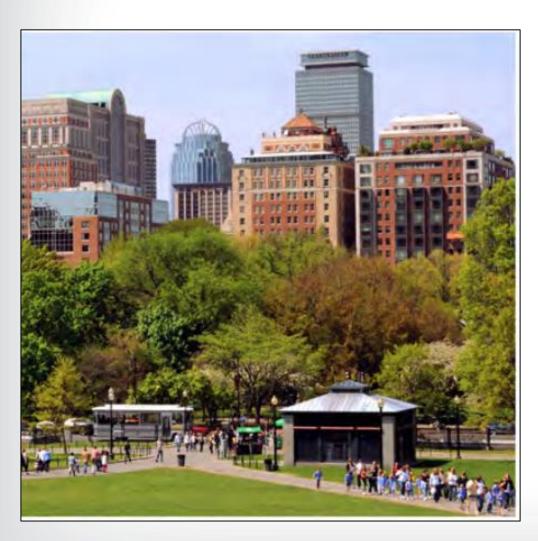


Air Pollution and Heart Health: Making the Connection

Wayne Cascio, MD, FACC, FAHA

Director, Environmental Public Health Division

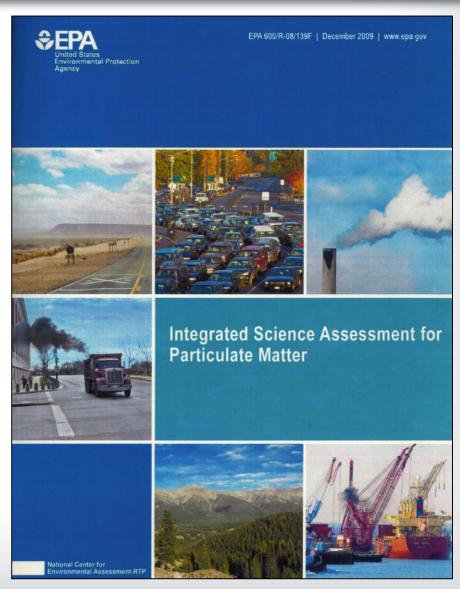

National Health and Environmental Effects Research Laboratory

Office of Research & Development, US EPA

Research Triangle Park and Chapel Hill, NC

Ambient Air Pollution & Health

- Why should <u>communities</u> care about ambient air pollutants?
- Why should <u>healthcare</u> <u>systems</u> care about ambient air pollutants?
- Why should <u>health care</u> <u>providers</u> care about ambient air pollutants?
- Why should their <u>patients</u> care about ambient air pollutants?



EPA and AHA State that PM CAUSES Mortality and Morbidity

EPA:

"Epidemiologic evidence is sufficient to conclude that a <u>causal</u> relationship exists between: **short-term and long-term exposure to PM**_{2.5} **and mortality.**"

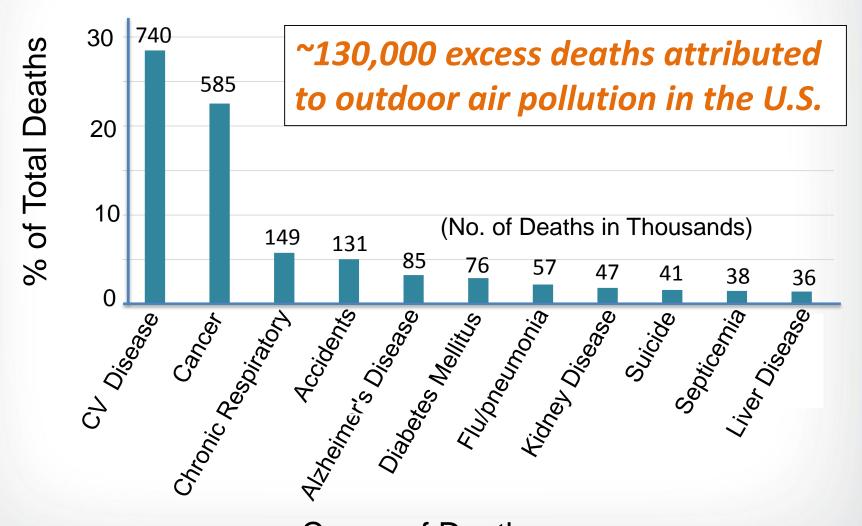
Integrated Science Assessment (ISA) for Particulate Matter 2009

Call for Public Health & Healthcare Action

 "Air pollution should be viewed as one of several major modifiable risk factors in the prevention and management of cardiovascular disease." European Heart Journal Advance Access published December 9, 2014

European Heart Journal doi:10.1093/eurheartj/ehu458 **CURRENT OPINION**

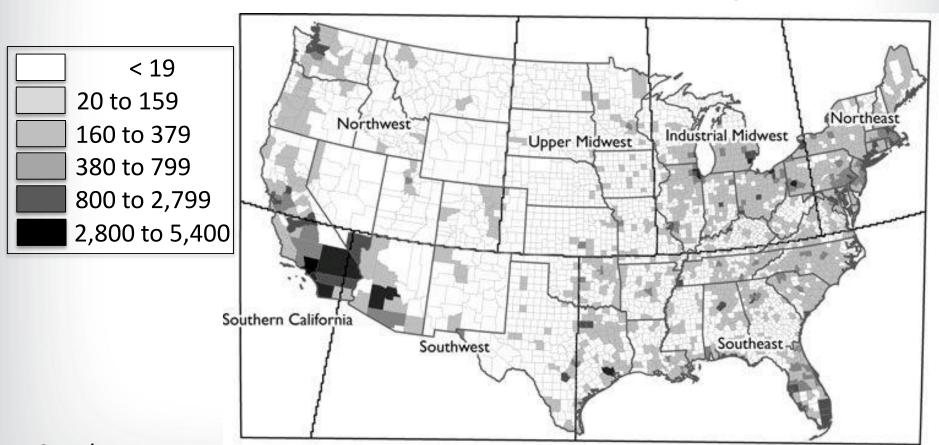
Expert position paper on air pollution and cardiovascular disease


David E. Newby¹, Pier M. Mannucci², Grethe S. Tell³, Andrea A. Baccarelli⁴, Robert D. Brook⁵, Ken Donaldson⁶, Francesco Forastiere⁷, Massimo Franchini⁸, Oscar H. Franco⁹, Ian Graham¹⁰, Gerard Hoek¹¹, Barbara Hoffmann¹², Marc F. Hoylaerts¹³, Nino Künzli^{14,15}, Nicholas Mills¹, Juha Pekkanen^{16,17}, Annette Peters^{18,19}, Massimo F. Piepoli²⁰, Sanjay Rajagopalan²¹, and Robert F. Storey^{22*}, on behalf of ESC Working Group on Thrombosis, European Association for Cardiovascular Prevention and Rehabilitation and ESC Heart Failure Association

 "Health professionals, including cardiologists, have an important role to play in supporting educational and policy initiatives as well as counseling their patients."

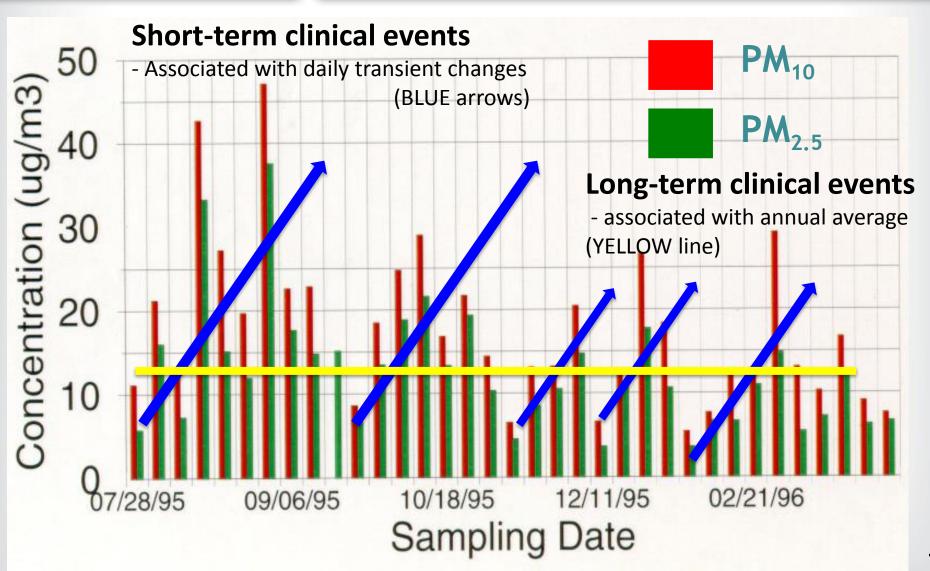
Air Pollution Deaths

Comparable to Alzheimer's, Diabetes, Flu


Cause of Death

Estimated Excess Mortality

Burden of Air Pollution Deaths by County


PM_{2.5} and O₃-related Mortality by County based on 2005 air pollution levels

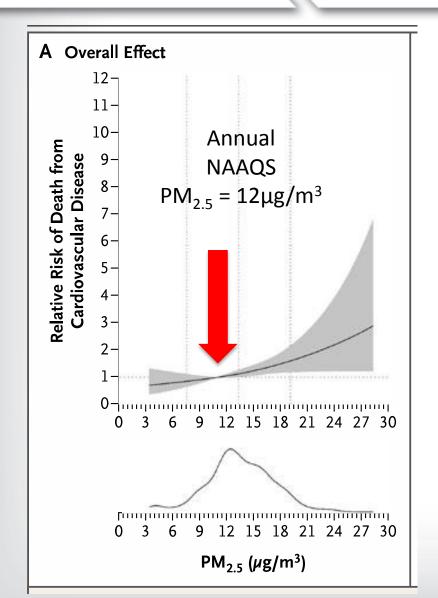
US EPA's BENMAP

PM Causes Both Short- and Long-term Health Impacts

Population studies and cardiovascular health effects of particle air pollution

Epidemiological Evidence

PM_{2.5}-Related Air Pollution Effects

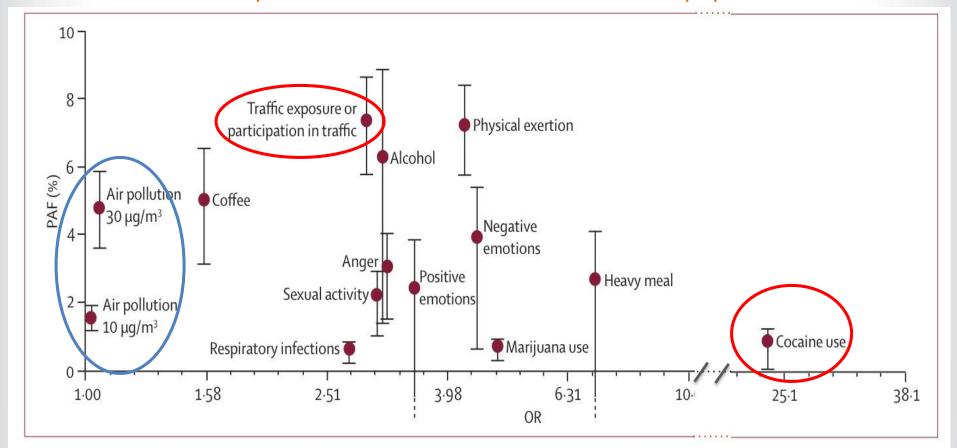

Clinical cardiovascular endpoints from epidemiological studies at ambient concentrations

Health Outcomes	Short-Term Exposure (Days)	Longer-Term Exposure (Months to Years)
~·····································		
Cardiovascular mortality	\uparrow \uparrow \uparrow	\uparrow \uparrow \uparrow
Cardiovascular hospitalizations	\uparrow \uparrow \uparrow	\uparrow
Ischemic heart disease*	\uparrow \uparrow \uparrow	\uparrow \uparrow \uparrow
Heart failure*	\uparrow \uparrow	\uparrow
Ischemic stroke*	\uparrow \uparrow	\uparrow
Vascular diseases	\uparrow	† †
Cardiac arrhythmia/cardiac arrest	\uparrow	\uparrow

PM_{2.5} Increases Risk in Women

First Cardiovascular Event or Death

Outcome	Hazard Ratio F Overall		
First cardiovascular event			
Any cardiovascular event†	1.24 (1.09–1.41)		
Coronary heart disease‡	1.21 (1.04–1.42)		
Cerebrovascular disease∫	1.35 (1.08–1.68)		
Myocardial infarction	1.06 (0.85–1.34)		
Coronary revascularization	1.20 (1.00–1.43)		
Stroke	1.28 (1.02–1.61)		
Death from cardiovascular cause			
Any death from cardiovascular cause	1.76 (1.25–2.47)		
Coronary heart disease	1/1/11		
Definite diagnosis	2.21 (1.17–4.16)		
Possible diagnosis	1.26 (0.62–2.56)		
Cerebrovascular disease	1.83 (1.11–3.00)		

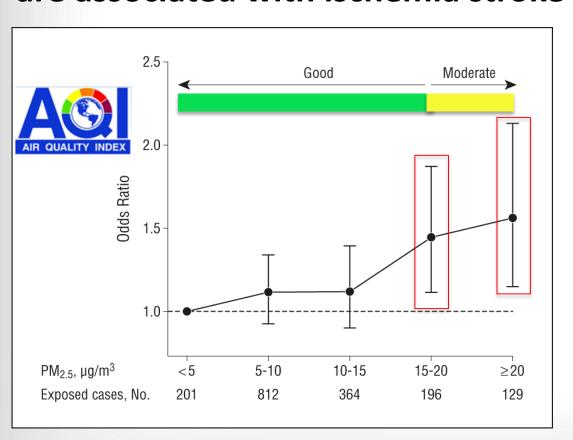


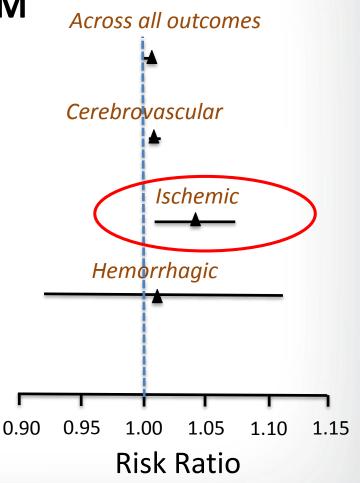
Air Pollution Triggers Heart Attacks

Low PM exposure associated with lower risk

Population Attributable Fractions (PAF)

Related to: the strength of the association between exposure to a risk factor and the prevalence of this risk factor within the population

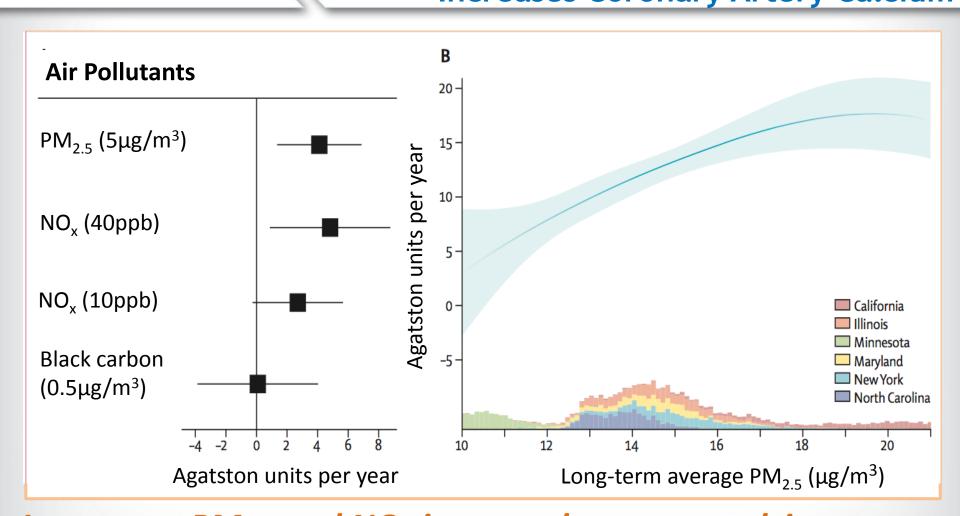




Air Particle Pollution and Stroke

Short-term Exposure & Ischemic Stroke

Within a population: low levels of PM are associated with ischemia stroke



Does Air Pollution Increase Atherosclerosis?

Long-Term PM_{2.5} & NO₂ Exposure Increases Coronary Artery Calcium

Long-term PM_{2.5} and NO₂ increased coronary calcium, an indictor of atherosclerosis Kaufman JD et al. Lancet 2016

Possible Mechanisms

Human Studies Show Increases in Subclinical CV Endpoints

Exposure to PM_{2.5}, Traffic- and Combustion Related Air Pollution

Short-Term	Longer-Term
Exposure (Days)	Exposure (Months to Years)
N/A	↑
$(\uparrow \uparrow)$	\uparrow
\uparrow	
$\uparrow \uparrow$	\uparrow
↑ ↑	
\uparrow \uparrow	
\uparrow \uparrow \uparrow	\uparrow
\uparrow	
\uparrow	
	(Days) N/A ↑ ↑ ↑ ↑ ↑ ↑

MESA Air

Long-term exposure:

 $5 \mu g/m^3 PM_{2.5}$ associated with:

- 6% higher IL-6 (95% CI = 2%, 9%)
- 40 ppb NOx associated
- 7% higher level of D-dimer
 (95% CI = 2%, 13%)

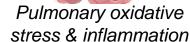
Short-term exposure:

Daily PM_{2.5} level associated with:

- CRP
- Fibrinogen
- E-selectin

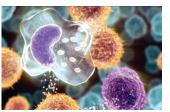
Hajat et al. Epidemiology 2015

Blood



Neural Response

ANS

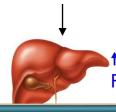


SYSTEMIC 'SPILL-OVER"

PM or constituents in the circulation

UFP, soluble metals Organic compounds

ANS imbalance


1'SNS / VPSNS

Systemic Oxidative stress and Inflammation

<u>CELLS</u>: † activated WBCs, platelets, myeloperoxidase, Plt-MΦ <u>CYTOKINES</u>: † IL-1β, IL-6, TNF-α OTHER:† ET, histamine, ? Microparticles, ox-LDL, dysFx HDL

↑ Adipokines (PAI-1, Resistin)

Acute phase response

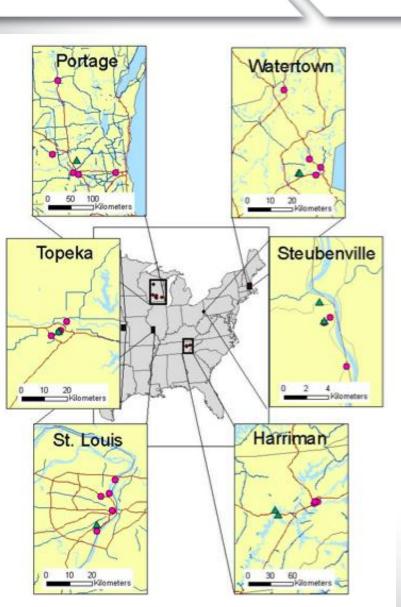
† Clotting factors
Fibrinogen, CRP

ACUTE: Endothelial dysfunction, Vasoconstriction, Plaque instability

Coagulation, Thrombosis, Arrhythmias

CHRONIC: LV hypertrophy, Atherosclerosis, Arterial Stiffness

Metabolic Syndrome: HTN, Insulin resistance, Dyslipidemia



Reducing Air Pollution Decreases Health Risk

Harvard Six-Cities Study PM Decreased, Mortality Decreased

Adjusted CV Mortality Rate Ratios

Cox Proportional Hazards Model				
	Period 1 1974-89	Period 2 1990-98		
Person Years On follow-up	104,243	54,735		
Deaths	626	570		
City-specific model				
Portage	1.00			
Topeka	1.03	1.00		
Watertown	1.19	0.82		
Harriman	1.33	1.23		
St. Louis	1.21	0.96		
Steubenville	1.48	1.21		
Period	1.00	0.96		

Laden et al. AJRCCM 2006

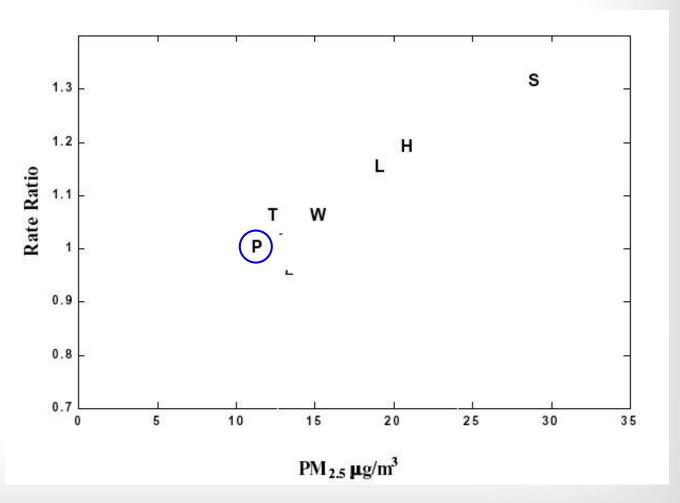
19

Harvard Six-Cities Study

Estimated adjusted rate ratios for total mortality and PM_{2.5}

P - Portage, WI

T - Topeka, KS


W - Watertown, MA

L - St. Louis, MO

H - Harriman, TN

S - Steubenville, O

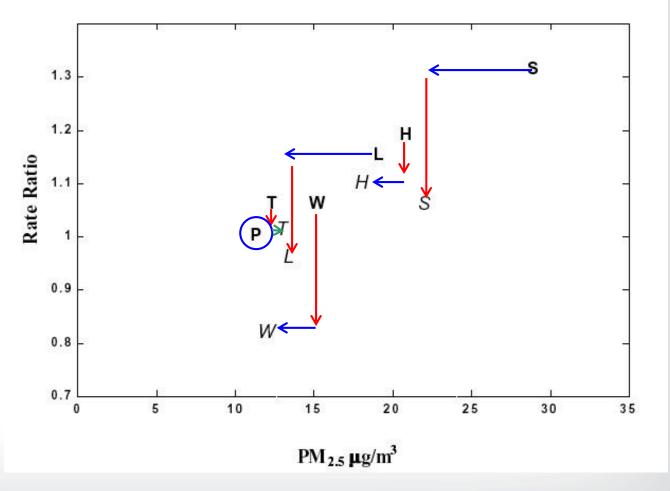
Bold - Period 1

Harvard Six-Cities Study

Estimated adjusted rate ratios for total mortality and PM_{2.5}

P - Portage, WI

T - Topeka, KS


W - Watertown, MA

L - St. Louis, MO

H - Harriman, TN

S - Steubenville, OH

Bold - Period 1 *Italics - Period 2*

- Particle pollution increases short- and long-term cardiovascular morbidity and mortality
- Aged-adults, those with pre-existing heart disease, and diabetes are at higher risk
- Mechanisms are under investigation but are likely related to effects on oxidative stress, autonomic control and inflammation
- Improvements in air pollution levels reduce health impacts and increase life expectancy
- Reductions of short-term exposures in those at higher risk are predicted to mitigated adverse health effects

