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RUTGERS  Vertical profile: motivation to get it right

Aloft aerosols above clouds scatter diffuse backscatter and are subject to
less removal processes



RUTGERS Simple organic cloud chemistry changes vertical profile

OC predictions in base model

-2k '+ _OC predictions when
= / _
.. '« cloud SOA is added
ﬁ ] . to CMAQ
= | -,L
- = Al
E g .. WsocC
ﬁ & \ measurements
¥ \ /
k? ol
o |
g P
= o I-f’h'“"“l
0.1 0.2 05 10 20

OC (pgC/m?)
Carlton et al., ES&T, 2008



RUTGERS

multiphase
chemistry

0, .
so, ® ©¢®e [ OH
® o OO0 _ WSOGs
NOX 03.. ..

BIOGENIC

Cloud Processing

vertical redistribution of
trace species

A in aerosol population
GMD (droplet mode)

oxidation chemistry



RUTGERS

Atmosphere is a Continuum
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RUTGERS Atmosphere Is a Continuum
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RUTGERS Aqueous Chemistry in CMAQ: AQCHEM

Aitken scavenging

Q

Dissociation/Associ

ation
SO, <-> yHSO; + y"H*

yHSO; <->y2S0,2% + y*H* Q

' Chemistry

SO,, NO,, NH,, EC, POA, SOA, PRI, NA,
CL, ORGC, NUM, SOILC, ANTHC,
SEASC, FEACC, CAACC, MNACC,
MGACC, KACC

If LWC > 0.01 g/m3

.
>

SIV + O, -> SO,

HSO; + H,0, -> SO,

SIV + O, (Fe3*, Mn?*) -> SO,
HSO,- + MHP -> SO,

HSO,- + PAA -> SO,

MGLY, GLY + OH -> 0.04 ORGC

S0, H,0,, O,
" MHP, PAA, HNO,, H=
NH3, N,O, H,SO,,
OH, MGLY, GLY,
CO,, HCOOH, HCI

Wet deposition

*Based on original RADM model (Chang et al., 1987; and Walcek and Taylor, 1986)



RUTGERS

Molar conc. = initial amt. — amt. deposited (mol L) <

A

bisection for pH, initial guesses between 0.01 — 10

}

liquid conc. (mol L'1) soO,, HSO,, SO,, HSO,, CO,, HCO,, OH, NH,, HCO,, NO,, CI

Start iteration and bisection (3000 iterations) <
Calc. final gas phase p. pressure of SO,, NH;, HNO,;, HCOOH, CO,

liquid conc. (mol L1) so,, HSO,, SO,, HSO,, CO,, HCO,, OH, NH,, HCO,, NO;, Cl

v

Check for convergence

l Check for convergence

v

Compute, ionic strength and activity coefficient (Davies Eqn.)

}

Calculate liquid concentrations and final gas phase concs. of oxdidants

Kinetic calcs — Cal. Min time step — check for large time step

SIV oxidized < 0.05 of SIV oxidized since time 0O, double DT
Don’t let DT > TAUCLD

1000 max. iterations

Compute wet depositions and phase concentrations for each species

TIME = TAUCLD (OR 1000 iterations)

[
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RUTGERS

Molar conc. = initial a
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AQchem with Rosenbrock solver and kinetic mass transfer: AQCHEM-KMT

dCaqr kmt:’
kmt Jw Cg: B aq,l -I_QIR -I_Aacavz B Wdcpz +Xzonz

dt HRT

dC . K . dC
g :_kmtiWLCgi T — Caqi = :_Ascaw
dt RS Y RT
2
kmt = (SRDd + ng )_1 ( 8RT )1/2
interfacial processes by Schwartz (1986) g Qv



RUTGERS Kinetic PreProcessor (KPP)*

translates chemical mechanism (e.g., species, Rxns, rate coefficients) to
Fortran90 ¢ exploits Jacobian sparsity ®* modularity allows “easy”
incorporation of new chemical mechanisms and/or solvers ® can generate the
tangent linear or adjoint

Integrator, Equations
precision, file.eqn
language, Fortran90
driver, species Species file.spc modules
rate - - - and
: subroutines

expressions,
‘: d KPP
inline . o

., input/definition
code” etc.

files.kpp

V. Damian, A. Sandu, M. Damian, F. Potra, and G.R. Carmichael, ""The Kinetic
PreProcessor KPP -- A Software Environment for Solving Chemical Kinetics", Computers
and Chemical Engineering, 26(11), 1567-1579, 2002.



RUTGERS

Modeled processes and rate coefficients

Process Equations Rate Other information
coefficients
Gas-Liquid LN, k, =KW, 32 -1
ohase 0i 7 Vagi K (s vola,r) 4a
transfer vol,, 3D, 300{
Liquid-Gas C & yC K.,
h ag,i g.i kb =
phase H. RT
transfer T
Dissociation C sCL iHY | ko= AH 1 1
— al al literature Ked;r = Ked; g el Rl
Association Caq +H? ——)C value R (T Tref
independent | Activity coefficients are rolled into the
of T forward and backward rates as appropriate
ki =Keqk,
Aitken Coor i an L)Caq : o a is the attachment rate for interstitial
scavenging B | aerosols (an input to AQCHEM)
Wet | Wdep _ WT,,. x CTHK x3600.d0
deoosit Caal >Cup, Wdep = J(sec) = —4ve 0.d0
eposition T ot Cwas PRCRATE
was
Chemical Caq L+ Caq , %Caq 3 Kexn Complex rate coefficients that are set
kinetics according to 5.0.2 base mechanism




RUTGERS  Impact of droplet diameter and initial pH

DIAMETER EFFECTS pH, EFFECT
sulfate Cloud SOA sulfate
7 :F'/J:f )//
g 30 e 30
=1 S ™ /
n 20 // %_ 20 y
5 / O
o 10 A £ 10
y=0.9298x 0.2, ;4= = y=0.8133x - y=0.8729x
g Re=0.9543 YT Re=0.8572 | RE0.9356
10 20 30 0.2 0.8 1.4 10 20 30

Initial pH =7
Ddroplet = 5“m P

Cloud droplet size changes k., and impacts SO, and SOA

Suggests continued development of linkages between microphysics
(e.g., effective cloud droplet radius, activated aerosol fraction) and
agueous phase chemistry is needed

cloud



RUTGERS Impacts of AQCHEM-KMT in CMAQ

ol J-0.01"
ng m3

Typically < 10% (max: 16%) A in monthly average surface SO,

Hourly differences can be more substantial: max. ASO,, = 16 pg/m3



RUTGERS

Explicit Oxidation Mechanism

Current SOA reactions in CMAQ

GLY+OH -> 0.04 * ORGC k. =3.0E10M* 5™
MGLY + OH = 0.04 * ORGC k,=3.0E10 M= s+

Explicit reactions in new box model

GCOL + OH - GCOLAC + H,0 + HO,
GCOL + OH < GLY + HO,

GCOLAC + OH = GLYAC + H* + HO,
GCOLAC + OH = GLYAC + HO,

GLY + OH =» GLYAC + HO,

GLYAC + OH - OXLAC + H,0 + HO,

k,=5.068 M st
k, = 1.0E9 M1 st
k, = 6.0E8 M1 s
k, = 8.6E8 M 5!
ky = 1.1E9 * EXP(-1516/RT) M s
k, = 1.568 M1 st

GLYAC + OH = OXLAC + H,0 + HO,

OXLAC + 2 OH = 2€0, + 2 H,0

OXLAC + OH = CO, + CO, + 2 H,0

OXLAC* + OH = CO, + CO," + OH

MGLY + OH = 0.92 PYRAC + 0.08 GLYAC + HO, + H,0
PYRAC + OH = CH,CO,H + CO, + HO,

k,=1.2E9 M5t
k,=14E6 M1s?
k, =4.7E7 Mgt
k,=7.7E6 M st
k,=7.0EB M1 gt
k,=6.0E7 M1st

PYRAC + OH - CH,CO, + CO, + HO, k, = 6.067 M st
CH,CO,H + OH = 0.85 GLYAC + 0.15 CH,OHYD k, = 1.6E7 M st
CH,CO, + OH - 0.85 GLYAC + 0.15 CH,OHYD k, =8.5E7 M st

CH,OHYD + OH > HCOOH + H,0 + HO,
HCOOH + OH = H,0 + HO,

GCOL - glycolaldehyde

GLY — glyoxal

OXLAC — oxalic acid

PYRAC — pyruvic acid

CH,OHYD - hydrated formaldehyde

k, = 1.1E9 * EXP{-1020/RT) M* 51
k, = 1.2E8 * EXP(-990/RT) M1 s

GCOLAC — glycolic acid
GLYAC - glyoxylic acid
MGLY — methylglyoxal
CH;CO,;H — acetic acid



Explicit agueous organic chemistry
Introduces pH dependence to SOA

ISOPRENE + oxidants (*OH, Os;, NO;)

Gas phase ]
HOCH,CHO CHOCHO CH;COCHO
(glycolaldehyde) (glyoxal) (methylglyoxal)
HOCH,CH(OH), —* (OH),CHCH(OH), CH5;COCH(OH),

Jv (hydrated glyoxal) \
MRGCH,CO0H | "cEcBT:BGﬁ "i
! (9|VC0|IC acid) § (yuwc aqd)

l(glyoxyllc acn:l). I (_age_tlfgg&_\)i
_______ = [em———————
| HOOCCOOH 1 1 CHy(OH), 1
> i
Phase transfers | (oxalic acid) | (formaldehyde) I
—> Rxs with «OH 4\ ----1 -----

Aqueous phase €O, f HCOOH |

Carlton GRL 2006, AE 2007; Altieri EST 2006, AE 2008; Perri AE 2009



RUTGERS

Current Yield Approach Explicit Chemistry
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Explicit chemistry does not perturb the averages, but
Increases variability in cloud SOA predictions



RUTGERS Average SOA

cloud

ng m>

AQChem-KMT KPP CMAQ simulations:
explicit GLY, MGLY oxidation — psuedo 15t order approximation

10 day average during July 2013



RUTGERS Average Total SOA

surface

pg m=
AQChem-KMT KPP CMAQ simulations:
explicit GLY, MGLY oxidation — psuedo 15t order approximation

10 day average during July 2013



I{UTGER.S Conclusions and Future Directions

New solver for aqueous chemistry implemented in CMAQ,
available through CMAS

Droplet size dependent chemistry changes SO, and cloud
SOA production amounts and variability

Explicit Chemistry for organic species changes average cloud
SOA values at the surface and aloft and introduces a pH
dependence

Explicit calculation of the adjoint for cloud chemistry is now
possible.



RUTGERS BC Inspired ice chemistry

From CMAQ subroutine scavwdep.F:

... NOTE: for now, scavenging coefficients are computed for only
the liquid water content, not on the total water content
therefore, no ice phase scavenging is considered at this
time, but it should be added in the future!

0000




RUTGERS Ice chemistry

H204()

000

o060 Adsorbed gases
l react to form SO,

Ice
Particle

T HzOz and SOz
000 adsorb to cloud ice
L X

SO,(g)



HNO3(g) 25% Partitioning Case

HNQO; adsorbs to
Ice surface of the Ice

Particle ) =

~~

100% Partitioning Case



RUTGERS Differences in Gas Phase HNO;

Differences in gas phase HNO3; concentrations between 100% partitioning case and
LNO, case at 400 mb for 0Z on August 12,

a) Absolute Differences b) Percent Differences

1o 1054 100W a5y 90y 85 80W oW TOH B 1o 1054 100W a5y 90y 85 80W oW TOH B

-0 -0od -006 -0.04 002 0.0z Q.04 008 008 O =25 - -15 -1 -5 5 10 15 20 25

Maximum decreases in gas phase HNO; were near 0.10 ppb or 25%



RUTGERS Conclusions

 HNO; partitioning to ice Is an important process in
the atmosphere
* Decreases in gas phase HNO; were as high as 25%
* This resulted in decreases in NO, and HONO near 10%

 Increases in particulate nitrate mass were as high as
0.15 pg/m?®

* Very little sulfate formed on ice: the reaction as
Implemented did not change predictions



RUTGERS BC inspired emissions

SMOKE vs. Carlton Group - PMaz.5 Emissions
B.L. England - New Jersey Coal Plant
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RUTGERS SUMMER COMPARISON

SMOKE vs. Carlton Group - PMa2.5s Emissions

B.L. England - New Jersey Coal Plant ——SMOKE/NE|
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RUTGERS CMAQ RESULTS

Ambient PM, . Maximum Increase
July 12, 2006 — July 25, 2006

100

86

71

57

43

29 1

Percent Increase

14

Maximum increases of >100% at some sites

34



RUTGERS CMAQ RESULTS

Ambient PM, . Maximum Increase
July 12, 2006 — July 25, 2006

Maximum Increase > 6 ug m= - 40% of annual standard

35



RUTGERS

Conclusions:

PM, . emissions increase up to 500% during heat waves
compared to base case SMOKE calculated emissions

Up to 2x ambient PM, ; mass concentrations during heat wave
when emissions are re-temporalized

Robust inclusion of 520 unmatched CEMs and plants with
multiple fuels and evaluating findings.
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