

Improved prediction of the vertical profile of atmospheric black carbon: development and evaluation of WRF-CMAQ

Annmarie G. Carlton

K. Fahey, J. Baek, N. Sareen, B. Marmo, M. Moeller, C. Farkas

CAA is most successful US bill **EVER**Bush Administration OMB estimated Benefit to cost ratio is \$30:\$1, 2nd place bill is \$2:\$1

Credit: Chester Higgins, Jr. 1973

http://magictouchimaging.com/gwbridge.html

Vertical profile: motivation to get it right

Aloft aerosols above clouds scatter diffuse backscatter and are subject to less removal processes

Carlton et al., ES&T, 2008

Cloud Processing

vertical redistribution of trace species

Δ in aerosol population GMD (droplet mode)

oxidation chemistry

Atmosphere is a Continuum

But we discretize the continuity equation in time with operator splitting

$$\frac{\partial n_{i}}{\partial t} = \left[\frac{\partial n_{i}}{\partial t}\right]_{emissions} + \left[\frac{\partial n_{i}}{\partial t}\right]_{gaschemistry} + \left[\frac{\partial n_{i}}{\partial t}\right]_{partitioing} + \left[\frac{\partial n_{i}}{\partial t}\right]_{AQchemistry} + \dots$$

Aqueous Chemistry in CMAQ: AQCHEM

^{*}Based on original RADM model (Chang et al., 1987; and Walcek and Taylor, 1986)

AQchem with Rosenbrock solver and kinetic mass transfer: AQCHEM-KMT

interfacial processes by Schwartz (1986)

Kinetic PreProcessor (KPP)*

translates chemical mechanism (e.g., species, Rxns, rate coefficients) to Fortran90 • exploits **Jacobian sparsity** • modularity allows "easy" incorporation of new chemical mechanisms and/or solvers • can generate the tangent linear or **adjoint**

V. Damian, A. Sandu, M. Damian, F. Potra, and G.R. Carmichael, ``The Kinetic PreProcessor KPP -- A Software Environment for Solving Chemical Kinetics'', Computers and Chemical Engineering, 26(11), 1567-1579, 2002.

Modeled processes and rate coefficients

Process	Equations	Rate coefficients	Other information
Gas-Liquid phase transfer	$C_{g,i} \xrightarrow{k_f} C_{aq,i}$	$k_f = k_{mt} w_L$	$k_{mt}(s^{-1}\frac{vol_{air}}{vol_{aq}}) = \left(\frac{a^2}{3D_g} + \frac{4a}{3\overline{\nu}\alpha}\right)^{-1}$
Liquid-Gas phase transfer	$C_{aq,i} \xrightarrow{k_b} C_{g,i}$	$k_b = \frac{k_{mt}}{H_{T,i}RT}$	
Dissociation Association	$C_{aq,i} \xrightarrow{k_f} C_{aq,i}^{-1} + H^+$ $C_{aa,i}^{-1} + H^+ \xrightarrow{k_b} C_{aa,i}$	k _b = literature	$Keq_{i,T} = Keq_{i,Tref} \left[\frac{-\Delta H_a}{R} \left(\left(\frac{1}{T} \right) - \left(\frac{1}{Tref} \right) \right) \right]$
7 issociation	$C_{aq,i} + II \longrightarrow C_{aq,i}$	value, independent of T $k_f = Keq_{i,T}k_b$	Activity coefficients are rolled into the forward and backward rates as appropriate
Aitken scavenging	$C_{aer,i,akn} \xrightarrow{\alpha} C_{aq,i}$	α	α is the attachment rate for interstitial aerosols (an input to AQCHEM)
Wet deposition	$C_{aq,i} \xrightarrow{Wdep} C_{WD,i}$	$Wdep = \frac{1}{\tau_{wash}}$	$\tau_{wash}(sec) = \frac{WT_{AVG} \times CTHK \times 3600.d0}{PRCRATE}, 0.d0$
Chemical kinetics	$C_{aq,1} + C_{aq,2} \xrightarrow{k_{rxn}} C_{aq,3}$	k _{rxn}	Complex rate coefficients that are set according to 5.0.2 base mechanism

Impact of droplet diameter and initial pH

Cloud droplet size changes $k_{\rm mt}$ and impacts SO_4 and $SOA_{\rm cloud}$ Suggests continued development of linkages between microphysics (e.g., effective cloud droplet radius, activated aerosol fraction) and aqueous phase chemistry is needed

Impacts of AQCHEM-KMT in CMAQ

Typically < 10% (max: 16%) Δ in monthly average surface SO_4

Hourly differences can be more substantial: max. $\Delta SO_{4,hr} = 16 \mu g/m^3$

Explicit Oxidation Mechanism

Current SOA reactions in CMAQ

```
GLY + OH \rightarrow 0.04 * ORGC k_1 = 3.0E10 \text{ M}^{-1} \text{ s}^{-1}

MGLY + OH \rightarrow 0.04 * ORGC k_1 = 3.0E10 \text{ M}^{-1} \text{ s}^{-1}
```

Explicit reactions in new box model

```
GCOL + OH → GCOLAC + H,O + HO,
                                                                              k_r = 5.0E8 M^{-1} s^{-1}
                                                                              k_1 = 1.0E9 M^{-1} s^{-1}
GCOL + OH → GLY + HO,
                                                                              k, = 6.0E8 M-1 s-1
GCOLAC + OH → GLYAC + H+ + HO,
                                                                              k<sub>1</sub> = 8.6E8 M<sup>-1</sup> s<sup>-1</sup>
GCOLAC + OH → GLYAC + HO,
                                                                              k_1 = 1.1E9 * EXP(-1516/RT) M^{-1} s^{-1}
GLY + OH → GLYAC + HO,
                                                                              k1 = 1.5E8 M-1 s-1
GLYAC + OH → OXLAC + H<sub>2</sub>O + HO<sub>2</sub>
                                                                              k<sub>1</sub> = 1.2E9 M<sup>-1</sup> s<sup>-1</sup>
GLYAC + OH → OXLAC + H<sub>2</sub>O + HO<sub>2</sub>
                                                                              k1 = 1.4E6 M-1 s-1
OXLAC + 2 OH → 2 CO, + 2 H<sub>2</sub>O
                                                                              k, = 4.7E7 M-1 s-1
OXLAC + OH → CO, + CO, + 2 H,O
                                                                              k_1 = 7.7E6 M^{-1} s^{-1}
OXLAC2- + OH → CO2 + CO2 + OH
MGLY + OH → 0.92 PYRAC + 0.08 GLYAC + HO<sub>2</sub> + H<sub>2</sub>O
                                                                              k_1 = 7.0E8 M^{-1} s^{-1}
                                                                              k, = 6.0E7 M-1 s-1
PYRAC + OH → CH<sub>3</sub>CO<sub>3</sub>H + CO<sub>3</sub> + HO<sub>3</sub>
                                                                              k, = 6.0E7 M-1 s-1
PYRAC + OH → CH,CO, + CO, + HO,
                                                                              k, = 1.6E7 M-1 s-1
CH<sub>3</sub>CO<sub>3</sub>H + OH → 0.85 GLYAC + 0.15 CH<sub>3</sub>OHYD
                                                                              k, = 8.5E7 M-1 s-1
CH,CO, + OH → 0.85 GLYAC + 0.15 CH,OHYD
CH2OHYD + OH → HCOOH + H2O + HO2
                                                                              k_1 = 1.1E9 * EXP(-1020/RT) M^{-1} s^{-1}
HCOOH + OH → H<sub>2</sub>O + HO<sub>2</sub>
                                                                              k_1 = 1.2E8 * EXP(-990/RT) M^{-1} s^{-1}
               GCOL - glycolaldehyde
                                                                      GCOLAC - glycolic acid
               GLY - glyoxal
                                                                      GLYAC - glyoxylic acid
                OXLAC - oxalic acid
                                                                      MGLY - methylglyoxal
                                                                      CH<sub>3</sub>CO<sub>2</sub>H - acetic acid
                PYRAC – pyruvic acid
               CH2OHYD - hydrated formaldehyde
```

Explicit aqueous organic chemistry

Introduces pH dependence to SOA_{cld}

Carlton GRL 2006, AE 2007; Altieri EST 2006, AE 2008; Perri AE 2009

Liquid Water Content (kg m⁻³)

Explicit chemistry does not perturb the averages, but increases variability in cloud SOA predictions

AQChem-KMT KPP CMAQ simulations: explicit GLY, MGLY oxidation – psuedo 1st order approximation

10 day average during July 2013

AQChem-KMT KPP CMAQ simulations: explicit GLY, MGLY oxidation – psuedo 1st order approximation 10 day average during July 2013

Conclusions and Future Directions

New solver for aqueous chemistry implemented in CMAQ, available through CMAS

Droplet size dependent chemistry changes **SO**₄ and **cloud SOA** production **amounts** and **variability**

Explicit Chemistry for organic species changes average cloud SOA values at the **surface** and **aloft and introduces a pH dependence**

Explicit calculation of the adjoint for cloud chemistry is now possible.

BC Inspired ice chemistry

From CMAQ subroutine *scavwdep.F*:

- C... NOTE: for now, scavenging coefficients are computed for only
- C... the liquid water content, not on the total water content
- C... therefore, no ice phase scavenging is considered at this
- C... time, but it should be added in the future!

Ice chemistry

Differences in Gas Phase HNO₃

Differences in gas phase HNO_3 concentrations between 100% partitioning case and LNO_x case at 400 mb for 0Z on August 12th.

Maximum decreases in gas phase HNO₃ were near 0.10 ppb or 25%

Conclusions

- HNO₃ partitioning to ice is an important process in the atmosphere
 - Decreases in gas phase HNO₃ were as high as 25%
 - This resulted in decreases in NO_x and HONO near 10%
 - Increases in particulate nitrate mass were as high as 0.15 µg/m³
- Very little sulfate formed on ice: the reaction as implemented did not change predictions

BC inspired emissions

SMOKE vs. Carlton Group - PM2.5 Emissions

SMOKE vs. Carlton Group - PM2.5 Emissions

Ambient PM_{2.5} Maximum Increase July 12, 2006 – July 25, 2006

Maximum increases of >100% at some sites

Ambient PM_{2.5} Maximum Increase July 12, 2006 – July 25, 2006

Maximum Increase > 6 µg m⁻³ → 40% of annual standard

Conclusions:

PM_{2.5} emissions increase up to 500% during heat waves compared to base case SMOKE calculated emissions

Up to 2x ambient $PM_{2.5}$ mass concentrations during heat wave when emissions are re-temporalized

Robust inclusion of 520 unmatched CEMs and plants with multiple fuels and evaluating findings.

Acknowledgements

- Gerald Gipson
- Shawn Roselle
- Adrian Sandu
- CMAQ, WRF, NEI developers

