suggests that emission sources within Pechanga's boundaries are likely not contributing to exceedances of 2012 annual PM_{2.5} NAAQS at monitoring sites located in the adjacent Los Angeles-South Coast nonattainment area.

Factor 3: Meteorology

The EPA evaluated available meteorological data to determine how meteorological conditions, including, but not limited to, weather, transport patterns, and stagnation conditions, could affect the fate and transport of directly emitted particulate matter and precursor emissions from sources in the area of analysis. The EPA used one primary tool for this assessment: wind roses. When considered in combination with area PM_{2.5} composition

and county-level and facility emissions source location information, wind roses can help to identify nearby areas contributing to violations at violating monitoring sites.

Wind roses are graphic illustrations of the frequency of wind direction and wind speed. Wind direction can indicate the direction from which contributing emissions are transported; wind speed can indicate the force of the wind and thus the distance from which those emissions are transported. The EPA constructed wind roses from hourly observations of wind direction and wind speed using 2009-2012 data from National Weather Service locations archived at the National Climate Data Center.⁵⁰ When developing these wind roses, the EPA also used wind observations collected at meteorological sampling stations collocated at air quality monitoring sites, where these data were available. Figure 8 shows wind roses that the EPA generated from data relevant for coastal areas near Pechanga.

Pechanga is located about 25 miles inland and experiences similar complex meteorology and transport patterns as inland parts of western San Diego County.

⁵⁰ ftp.ncdc.noaa.gov/pub/data/noaa or

http://gis.ncdc.noaa.gov/map/viewer/#app=cdo&cfg=cdo&theme=hourly&layers=1&node=gis Quality assurance of the National Weather Service data is described here: *http://www1.ncdc.noaa.gov/pub/data/inventories/ish-qc.pdf*.

As shown in Figure 2, there is a pattern of predominantly westerly winds at the coast, mostly at mid-level speeds of 2 to 4 meters per second.

Factor 4: Geography/topography

To evaluate the geography/topography factor, the EPA assessed physical features of the area of analysis that might define the airshed and thus affect the formation and distribution of $PM_{2.5}$ concentrations over the area. The Pechanga reservation consists of 6,700 acres located in northwestern portion of the Cleveland National Forest, ranging between 1,100 and 2,600 feet in elevation. It is located in the northern portion of the San Diego-Carlsbad-San Marcos MSA and the southern part of the Los Angeles-Long Beach-Santa Ana MSA. Pechanga's lands do not have any geographical or topographical barriers that would prevent air pollution transport from the surrounding San Diego County or Los Angeles-South Coast Air Basin nonattainment areas. Although the terrain is complex, there are no significant topographic barriers, suggesting that Pechanga's area of Indian country may experience similar air quality to the nearby areas, such as northern San Diego County or the City of Temecula.

Factor 5: Jurisdictional boundaries

In defining the boundaries of the intended Pechanga nonattainment area, the EPA considered existing jurisdictional boundaries, which can provide easily identifiable and recognized boundaries for purposes of implementing the NAAQS. Existing jurisdictional boundaries often signify the governmental organization with the necessary legal authority for carrying out air quality planning and enforcement functions for the intended area. Examples of such jurisdictional boundaries include existing/prior nonattainment area boundaries for particulate matter, county lines, air district boundaries, township boundaries, areas covered by a metropolitan planning organization, state lines, and Reservation boundaries, if applicable. Where existing jurisdictional boundaries were not adequate or appropriate to describe the nonattainment area, the EPA considered other clearly defined and permanent landmarks or geographic coordinates for purposes of identifying the boundaries of the intended designated areas.

As defined at 18 U.S.C. 1151, "Indian country" refers to: "(a) all land within the limits of any Indian reservation under the jurisdiction of the United States Government, notwithstanding the issuance of any patent, and, including rights-of-way running through the reservation, (b) all dependent Indian communities within the borders of the United States whether within the original or subsequently acquired territory thereof, and whether within or without the limits of a state, and (c) all Indian allotments, the Indian titles to which have not been extinguished, including rights-of-way running through the same." The EPA recognizes the sovereignty of tribal governments, and has attempted to take the desires of Pechanga into account in establishing an appropriate designation for its Indian country. In December 2013, Pechanga provided an "unclassifiable" recommendation for the 2012 annual PM_{2.5} NAAQS (letter from Mark Macarro, Tribal Chairman, Pechanga Band of Luiseño Indians, to Jared Blumenfeld, Regional Administrator, U.S. EPA Region IX, December 17, 2013).

Pechanga is a federally recognized tribe located in the northern portion of the San Diego-Carlsbad-San Marcos MSA and the southern part of the Los Angeles-Long Beach-Santa Ana MSA.

The EPA's assessment of the jurisdictional factor was performed in accordance with the two guidance documents finalized in 2011 by the EPA's Office of Air Quality, Planning, and Standards: *Guidance to Regions for Working with Tribes during the National Ambient Air Quality Standard (NAAQS) Designations Process*⁵¹ and the *Policy for Establishing Separate Air Quality Designations for Areas of Indian Country*⁵². These documents stress the importance of recognizing tribal sovereignty and the jurisdictional status of Indian country in the decision-making process. They also articulate circumstances under which the jurisdictional boundaries factor could bear the most weight when evaluating a tribe's multi-factor analysis.

The *Policy for Establishing Separate Air Quality Designations for Areas of Indian Country* states that it may be appropriate to apply the most weight to the jurisdiction factor in a situation where a tribe recommends being designated as a separate attainment area from an adjacent nonattainment area when a regulatory monitor in Indian country demonstrates that the NAAQS is being met, and there are no sources in Indian country contributing to nonattainment in the adjacent area based on an analysis of factors. The Pechanga air quality monitoring site does not indicate violations of the 2012 annual PM_{2.5} NAAQS based on the 2013 DVs and therefore supports an unclassifiable area designation. Also, the evaluation of data from monitoring sites in the

⁵¹ http://www.epa.gov/ttn/caaa/t1/memoranda/20120117naaqsguidance.pdf

 $^{^{52}} http://www.epa.gov/ttn/caaa/t1/memoranda/20120117 indian country.pdf$

Page 174 of 175

San Diego County and secondary data from nearby monitors in Temecula further supports an unclassifiable designation for Pechanga. Consistent with this policy, the EPA is assigning more weight to Factor 5: Jurisdiction.

Conclusion for Pechanga Area

Based on the assessment of factors described above, both individually and in combination, the EPA has preliminarily concluded that Pechanga should be designated unclassifiable for the 2012 annual $PM_{2.5}$ NAAQS. The EPA concurs with the Tribe's recommendation for this area and notes that this is the same area that is included in the Pechanga nonattainment area for the 2008 8-hour ozone NAAQS.

An evaluation of Factor 1 shows that the Pechanga air quality monitoring site does not indicate violations of the 2012 annual $PM_{2.5}$ NAAQS based on the 2013 DVs. Evaluation of data from monitoring sites in San Diego County and secondary data from nearby monitors in Temecula further supports an unclassifiable designation for Pechanga.

Factor 2 shows that emissions from Pechanga are relatively small compared to emissions from the adjacent Riverside and San Diego counties, therefore, it is unlikely these emissions sources are contributing to 2012 annual PM_{2.5} NAAQS design values at the currently violating monitors within the adjacent Los Angeles-South Coast Air Basin nonattainment area. Factor 3 suggests that Pechanga experiences similar complex meteorology and transport patterns as inland parts of western San Diego County.

As discussed in Factor 4, while terrain surrounding Pechanga is complex, there are no significant topographic barriers, suggesting that Pechanga's area of Indian country may experience similar air quality to the surrounding nearby areas. Finally, an assessment of Factor 5 further supports the intended Pechanga unclassifiable area due to previous nonattainment boundary designations and tribal jurisdiction.

The main factors that the EPA considered when determining the appropriateness of the intended Pechanga unclassifiable area were Air Quality Data (Factor 1) and Jurisdiction (Factor 5).

Appendix 1:

Air Quality Monitoring Data Table

State	Intended Nonattainment or Unclassifiable Area (if applicable)	County	AQS ID	Site Name	2011-2013 DV
California	Imperial Co, CA	Imperial	060250005	Calexico-Ethel	14.3 ^e
California	Imperial Co, CA	Imperial	060250007	Brawley	7.5
California	Imperial Co, CA	Imperial	060251003	El Centro	7.4
California	Los Angeles-South Coast Air Basin	Los Angeles	060370002	Azusa	11.2
California	Los Angeles-South Coast Air Basin	Los Angeles	060371002	Burbank	12.8 ^f
California	Los Angeles-South Coast Air Basin	Los Angeles	060371103	Los Angeles-Main St.	13.0 ^f
California	Los Angeles-South Coast Air Basin	Los Angeles	060371201	Reseda	10.2
California	Los Angeles-South Coast Air Basin	Los Angeles	060371302	Compton	12.2
California	Los Angeles-South Coast Air Basin	Los Angeles	060371602	Pico Rivera #2	12.0
California	Los Angeles-South Coast Air Basin	Los Angeles	060372005	Pasadena	10.4*
California	Los Angeles-South Coast Air Basin	Los Angeles	060374002	Long Beach (North)	11.1 ^f
California	Los Angeles-South Coast Air Basin	Los Angeles	060374004	Long Beach (South)	11.0 ^f
California	Los Angeles-South Coast Air Basin	Orange	060590007	Anaheim	10.7 ^f
California	Los Angeles-South Coast Air Basin	Orange	060592022	Mission Viejo	8.2
California	Los Angeles-South Coast Air Basin	Riverside	060651003	Riverside	11.5
California	Los Angeles-South Coast Air Basin	Riverside	060658001	Rubidoux	13.4 ^f
California	Los Angeles-South Coast Air Basin	Riverside	060658005	Mira Loma-Van Buren	15.1 ^f
California	Los Angeles-South Coast Air Basin	San Bernardino	060710025	Ontario Fire Station	12.6
California	Los Angeles-South Coast Air Basin	San Bernardino	060712002	Fontana	12.6
California	Los Angeles-South Coast Air Basin	San Bernardino	060718001	Big Bear	8.7
California	Los Angeles-South Coast Air Basin	San Bernardino	060719004	San Bernardino	11.8
California	Plumas County, CA	Plumas	060631006	Quincy	10.2
California	Plumas County, CA	Plumas	060631010 ª	Portola North Substation	12.8
California	San Joaquin Valley, CA	Fresno	060192009	Tranquillity	7.8
California	San Joaquin Valley, CA	Fresno	060195001	Clovis	16.4

Appendix 1: Air Quality Monitoring Data Table

California	San Joaquin Valley, CA	Fresno	060195025	Fresno-Pacific	14.7
California	San Joaquin Valley, CA	Fresno	060190011 ^b	Fresno - Garland	15.4
California	San Joaquin Valley, CA	Kern	060290014	Bakersfield-California Avenue	16.4
California	San Joaquin Valley, CA	Kern	060290016	Bakersfield-Planz	17.3
California	San Joaquin Valley, CA	Kings	060310004	Corcoran	15.0*
California	San Joaquin Valley, CA	Kings	060311004	Hanford	17.0
California	San Joaquin Valley, CA	Madera	060392010	Madera-City	18.1
California	San Joaquin Valley, CA	Merced	060470003	Merced-Coffee Ave	13.3
California	San Joaquin Valley, CA	Merced	060472510	Merced-M Street	11.1
California	San Joaquin Valley, CA	San Joaquin	060771002	Stockton-Hazelton	13.8
California	San Joaquin Valley, CA	San Joaquin	060772010	Manteca	10.2
California	San Joaquin Valley, CA	Stanislaus	060990005	Modesto-14th Street	13.6
California	San Joaquin Valley, CA	Stanislaus	060990006	Turlock	15.7
California	San Joaquin Valley, CA	Tulare	061072002	Visalia - N. Church	16.6
California	Pechanga (Unclassifiable)	Riverside / San Diego	060650009	Pechanga	7.7
California		Alameda	060010007	Livermore - Rincon	7.6
California		Alameda	060010009	Oakland East	10.0
California		Alameda	060010011	Oakland West	9.9*
California		Butte	060070008 ^c	Chico - East Avenue	10.1
California		Calaveras	060090001	San Andreas-Gold Strike Road	8.4
California		Colusa	060111002	Colusa-Sunrise Blvd	7.1
California		Contra Costa	060130002	Concord	7.4
California		Contra Costa	060131004	San Pablo - Rumrill	9.6*
California		Humboldt	060231002	Eureka-I Street	6.2
California		Humboldt	060231004	Eureka-Jacobs	7.7*
California		Humboldt	060231005	Eureka-Humboldt Hill	7.4*
California		Inyo	060271003	Keeler	7.5
California		Kern	060290011	Mojave-Poole	7.0*

California	Kern	060290015	Ridgecrest	5.4*
California	Lake	060333001	Lakeport	3.8
California	Los Angeles	060379033	Lancaster	6.1*
California	Marin	060410001	San Rafael	9.5
California	Mendocino	060450006	Ukiah-Library	6.7*
California	Mendocino	060452002	Willits Justice Center	8.8*
California	Monterey	060530002	Carmel Valley	5.9*
California	Monterey	060530008	King City 2	6.3*
California	Monterey	060531003	Salinas 3	6.1
California	Napa	060550003	Napa	12.7 ^{*g}
California	Nevada	060570005	Grass Valley - Litton Bldg	4.6
California	Nevada	060571001	Truckee-Fire Station	7.0
California	Placer	060610003	Auburn-11645 Atwood	5.8*
California	Placer	060610006	Roseville-N Sunrise Blvd	7.5
California	Riverside	060652002	Indio	7.7
California California	Riverside Riverside	060652002 060655001	Indio Palm Springs	7.7 6.4
California California California	Riverside Riverside Sacramento	060652002 060655001 060670006	Indio Palm Springs Sacramento-Del Paso Manor	7.7 6.4 10.4
California California California California	RiversideRiversideSacramentoSacramento	060652002 060655001 060670006 060670010	Indio Palm Springs Sacramento-Del Paso Manor Sacramento-1309 T Street	7.7 6.4 10.4 9.5
California California California California California	RiversideRiversideSacramentoSacramentoSacramento	060652002 060655001 060670006 060670010	IndioPalm SpringsSacramento-Del Paso ManorSacramento-1309 T StreetSacramento-Health Dept.	7.7 6.4 10.4 9.5 9.3
California California California California California California California	RiversideRiversideSacramentoSacramentoSacramentoSacramentoSan Benito	060652002 060655001 060670006 060670010 060674001 060690002	IndioPalm SpringsSacramento-Del Paso ManorSacramento-1309 T StreetSacramento-Health Dept.Hollister 2	7.7 6.4 10.4 9.5 9.3 5.5
California California California California California California California California	RiversideRiversideSacramentoSacramentoSacramentoSan BenitoSan Bernardino	060652002 060655001 060670006 060670010 060674001 060690002 060710306	Indio Palm Springs Sacramento-Del Paso Manor Sacramento-1309 T Street Sacramento-Health Dept. Hollister 2 Victorville	7.7 6.4 10.4 9.5 9.3 5.5 6.8*
California	RiversideRiversideSacramentoSacramentoSacramentoSan BenitoSan BernardinoSan Diego	060652002 060655001 060670006 060670010 060674001 060690002 060710306 060730001	IndioPalm SpringsSacramento-Del Paso ManorSacramento-1309 T StreetSacramento-Health Dept.Hollister 2VictorvilleChula Vista	7.7 6.4 9.5 9.3 5.5 6.8* 9.9
California	RiversideRiversideSacramentoSacramentoSacramentoSan BenitoSan BernardinoSan DiegoSan Diego	060652002 060655001 060670006 060670010 060674001 060690002 060710306 060730001	IndioPalm SpringsSacramento-Del Paso ManorSacramento-1309 T StreetSacramento-Health Dept.Hollister 2VictorvilleChula VistaEl Cajon	7.7 6.4 10.4 9.5 9.3 5.5 6.8* 9.9 10.6 ^h
California	RiversideRiversideSacramentoSacramentoSacramentoSan BenitoSan BernardinoSan DiegoSan DiegoSan Diego	060652002 060655001 060670006 060670010 060674001 060690002 060710306 060730003 060730003	IndioPalm SpringsSacramento-Del Paso ManorSacramento-1309 T StreetSacramento-Health Dept.Hollister 2VictorvilleChula VistaEl CajonEscondido	7.7 6.4 10.4 9.5 9.3 5.5 6.8* 9.9 10.6 ^h 10.7 ^h
CaliforniaCaliforniaCaliforniaCaliforniaCaliforniaCaliforniaCaliforniaCaliforniaCaliforniaCaliforniaCaliforniaCaliforniaCaliforniaCaliforniaCaliforniaCalifornia	RiversideRiversideSacramentoSacramentoSacramentoSan BenitoSan BernardinoSan DiegoSan DiegoSan DiegoSan DiegoSan DiegoSan Diego	060652002 060655001 060670006 060670010 060674001 06074001 060730001 060730003 060731002	IndioPalm SpringsSacramento-Del Paso ManorSacramento-1309 T StreetSacramento-Health Dept.Hollister 2VictorvilleChula VistaEl CajonEscondidoAlpine	7.7 6.4 10.4 9.5 9.3 5.5 6.8* 9.9 10.6 ^h 10.7 ^h 7.8*
California	RiversideRiversideSacramentoSacramentoSacramentoSan BenitoSan BernardinoSan DiegoSan Diego	060652002 060655001 060670006 060670010 060674001 060710306 060730001 060730003 060731002 060731008	IndioPalm SpringsSacramento-Del Paso ManorSacramento-1309 T StreetSacramento-Health Dept.Hollister 2VictorvilleChula VistaEl CajonEscondidoAlpineCamp Pendleton	7.7 6.4 10.4 9.5 9.3 5.5 6.8* 9.9 10.6 ^h 10.7 ^h 7.8* 10.4*
California California	RiversideRiversideSacramentoSacramentoSacramentoSan BenitoSan BernardinoSan DiegoSan Diego	060652002 060655001 060670006 060670010 060674001 060690002 060710306 060730003 060731002 060731008 060731008	IndioPalm SpringsSacramento-Del Paso ManorSacramento-1309 T StreetSacramento-Health Dept.Hollister 2VictorvilleChula VistaEl CajonEscondidoAlpineCamp PendletonSan Diego - Downtown	7.7 6.4 10.4 9.5 9.3 5.5 6.8* 9.9 10.6 ^h 10.7 ^h 7.8* 10.4*

California	San Francisco	060750005	San Francisco - Arkansas St.	9.2
California	San Luis Obispo	060792004	Unocal - Nipomo	8.7
California	San Luis Obispo	060792006	San Luis Obispo	6.6
California	San Luis Obispo	060792007	Mesa Cal Fire Station 22	11.3
California	San Luis Obispo	060798001	Atascadero	7.0
California	San Mateo	060811001	Redwood City	9.3
California	Santa Barbara	060830011	Santa Barbara	9.5
California	Santa Barbara	060831008	Santa Maria	7.6
California	Santa Clara	060850002	Gilroy	8.0
California	Santa Clara	060850005	San Jose	10.3
California	Santa Cruz	060870007	Santa Cruz 4	6.3
California	Shasta	060890004	Redding – Health Dept	5.7
California	Shasta	060893004	Redding - Buckeye	6.2
California	Shasta	060893005	Redding - Toyon	4.9*
California	Siskiyou	060932001	Yreka	6.3
California	Solano	060950004	Vallejo	9.6
California	Sonoma	060970003	Santa Rosa	8.4
California	Sutter	061010003	Yuba City	7.7
California	Tehama	061030006	Red Bluff	8.1
California	Trinity	061050002	Weaverville	6.5*
California	Ventura	061110007	Thousand Oaks	9.1
California	Ventura	061110009	Piru	8.1
California	Ventura	061111004	Ojai	9.0*
California	Ventura	061112002	Simi Valley	9.1
California	Ventura	061113001	El Rio	9.0
California	Yolo	061131003	Woodland-Gibson Road	7.2

^a In July 2013, the Portola-Nevada Street site (AQS ID 060631009) was relocated to the Portola North Substation site (AQS ID 060631010). The data listed for Plumas County is a combination of data from Portola-Nevada Street site from 2009 through June 2013, and from Portola North Substation from July 2013 through the remainder of 2013.
^b In December 2011, the Fresno-First Street site (AQS ID 060190008) was relocated to the Fresno-Garland site (AQS ID 060190011). The design values listed combine data from Fresno-First Street through 2011 and data from Fresno-Garland from 2012 and 2013.

^c In July 2012, the Chico-Manzanita site (AQS ID 060070002) was relocated to the Chico East site (AQS ID 060070008). The data listed for Butte County is a combination of data from Chico-Manzanita from 2009 through June 2012, and from Chico East from July 2012 through 2013.

^d In February 2012, the San Diego-Overland (Kearny Mesa) site (060730006) was relocated to the San Diego-Kearny Villa Road site (060731016). The data listed for the San-Diego-Kearny Villa Road site is a combination of data from San Diego-Overland from 2009 through February 17, 2012, and from San-Diego-Kearny Villa Road from February 21, 2012 through 2013.

^e Design value based on all valid data, including data in 2011 and 2012 that were submitted to, but are not currently in, AQS. EPA considers these data valid for use per 40 CFR Part 50 and 58 (see Memorandum "Use of Data for Imperial County, CA PM2.5 Design Value Calculations").

^f EPA is currently reviewing a request to exclude data from Class III FEM monitors for comparison to the NAAQS per 40 CFR 58.11(E) at this site. Should this request be approved, the DVs will be recalculated with these data excluded.

^g This design value is from a monitor that began operating on December 13, 2012.

^h This design value does not include data from Class III FEM monitors that EPA has approved as not eligible for comparison to the NAAQS per 40 CFR 58.11(e).

* = Design Value (DV) does not meet data completeness requirements.

BOLD = DV monitor for the County

BOLD AND RED = DV monitor for the proposed Nonattainment Area and the County

Grouped by Proposed Nonattainment Area, then by County.