

Vernay Laboratories, Inc. Yellow Springs, Ohio Project No. 0292.11.28

TABLE 1: Investigative Aqueous VOC Analytical Data (Q1-2006)

[**-	CW01-01	CW01-01	CW01-02	CW01-02					
Sample ID	1/18/2006	2/13/2006	1/18/2006	2/13/2006	MW01-02	MW01-04	MW01-04	MW01-04CD	MW01-10
Sample Date (mm/dd/yyyy)	GW	GW	GW	GW	2/15/2006	2/14/2006	2/14/2006	2/14/2006	2/15/2006
Sample Type	Upper/Middle	Upper/Middle	Upper/Middle/L		GW	GW	GWDUP	GW	GW
Screened Interval	* *	CA	ower CA		Upper CA	Upper CA	Upper CA	Middle CA	Upper CA
Reporting Units	CA μg/L	μg/L	μg/L	Lower CA µg/L	μg/L	μg/L	μg/L	μg/L	μg/L
1,1,1-TRICHLOROETHANE	< 10	<u>με/Σ</u> < 5	μ <u>υ</u> < 5	< 5	< 91	< 8	< 8	< 14	< 56
1,1,2,2-TETRACHLOROETHANE	< 10	< 5	< 5	< 5	< 91	< 8	< 8	< 14	< 56
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE					< 91	78	79	290	120
1,1,2-TRICHLOROETHANE	< 10	< 5	< 5	< 5	< 91	< 8	< 8	< 14	< 56
1,1-DICHLOROETHANE	< 10	< 5	< 5	< 5	< 91	< 8	< 8	< 14	< 56
1.1-DICHLOROETHENE	< 10	< 5	< 5	< 5	< 91	< 8	< 8	< 14	< 56
1,2,4-TRICHLOROBENZENE					< 91	< 8	< 8	< 14	< 56
1,2-DIBROMO-3-CHLOROPROPANE					< 180	< 16	< 16	< 29	< 110
1.2-DIBROMOETHANE		l			< 91	< 8	< 8	< 14	< 56
1,2-DICHLOROBENZENE	< 10	< 5	< 5	< 5	< 91	< 8	< 8	< 14	< 56
1,2-DICHLOROETHANE	< 10	< 5	< 5	< 5	< 91	< 8	< 8	< 14	< 56
1,2-DICHLOROETHENE (TOTAL)	< 10	8.2	< 5	< 5	-2.		- · · ·		
1,2-DICHLOROPROPANE	< 10	< 5	< 5	< 5	1800	< 8	< 8	< 14	< 56
1,3-DICHLOROBENZENE	< 10	< 5	< 5	< 5	< 91	< 8	< 8	< 14	< 56
1,4-DICHLOROBENZENE	< 10	< 5	< 5	< 5	< 91	< 8	< 8	< 14	< 56
2-BUTANONE (MEK)					< 910	< 80	< 80	< 140	< 560
2-HEXANONE					< 910	< 80	< 80	< 140	< 560
4-METHYL-2-PENTANONE					< 910	< 80	< 80	< 140	< 560
ACETONE	< 100	< 50	< 50	< 50	260 J B	14 J B	14 J B	29 J B	150 J B
BENZENE	< 10	< 5	< 5	< 5	< 91	< 8	< 8	< 14	< 56
BROMODICHLOROMETHANE	< 10	< 5	< 5	< 5	< 91	< 8	< 8	< 14	< 56
BROMOFORM	< 10	< 5	< 5	< 5	< 91	< 8	< 8	< 14	< 56
BROMOMETHANE	< 10	< 5	< 5	< 5	< 91	< 8	< 8	< 14	< 56
CARBON DISULFIDE	1				< 91	< 8	< 8	< 14	< 56
CARBON TETRACHLORIDE	< 10	< 5	< 5	< 5	< 91	< 8	< 8	< 14	< 56
CHLOROBENZENE	< 10	< 5	< 5	< 5	< 91	< 8	< 8	< 14	< 56
CHLOROETHANE	< 10	< 5	< 5	< 5	< 91	< 8	< 8	< 14	< 56
CHLOROFORM	< 10	< 5	< 5	< 5	< 91	< 8	< 8	< 14	< 56
CHLOROMETHANE	< 10	< 5	< 5	< 5	< 91	< 8	< 8	< 14	< 56
CIS-1,2-DICHLOROETHENE	< 10	8.2	< 5	< 5	23 J	11	13	< 7.1	240
CIS-1,3-DICHLOROPROPENE	< 10	< 5	< 5	< 5	< 91	< 8	< 8	< 14	< 56
CYCLOHEXANE					< 91	< 8	< 8	< 14	< 56
DIBROMOCHLOROMETHANE	< 10	< 5	< 5	< 5	< 91	< 8	< 8	< 14	< 56
DICHLORODIFLUOROMETHANE					< 91	< 8	< 8	< 14	< 56
ETHANE									
ETHENE									
ETHYLBENZENE	< 10	< 5	< 5	< 5	< 91	< 8	< 8	< 14	< 56
FREON 113	300	380	< 5	< 5					
ISOPROPYLBENZENE	ļ				< 91	< 8	< 8	< 14	< 56
METHANE									
METHYL ACETATE			ļ		< 910	< 80	< 80	< 140	< 560
METHYL TERT-BUTYL ETHER			ļ		< 450	< 40	< 40	< 71	< 280
METHYLCYCLOHEXANE					< 91	< 8	< 8	< 14	< 56
METHYLENE CHLORIDE	34	< 5	< 5	< 5	20 J B	< 8	< 8	< 14	11 J B
STYRENE	1		<u> </u>		< 91	< 8	< 8	< 14	< 56
TETRACHLOROETHENE	370	490	69	70	< 91	160	160	260	950
TOLUENE	< 10	< 5	< 5	< 5	< 91	< 8	< 8	< 14	< 56
TRANS-1,2-DICHLOROETHENE	< 10	< 5	< 5	< 5	< 45	< 4	<4	< 7.1	< 28
TRANS-1,3-DICHLOROPROPENE	< 10	< 5	< 5	< 5	< 91	< 8	< 8	< 14	< 56
TRICHLOROETHENE	28	33	< 5	< 5	< 91	19	18	15	37 J
TRICHLOROFLUOROMETHANE	< 10	< 5	< 5	< 5	< 91	< 8	< 8	< 14	< 56
VINYL CHLORIDE	< 10	< 5	< 5	< 5	< 91	< 8	< 8	< 14	56
XYLENES (TOTAL)	l	l	L		< 91	< 8	< 8	< 14	< 56

VOC = Volatile organic compound GW = Ground Water QDUP = Duplicate Sample CA = Cedarville Aquifer μ g/L = micrograms per liter See Table 3 in the Fourth Quarter 2005 Progress Report for definitions of data qualifiers.

The Payne Firm, Inc.

Vernay Laboratories, Inc. Yellow Springs, Ohio Project No. 0292.11.28

TABLE 1: Investigative Aqueous VOC Analytical Data (Q1-2006)

			l	I				
Sample ID	MW01-13	MW02-03	MW02-03CD	MW02-03SE	MW02-06	MW02-06CD	MW02-08	MW02-08CD
Sample Date (mm/dd/yyyy)	2/16/2006	2/14/2006	2/14/2006	2/14/2006	2/15/2006	2/15/2006	2/15/2006	2/15/2006
Sample Type	GW	GW	GW	GW	GW	GW	GW	GW
Screened Interval	Storm Backfill	Upper CA	Middle CA	Lower CA	Upper CA	Middle CA	Upper CA	Middle CA
Reporting Units	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
1,1,1-TRICHLOROETHANE	< 56	< 1	< 1	< 1	< 2.5	< 1	< 1	< 6.7
1,1,2,2-TETRACHLOROETHANE	< 56	< 1	< 1	< 1	< 2.5	<1	< 1	< 6.7
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	< 56	< 1	< 1	< 1	44	< 1	28	110
1,1,2-TRICHLOROETHANE	< 56	< 1	< 1	< 1	< 2.5	< 1	< 1	< 6.7
1,1-DICHLOROETHANE	< 56	< 1	< 1	< 1	< 2.5	< 1	0.22 J	3.1 J
1,1-DICHLOROETHENE	< 56	< i	< 1	< 1	< 2.5	< 1	< 1	< 6.7
1,2,4-TRICHLOROBENZENE	< 56	< I	< 1	< 1	< 2.5	<1	< 1	< 6.7
1,2-DIBROMO-3-CHLOROPROPANE	< 110	< 2	< 2	< 2	< 5	< 2	< 2	< 13
1,2-DIBROMOETHANE	< 56	< 1	< 1	< 1	< 2.5	<1	< 1	< 6.7
1,2-DICHLOROBENZENE	< 56	< 1	< 1	< 1	< 2.5	<1	< 1	< 6.7
1,2-DICHLOROETHANE	< 56	< 1	< 1	< 1	< 2.5	< 1	<1	< 6.7
1,2-DICHLOROETHENE (TOTAL)								
1,2-DICHLOROPROPANE	< 56	< 1	<1	<1	< 2.5	<1	<1	< 6.7
1,3-DICHLOROBENZENE	< 56	<1	< 1	< 1	< 2.5	< 1	< 1	< 6.7
1,4-DICHLOROBENZENE	< 56	< 1	<1	< 1	< 2.5	< 1	< 1	< 6.7
2-BUTANONE (MEK)	< 560	< 10	< 10	< 10	< 25	< 10	< 10	< 67
2-HEXANONE	< 560	< 10	< 10	< 10	< 25	< 10	< 10	< 67
4-METHYL-2-PENTANONE	< 560	< 10	< 10	< 10	< 25	< 10	< 10	< 67
ACETONE	160 J B	1 J B	1.2 J B	0.75 J B	8.2 J B	< 10	1.8 J B	9 J B
BENZENE	< 56	< 1	<1	<1	< 2.5	<1	< 1	< 6.7
BROMODICHLOROMETHANE	< 56	< 1	<1	<1	< 2.5	<1	< 1	< 6.7
BROMOFORM	< 56	< 1	<1	<1	< 2.5	<1	<1	< 6.7
BROMOMETHANE	< 56	<1	< 1	<1	< 2.5	<1	<1	< 6.7
CARBON DISULFIDE	< 56	< 1	<1	<1	< 2.5	<1	<1	< 6.7
CARBON TETRACHLORIDE	< 56	<1	< 1	<1	< 2.5	<1	<1	< 6.7
CHLOROBENZENE	< 56	<1	<1	<1	< 2.5	<1	< 1	< 6.7
CHLOROETHANE	< 56	<1	<1	<1	< 2.5	<1	<1	< 6.7
CHLOROFORM	< 56	<1	<1	<1	< 2.5	< 1	< 1	< 6.7
CHLOROMETHANE	< 56	0.15 J	<1	0.19 J	< 2.5	0.17 J	0.28 J	< 6.7
CIS-1,2-DICHLOROETHENE	23 J	< 0.5	< 0.5	< 0.5	1.7	< 0.5	0.75	6.7
CIS-1.3-DICHLOROPROPENE	< 56	<1	<1	<1	< 2.5	< 1	<1	< 6.7
CYCLOHEXANE	< 56	<1	<1	< 1	< 2.5	<1	<1	< 6.7
DIBROMOCHLOROMETHANE	< 56	<1	<1	<1	< 2.5	<1	<1	< 6.7
DICHLORODIFLUOROMETHANE	< 56	<1	< 1	< 1	< 2.5	<1	<1	< 6.7
ETHANE				7.	0.32 J	< 0.5	< 0.5	< 0.5
ETHENE					< 0.5	< 0.5	< 0.5	0.21 J
ETHYLBENZENE	< 56	< 1	<1	< 1	< 2.5	<1	<1	< 6.7
FREON 113				1				- 0.7
ISOPROPYLBENZENE	< 56	< 1	<1	< 1	< 2.5	<1	< 1	< 6.7
METHANE	1		 	''-	1.4	5.5	0.72	0.17 J
METHYL ACETATE	< 560	< 10	< 10	< 10	< 25	< 10	< 10	< 67
METHYL TERT-BUTYL ETHER	< 280	< 5	< 5	< 5	< 12	< 5	< 5	< 33
METHYLCYCLOHEXANE	< 56	<1	<1	<1	< 2.5	<1	<1	< 6.7
METHYLENE CHLORIDE	12 J B	<1	<1	<1	0.56 J B	<1	<1	< 6.7
STYRENE	< 56	<1	<1	<1	< 2.5	<1	<1	< 6.7
TETRACHLOROETHENE	1000	<1	<1	<1	18	<1	11	66
TOLUENE	< 56	<1	<1	<1	< 2.5	<1	<1	< 6.7
TRANS-1,2-DICHLOROETHENE	< 28	< 0.5	< 0.5	< 0.5	< 1.2	< 0.5	< 0.5	< 3.3
TRANS-1,3-DICHLOROPROPENE	< 56	<1	<1	<1	< 2.5	< 0.5	< 1	< 6.7
TRICHLOROETHENE	25 J	<1	<1	<1	4.9	<1	2.7	27
TRICHLOROFLUOROMETHANE	< 56	<1	<1	<1	< 2.5	<1	<1	< 6.7
VINYL CHLORIDE	< 56	<1	<1	<1		<1		
XYLENES (TOTAL)	< 56	<1	<1	<1	< 2.5 < 2.5	<1	<1	< 6.7 < 6.7
ATLEMES (TOTAL)	~ 30	<u> </u>	1 1	<u> </u>		. ~1	<u> </u>	<u> </u>

VOC = Volatile organic compound GW = Ground Water QDUP = Duplicate Sample

CA = Cedarville Aquifer

hg/L = micrograms per liter
See Table 3 in the Fourth Quarter 2005 Progress Report for definitions of data qualifiers.

Vernay Laboratories, Inc.

Yellow Springs, Ohio Project No. 0292.11.28

TABLE 1: Investigative Aqueous VOC Analytical Data (Q1-2006)

Sample Type								
Sample Type	Sample ID	MW02-08SE	MW02-09	MW02-10	MW02-10CD	MW02-11	MW02-11SE	RW01-05
Section Direct Lower CA Upper CA Upp	Sample Date (mm/dd/yyyy)							
Reporting Units	Sample Type	GW	GW	GW	GW	GW	GW	GW
	Screened Interval	i .	Upper CA	Upper CA	Middle CA	Upper CA	Lower CA	Upper CA
1.1.22-TERRACHLOROETHANE	Reporting Units	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
1.1.2-TRICHLOROETHANE	1,1,1-TRICHLOROETHANE	< 1	< 2	< 1	<1	<1	< 1	< 170
	1,1,2,2-TETRACHLOROETHANE	< 1	< 2	< 1	< 1	< 1	< 1	< 170
1.1-DICHLOROETHENE	1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	< 1	33	4.7	< 1	0.28 J	< 1	46 J
IL-DICHLOROBENZENE	1,1,2-TRICHLOROETHANE	< 1	< 2	< 1	< 1	< 1	<1	< 170
12.4-TRICHLOROBENZENE	1,1-DICHLOROETHANE	<1	0.6 J	< 1	< 1	< 1	<1	< 170
12-DIBROMO-3-CHLOROPROPANE	1,1-DICHLOROETHENE	< 1	< 2	< 1	< 1	< 1	<1	< 170
12-DIBROMOETHANE	1,2,4-TRICHLOROBENZENE	<1	< 2	< 1	< 1	< 1	<1	< 170
12-DIBROMOETHANE	1,2-DIBROMO-3-CHLOROPROPANE	< 2	< 4	< 2	< 2	< 2	< 2	< 330
12-DICHLOROETHANE		<1	< 2	< 1	< 1	< 1	< 1	< 170
12-DICHLOROETHANE	1.2-DICHLOROBENZENE	< 1	< 2	< 1	<1	< 1	<1	< 170
1.2-DICHLOROFITHENE (TOTAL)		<1	< 2	< 1	< 1	<1	< 1	
12-DICHLOROPROPANE						_		***
1.3-DICHLOROBENZENE		< 1	< 2	< 1	< 1	< 1	< 1	< 170
I_ADICHLOROBENZENE								
2-BUTANONE (MEK)								
2-HEXANONE								
HMETHYL-2-PENTANONE								
ACETIONE								
BENZENE								
BROMODICHLOROMETHANE					-}			
BROMOFORM					· · · · · · · · · · · · · · · · · · ·			
BROMOMETHANE								
CARBON DISULFIDE								
CARBON TETRACHLORIDE								
CHLOROBENZENE								
CHLOROETHANE								
CHLOROFORM								*******
CHLOROMETHANE								_
CIS-1,2-DICHLOROETHENE <0.5			,					
CIS-1,3-DICHLOROPROPENE <1					+			
CYCLOHEXANE <1				1				
DIBROMOCHLOROMETHANE								
DICHLORODIFLUOROMETHANE								
ETHANE < 0.5 < 0.5 ETHENE < 0.5						-	 	
ETHENE		< 1			<1	< 1	<1	< 170
ETHYLBENZENE < 1 < 2 < 1 < 1 < 1 < 1 < 1 < 1 < 170 FREON 113 ISOPROPYLBENZENE < 1 < 2 < 1 < 1 < 1 < 1 < 1 < 1 < 170 METHANE								
FREON 113 SIOPROPYLBENZENE < 1 < 2 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1					<u> </u>		L	
SOPROPYLBENZENE		<1	< 2	< 1	< 1	< 1	< 1	< 170
METHANE 0.38 J 0.71 METHYL ACETATE <10							<u> </u>	
METHYL ACETATE <10		<1			< 1	< 1	< 1	< 170
METHYL TERT-BUTYL ETHER <5 <10 <5 <5 <5 <5 <830 METHYLCYCLOHEXANE <1								
METHYLCYCLOHEXANE <1								
METHYLENE CHLORIDE <1 <2 <1 <1 <1 <170 STYRENE <1				· · · · · · · · · · · · · · · · · · ·				
STYRENE <1 <2 <1 <1 <1 <170 TETRACHLOROETHENE <1		· · · · · · · · · · · · · · · · · · ·					< 1	< 170
TETRACHLOROETHENE <1 13 2.5 <1 <1 <1 5400 TOLUENE <1				< 1		< 1	< 1	< 170
TOLUENE <1 <2 <1 <1 <1 <1 <170 TRANS-1,2-DICHLOROETHENE <0.5			< 2			< 1	< 1	< 170
TRANS-1,2-DICHLOROETHENE < 0.5 < 1 < 0.5 < 0.5 < 0.5 < 0.5 < 83 TRANS-1,3-DICHLOROPROPENE < 1	TETRACHLOROETHENE	< 1	13	2.5	< 1	< 1	< 1	5400
TRANS-1,3-DICHLOROPROPENE <1 <2 <1 <1 <1 <170 TRICHLOROETHENE <1		< 1	< 2	< 1	< 1	< 1	< 1	< 170
TRICHLOROETHENE <1 6.1 0.83 J <1 0.52 J <1 320 TRICHLOROFLUOROMETHANE <1		< 0.5	< 1	< 0.5	< 0.5	< 0.5	< 0.5	< 83
TRICHLOROETHENE <1 6.1 0.83 J <1 0.52 J <1 320 TRICHLOROFLUOROMETHANE <1	TRANS-1,3-DICHLOROPROPENE	< 1	< 2	< 1	< 1	< 1	< 1	< 170
TRICHLOROFLUOROMETHANE <1	TRICHLOROETHENE	<1	6.1	0.83 J	< 1	0.52 J	< 1	
VINYL CHLORIDE <1 <2 <1 <1 <1 <170	TRICHLOROFLUOROMETHANE	< 1						
					<u> </u>			
	XYLENES (TOTAL)		< 2	<1	-	<1	<1	< 170

VOC = Volatile organic compound GW = Ground Water QDUP = Duplicate Sample

CA = Cedarville Aquifer

Pag/L = micrograms per liter
See Table 3 in the Fourth Quarter 2005 Progress Report for definitions of data qualifiers.

Vernay Laboratories, Inc.

Yellow Springs, Ohio Project No. 0292.11.26

TABLE 2: Aqueous QA/QC VOC Analytical Data (Q1-2006)

Sample ID		EQUIPMENT RINSATE	FIELD BLANK	TRIP BLANK
Sample Date (yyyy/mm/dd)		2/15/2006	2/14/2006	2/14/2006
Lab ID	UNITS	A6B170112018	A6B170112011	A6B170112012
Reporting Units		μg/L	1	
1,1,1-TRICHLOROETHANE	UG/L	µg/L <1	μg/L < 1	μg/L < 1
1,1,2,2-TETRACHLOROETHANE	UG/L	<1	<1	<1
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	UG/L	<1		
1,1,2-TRICHLOROETHANE	UG/L	<1	<1 <1	< 1
1,1-DICHLOROETHANE	UG/L	<1		< 1
1,1-DICHLOROETHANE	UG/L		< 1	< 1
-		<1	< 1	< 1
1,2,4-TRICHLOROBENZENE	UG/L	<1	<1	< 1
1,2-DIBROMO-3-CHLOROPROPANE	UG/L	<2	< 2	< 2
1,2-DIBROMOETHANE	UG/L	<1	< 1	< 1
1,2-DICHLOROBENZENE	UG/L	<1	< 1	< 1
1,2-DICHLOROETHANE	UG/L	<1	< 1	< 1
1,2-DICHLOROPROPANE	UG/L	<1	< 1	< 1
1,3-DICHLOROBENZENE	UG/L	< 1	< 1	< 1
1,4-DICHLOROBENZENE	UG/L	< 1	< 1	< 1
2-BUTANONE (MEK)	UG/L	< 10	< 10	< 10
2-HEXANONE	UG/L	< 10	< 10	< 10
4-METHYL-2-PENTANONE	UG/L	< 10	< 10	< 10
ACETONE	UG/L	2.7 J B	1.2 J B	1.4 J B
BENZENE	UG/L	< 1	< 1	< 1
BROMODICHLOROMETHANE	UG/L	<1	< 1	<1
BROMOFORM	UG/L	< 1	< 1	< 1
BROMOMETHANE	UG/L	< 1	< 1	< 1
CARBON DISULFIDE	UG/L	< 1	< 1	<1
CARBON TETRACHLORIDE	UG/L	<1	< 1	<1
CHLOROBENZENE	UG/L	<1	< 1	<1
CHLOROETHANE	UG/L	<1	<1	<1
CHLOROFORM	UG/L	<1	<1	<1
CHLOROMETHANE	UG/L	<1	0.21 J	<1
CIS-1,2-DICHLOROETHENE	UG/L	< 0.5	< 0.5	< 0.5
CIS-1,3-DICHLOROPROPENE	UG/L	<1	<1	<1
CYCLOHEXANE	UG/L	<1	<1	<1
DIBROMOCHLOROMETHANE	UG/L	<1	<1	<1
DICHLORODIFLUOROMETHANE	UG/L	<1	<1	<1
ETHYLBENZENE	UG/L	<1	<1	<1
ISOPROPYLBENZENE	UG/L	<1	<1	<1
METHYL ACETATE	UG/L	<10	< 10	< 10
METHYL TERT-BUTYL ETHER	UG/L	< 5	< 5	< 10 < 5
METHYLCYCLOHEXANE	UG/L	<1	<1	
METHYLENE CHLORIDE	UG/L	<1		<1
STYRENE	UG/L UG/L		<1	<1
TETRACHLOROETHENE	UG/L	<1	<1	<1
TOLUENE	UG/L UG/L	<1	<1	< 1
TRANS-1,2-DICHLOROETHENE		<1	<1	< 1
TRANS-1,3-DICHLOROPROPENE	UG/L	< 0.5	< 0.5	< 0.5
TRICHLOROETHENE	UG/L	<1	<1	< 1
	UG/L	<1	<1	< 1
TRICHLOROFLUOROMETHANE	UG/L	<1	< 1	< 1
VINYL CHLORIDE	UG/L	<1	< 1	< 1
XYLENES (TOTAL)	UG/L	< 1	<1	< 1

VOC = Volatile Organic Compounds

ID = sample Location

QA/QC = Quality Control/Quality Assurance

 μ g/L = micrograms per liter

See Table 3 in the Fourth Quarter 2005 Progress Report for definitions of data qualifiers.

Vernay Laboratories, Inc.

Yellow Springs, Ohio Project No. 0292.11.26

TABLE 3: List of Data Qualifiers

Severn Trent Labo	ratory	Severn Trent Laboratory
Qualification Fl	ags	Qualification Flag Description
	В	Estimated result. Result is less than the reporting limit.
General Chemistry	G	Interference
	J	Target analyte at a reportable level
	*	Relative percent difference (RPD) is outside stated control limits
	В	Estimated result. Result is less than the reporting limit.
	J	Target analyte at a reportable level
		The recovery and RPD were not calculated because the sample amount was greater than four
Metals	MSB	times the spike amount.
	E	Matrix interference
		Serial dilution of a digestate in the analytical batch indicates that physical and chemical
	L	interferences are present.
	N	Spiked analyte recovery is outside stated control limits
······	A	Spiked analyte recovery is outside stated control limits
	В	Target analyte at a reportable level
	DIL	Presence of interfering analytes
	J	Estimated results. Result is less than that reporting limit.
	P	The percent difference between the original and confirmation analyses is greater than 25%.
PAHs		
	PF	The percent difference between the original and confirmation analyses is greater than 50%.
	G	Interference
	PG	The percent difference between the original and confirmation analyses is greater than 40%.
		Serial dilution of a digestate in the analytical batch indicates that physical and chemical
	L	interferences are present.
	A	Spiked analyte recovery is outside stated control limits
PCBs	l	
~~~	P	The percent difference between the original and confirmation analyses is greater than 25%.
	A	Spiked analyte recovery is outside stated control limits
Pesticides	P	The percent difference between the original and confirmation analyses is greater than 25%.
	PG	The percent difference between the original and confirmation analyses is greater than 40%.
	A	Spiked analyte recovery is outside stated control limits
	_	T 1100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
SVOCs	P	The percent difference between the original and confirmation analyses is greater than 25%.
	В	Target analyte at a reportable level
	E	Estimated result. Result concentration exceeds the calibration range.
	J	Estimated results. Result is less than that reporting limit.
	A	Spiked analyte recovery is outside stated control limits
	P	The percent difference between the entired and configuration and the second of the sec
VOCs	B	The percent difference between the original and confirmation analyses is greater than 25%.  Target analyte at a reportable level
	E	Estimated result. Result concentration exceeds the calibration range.
	J	Estimated result. Result concentration exceeds the calibration range.  Estimated results. Result is less than that reporting limit.
		Lesumated results. Result is less than that reporting thint.

Payne Firm Qualification Flags	Payne Firm Qualification Flag Description
j	The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
j-	The result is an estimated quantity, but the result may be biased low.
j+	The result is an estimated quantity, but the result may be biased high.
n	The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification".
nj	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.
r	The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.
u	The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
uj	The analyte was not detected above the reporting sample quantitation limit. However, the reported quantitation limit is approx and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

o do o di Loria di Regionali, di Bartina e Regionali di Bartina di Salara di Salara di Salara di Salara di Sal



#### Vernay Laboratories, Inc. Yellow Springs, Ohlo Project No. 0292.11.26

TABLE 4: Quarterly Water Level Measurements (Q1-2006) January-March

Well ID	Location	Well Type	Easting (X)	Northing (Y)	Measurement Date (mm/dd/yyyy)	Potentiometric Elevation (feet msl)
CW01-01	Vernay Plant 2/3 Facility	Cedarville Aquifer Extraction Well	1573909.28	659427.70	1/18/2006 2/13/2006	975.00 973.56
CW01-02	Vernay Plant 2/3 Facility	Cedarville Aquifer Extraction Well	1573937.31	659862.08	1/18/2006	1015.54
MW01-01	Vernay Plant 2/3 Facility	Upper Cedarville Aquifer Monitoring Well	1573585.54	659816.84	2/13/2006 2/13/2006	1015.61
MW01-02	Vernay Plant 2/3 Facility	Upper Cedarville Aquifer Monitoring Well	1573332.98	659681.44	2/13/2006	1022.91
MW01-02CD	Vernay Plant 2/3 Facility	Middle Cedarville Aquifer Monitoring Well	1573333.17	659672.35	2/13/2006	1022.92
MW01-02SE	Vernay Plant 2/3 Facility	Lower Cedarville Aquifer Monitoring Well	1573199.63	659663.91	2/13/2006	1023.24
MW01-03 MW01-03CD	Vernay Plant 2/3 Facility Vernay Plant 2/3 Facility	Upper Cedarville Aquifer Monitoring Well  Middle Cedarville Aquifer Monitoring Well	1573530.22 1573520.79	659251.03 659255.35	2/13/2006 2/13/2006	1022.21
MW01-03CD	Vernay Plant 2/3 Facility  Vernay Plant 2/3 Facility	Upper Cedarville Aquifer Monitoring Well	1573901.97	659268.68	2/13/2006	1022.16
MW01-04CD	Vernay Plant 2/3 Facility	Middle Cedarville Aquifer Monitoring Well	1573897.44	659258.07	2/13/2006	1018.78
MW01-04SE	Vernay Plant 2/3 Facility	Lower Cedarville Aquifer Monitoring Well	1573887.97	659269.89	2/13/2006	1019.28
MW01-05	Vernay Plant 2/3 Facility	Upper Cedarville Aquifer Monitoring Well	1573925.45	659684.42	2/13/2006	1018.74
MW01-05CD	Vernay Plant 2/3 Facility	Middle Cedarville Aquifer Monitoring Well	1573925.66	659751.87	2/13/2006	1018.45
MW01-06 MW01-07	Vernay Plant 2/3 Facility Vernay Plant 2/3 Facility	Upper Cedarville Aquifer Monitoring Well Upper Cedarville Aquifer Monitoring Well	1573545.57 1573055.88	659442.63 659624.09	2/13/2006	1022.35 1024.04
MW01-08	Vernay Plant 2/3 Facility	Upper Cedarville Aquifer Monitoring Well	1573068.52	659382.90	2/13/2006	1024.04
MW01-09	Vernay Plant 2/3 Facility	Upper Cedarville Aquifer Monitoring Well	1573929.47	659836.73	2/13/2006	1018.32
MW01-10	Vernay Plant 2/3 Facility	Upper Cedarville Aquifer Monitoring Well	1573889.86	659463.59	2/13/2006	1013.85
MW01-11	Vernay Plant 2/3 Facility	Upper Cedarville Aquifer Monitoring Well	1573618.17	659503.28	2/13/2006	1022.11
MW01-12	Vernay Plant 2/3 Facility	Sanitary Sewer Backfill Monitoring Well	1573630.51	659849.72	2/13/2006	1020.25
MW01-13 MW01-14	Vernay Plant 2/3 Facility Vernay Plant 2/3 Facility	Storm Sewer Backfill Monitoring Well Upper Cedarville Aquifer Monitoring Well	1573955.00 1573906.56	659946.33 659334.31	2/13/2006	1015.56
MW01-14 MW02-01	Omar Circle	Upper Cedarville Aquifer Monitoring Well Upper Cedarville Aquifer Monitoring Well	1573572.00	659334.31	2/13/2006 2/13/2006	1017.11 1021.36
MW02-02	Omar Circle	Upper Cedarville Aquifer Monitoring Well	1573915.49	659077.11	2/13/2006	1018.83
MW02-03	Omar Circle	Upper Cedarville Aquifer Monitoring Well	1574273.15	659067.16	2/13/2006	1018.16
MW02-03CD	Omar Circle	Middle Cedarville Aquifer Monitoring Well	1574268.14	659063.73	2/13/2006	1018.59
MW02-03SE	Omar Circle	Lower Cedarville Aquifer Monitoring Well	1574278.03	659070.43	2/13/2006	1017.95
MW02-04	Wright Street	Upper Cedarville Aquifer Monitoring Well	1574806.07	658992.87	2/13/2006	1017.08
MW02-04CD	Wright Street	Middle Cedarville Aquifer Monitoring Well	1574776.07	658806.13	2/13/2006	1017.07
MW02-05 MW02-05CD	Wright Street Wright Street	Upper Cedarville Aquifer Monitoring Well Middle Cedarville Aquifer Monitoring Well	1574829.06 1574818.96	659289.69 659287.48	2/13/2006 2/13/2006	1016.95 1017.09
MW02-06	Wright Street	Upper Cedarville Aquifer Monitoring Well	1574850.88	659572.86	2/13/2006	1016.54
MW02-06CD	Wright Street	Middle Cedarville Aquifer Monitoring Well	1574841.40	659578.29	2/13/2006	1016.21
MW02-07	Wright Street	Upper Cedarville Aquifer Monitoring Well	1574881.44	659913.03	2/13/2006	1014.54
MW02-08	825 Dayton Street	Upper Cedarville Aquifer Monitoring Well	1574402.39	659398.85	2/13/2006	1018.30
MW02-08CD	825 Dayton Street	Middle Cedarville Aquifer Monitoring Well	1574406.69	659410.34	2/13/2006	1018.20
MW02-08SE MW02-09	825 Dayton Street Suncrest Drive	Lower Cedarville Aquifer Monitoring Well Upper Cedarville Aquifer Monitoring Well	1574413.01 1575052.49	659400.06 659803.02	2/13/2006	1018.41
MW02-10	Green Street	Upper Cedarville Aquifer Monitoring Well	1575413.32	659647,28	2/13/2006 2/13/2006	1014.37 1013.48
MW02-10CD	Green Street	Middle Cedarville Aquifer Monitoring Well	1575412.19	659635.97	2/13/2006	1013.75
MW02-11	825 Dayton Street	Upper Cedarville Aquifer Monitoring Well	1574251.91	659711.63	2/13/2006	1018.34
MW02-11SE	825 Dayton Street	Lower Cedarville Aquifer Monitoring Well	1574258.32	659709.88	2/13/2006	1018.24
MW02-12	Dayton Street	Storm Sewer Backfill Monitoring Well	1574524.35	660138.19	2/13/2006	1013.12
MW02-13 MW02-14	Omar Circle WS College Street	Upper Cedarville Aquifer Monitoring Well	1574299.35 1574410.26	658737.28 658442.67	2/13/2006	1018.26
MW02-14 MW02-14CD	WS College Street	Upper Cedarville Aquifer Monitoring Well  Middle Cedarville Aquifer Monitoring Well	1574410.26	658442.67	2/13/2006 2/13/2006	1017.03 1017.23
MW02-14CD	Green Street	Upper Cedarville Aquifer Monitoring Well	1575453.08	659985.80	2/13/2006	1017.23
MW02-15CD	Green Street	Middle Cedarville Aquifer Monitoring Well	1575454.52	659997.01	2/13/2006	1012.16
MW02-16	WN College Street	Upper Cedarville Aquifer Monitoring Well	1575381.72	659241.43	2/13/2006	1012.45
MW02-16CD	WN College Street	Middle Cedarville Aquifer Monitoring Well	1575382.33	659253.29	2/13/2006	
MW02-17	825 Dayton Street	Upper Cedarville Aquifer Monitoring Well	1574291.65	659932.56	2/13/2006	1017.53
MW02-17CD MW02-18	825 Dayton Street Omar Circle	Middle Cedarville Aquifer Monitoring Well Upper Cedarville Aquifer Monitoring Well	1574299.59 1573925.76	659930.77 658789.07	2/13/2006 2/13/2006	1017.69
MW02-18CD	Omar Circle	Middle Cedarville Aquifer Monitoring Well	1573939.13	658788.13	2/13/2006	1018.59 1018.61
RW01-05	Vernay Plant 2/3 Facility	Upper Cedarville Aquifer Remediation Obs. Well	1573657.28	659499.33	2/13/2006	1022.12
STW01-01	Vernay Plant 2/3 Facility	Storm Sewer Backfill Remediation Injection Well	1573942.88	659841.46	2/13/2006	1015.54
STW01-02	Vernay Plant 2/3 Facility	Storm Sewer Backfill Remediation Injection Well	1573939.07	659739.01	2/13/2006	1015.95
STW01-03	Vernay Plant 2/3 Facility	Storm Sewer Backfill Remediation Injection Well	1573929.58	659627.17	2/13/2006	1016.80
STW01-04	Vernay Plant 2/3 Facility	Storm Sewer Backfill Remediation Injection Well	1573925.73	659518.21	2/13/2006	1016.67
STW01-05 STW01-06	Vernay Plant 2/3 Facility Vernay Plant 2/3 Facility	Storm Sewer Backfill Remediation Injection Well	1573911.24	659416.14	2/13/2006	1017.05
STW01-07	Vernay Plant 2/3 Facility	Storm Sewer Backfill Remediation Injection Well Storm Sewer Backfill Remediation Injection Well	1573901.84 1573845.30	659314.78 659250.23	2/13/2006 2/13/2006	1017.20 1017.40
STW01-06	Vernay Plant 2/3 Facility	Storm Sewer Backfill Remediation Injection Well	659314.78	1573901.84	11/10/2005	1017.40
STW01-07	Vernay Plant 2/3 Facility	Storm Sewer Backfill Remediation Injection Well	659250.23	1573845.30	11/10/2005	1016.79

ID = Identification

msl = mean sea level State plane coordinates from Woolpert Surveying LLP, Dayton, Ohio (NAD83/NAVD88)



### Vernay Laboratories, Inc. Yellow Springs, Ohio Project No. 0292.11.26

TABLE 5: Ground Water Capture Treatment System (GWCTS) Sampling Results - Detected VOCs (µg/L)

Sample Location	Sample Date	Tetrachloroethene	Trichloroethene	cis-1,2-Dichloroethene	1,1-Dichloroethane	Methylene Chloride	ACETONE	Freon 113
CW01-01 (GW)	11/15/1999	130	34	2.7	< 5	< 5	< 50	
CW01-01 (GW)	11/17/1999	170	39	< 4.2	< 8.3	< 8.3	< 83	
CW01-01 (GW)	11/19/1999	260	47	< 5	< 10	< 10	< 100	
CW01-01 (GW)	3/22/2000	55	13	< 5	< 5	< 10	< 50	49tic
CW01-01 (GW) CW01-01 (GW)	3/28/2000 4/4/2000	300 340	44 34	< 5 < 5	< 5	< 10	< 50	250tic
CW01-01 (GW)	4/11/2000	690	60	< 5	< 5 < 5	< 10 < 10	< 50 < 50	< 5 < 5
CW01-01 (GW)	4/19/2000	890	59	< 5	< 5	< 10	< 50	570tic
CW01-01 (GW)	5/3/2000	910	53	< 25	< 25	< 50	< 250	470tic
CW01-01 (GW)	6/8/2000	1300	63	5	< 5	< 10	< 50	1300tic
CW01-01 (GW)	7/11/2000	1700	68	6	< 5	< 10	< 50	1600tic
CW01-01 (GW)	8/4/2000	1700	48	5	< 5	< 10	79	2800tic
CW01-01 (GW)	9/18/2000	1300	77	12	< 5	< 10	< 50	790tic
CW01-01 (GW)	10/11/2000	2100	72	11	< 5	< 10	< 50	940tic
CW01-01 (GW)	11/3/2000	1500	61	11	< 5	< 10	< 50	1500tic
CW01-01 (GW) CW01-01 (GW)	11/22/2000 12/14/2000	180 2700	120 82	540 < 25	< 5 < 25	< 10 < 50	< 50 < 250	< 5 1100tic
CW01-01 (GW)	1/10/2001	1700	91	14	< 5	< 10	< 50	630tic
CW01-01 (GW)	2/7/2001	1900	81	16	< 5	< 10	< 50	520tic
CW01-01 (GW)	3/9/2001	1300	81	19	< 5	< 10	< 50	480tic
CW01-01 (GW)	4/11/2001	1400	69	17	< 5	< 10	< 50	640tic
CW01-01 (GW)	5/3/2001	1600	68	14	< 5	< 10	< 50	1200tic
CW01-01 (GW)	7/11/2001	1600	74	18	< 5	< 10	< 50	730tic
CW01-01 (GW)	8/3/2001	1400	74	17J	< 25	< 50	< 250	690tic
CW01-01 (GW)	9/11/2001	1400	65	16	< 5	< 10	< 50	660tic
CW01-01 (GW)	10/12/2001	1400	68	17	< 5	< 10	< 50	920tic
CW01-01 (GW)	11/20/2001	980 1300	56	14	< 5	< 10	< 50	1100tic
CW01-01 (GW) CW01-01 (GW)	12/13/2001	1000	69 59	17 14	< 5 < 5	< 10 < 10	< 50	840tic
CW01-01 (GW)	2/7/2002	1200	61	14	< 5	< 10	< 50 < 50	980tic 660tic
CW01-01 (GW)	3/11/2002	1200	69	23	< 5	< 10	< 50	930tic
CW01-01 (GW)	4/3/2002	970	51	13	< 5	< 10	< 50	950tic
CW01-01 (GW)	5/16/2002	1900	48	14	< 5	< 10	< 50	1700tic
CW01-01 (GW)	6/12/2002	1100	52	17	< 5	< 10	< 50	690tic
CW01-01 (GW)	6/28/2002	1100	55	16	< 5	< 10	< 50	780tic
CW01-01 (GW)	7/12/2002	1400	53	15	< 5	< 10	< 50	1100tic
CW01-01 (GW)	8/8/2002	1000	46	15	< 5	< 10	< 50	710tic
CW01-01 (GW)	9/5/2002	1200	60	17	< 5	< 10	< 50	720tic
CW01-01 (GW) CW01-01 (GW)	10/4/2002	< 1300 1100	61	16	< 5	< 10	< 50	1600tic
CW01-01 (GW)	11/6/2002 12/6/2002	1000	56 61	15 17	< 5 < 5	< 10 < 10	< 50 < 50	730tic 510tic
CW01-01 (GW)	1/16/2003	990	56	15	< 5	< 10	< 50	600tic
CW01-01 (GW)	2/5/2003	1100	59	16	< 5	< 10	< 50	550tic
CW01-01 (GW)	3/4/2003	18	< 5	< 5	< 5	< 10	< 50	9tic
CW01-01 (GW)	4/4/2003	970	51	19	< 5	< 10	< 50	510tic
CW01-01 (GW)	5/7/2003	1100	53	13	< 5	< 10	< 50	760tic
CW01-01 (GW)	6/2/2003	1000	50	15	< 5	< 10	< 50	790tic
CW01-01 (GW)	7/10/2003	960	49	16	< 5	< 10	< 50	670tic
CW01-01 (GW)	8/1/2003	970	39	11	< 5	< 10	< 50	440tic
CW01-01 (GW) CW01-01 (GW)	9/15/2003	< 1100	< 36	< 10	< 5	< 10	< 50	< 800
CW01-01 (GW)	10/7/2003 11/4/2003	890 790	46 42	13	< 5 < 5	< 10 < 10	< 50	820tic
CW01-01 (GW)	12/4/2003	770	42	13	<5	< 10	< 50 < 50	720tic 780tic
CW01-01 (GW)	1/13/2004	860	43	12	< 5	< 10	< 50	620tic
CW01-01 (GW)	2/17/2004	840	42	12	< 5	< 10	< 50	570tic
CW01-01 (GW)	3/10/2004	730	42	12	< 5	< 10	< 50	610tic
CW01-01 (GW)	4/7/2004	760	43	14	< 5	< 10	< 50	580tic
CW01-01 (GW)	5/5/2004	680	41	12	< 5	< 10	< 50	560tic
CW01-01 (GW)	6/8/2004	690	39	11	< 5	< 10	< 50	740tic
CW01-01 (GW)	7/12/2004	640	36	10	< 5	< 10	< 50	470tic
CW01-01 (GW)	8/6/2004	640	34	10	< 5	< 10	< 50	600tic
CW01-01 (GW)	9/8/2004	790	42	13	< 5	< 10	< 50	490tic
CW01-01 (GW)	10/12/2004	800	35	12	< 5	< 10	< 50	340tic
CW01-01 (GW) CW01-01 (GW)	11/10/2004 12/10/2004	460 650	35	11	< 5	< 10	< 50	< 5
CW01-01 (GW)	1/12/2005	650 810	35 44	11	< 5 < 5	< 10 < 10	< 50	590tic
CW01-01 (GW)	2/8/2005	670	44	13	< 5	< 10	< 50 < 50	< 5 350tic
CW01-01 (GW)	3/14/2005	640	39	<25	< 25	< 25	< 250	460

oka Sakuran Sanggung Kalunggan beranggan di kalunggan Kalunggan Sanggan Kalunggan Sanggan Kalunggan Sanggan Ka



The Payne Firm, Inc.

TABLE 5: Ground Water Capture Treatment System (GWCTS) Sampling Results - Detected VOCs (µg/L)

Sample Location	Sample Date	Tetrachloroethene	Trichloroethene	cis-1,2-Dichloroethene	1,1-Dichloroethane	Methylene Chloride	ACETONE	Freon 113
CW01-01 (GW)	5/2/2005	730	37	<31	< 31	< 31	< 310	640
CW01-01 (GW)	6/3/2005	760	40	< 28	< 28	< 28	< 280	690
CW01-01 (GW)	7/14/2005	610	36	< 33	< 33	< 33	< 330	560
CW01-01 (GW)	8/22/2005	670	< 50	< 50	< 50	97	< 500	610
CW01-01 (GW)	9/15/2005	630	34	< 33	< 33	< 33	< 330	560
CW01-01 (GW)	10/6/2005	570	34	< 17	< 17	< 17	< 170	480
CW01-01 (GW) CW01-01 (GW)	11/10/2005 12/6/2005	510 550	< 50 36	< 50 < 25	< 50 < 25	< 50	< 500	420
CW01-01 (GW)	1/18/2006	370	28	< 10	< 10	< 25 34	< 250 < 100	460 300
CW01-01 (GW)	2/13/2006	490	33	8.2	< 5	< 5	< 50	380
CW01-02 (GW)	1/22/2003	< 5	< 5	< 5	< 5	< 10	< 50	< 5
CW01-02 (GW)	2/5/2003	< 5	< 5	< 5	< 5	< 10	< 50	< 5
CW01-02 (GW)	3/4/2003	< 5	< 5	< 5	< 5	< 10	< 50	< 5
CW01-02 (GW)	4/4/2003	9	< 5	< 5	< 5	< 10	< 50	< 5
CW01-02 (GW)	5/7/2003	12	< 5	< 5	< 5	< 10	< 50	< 5
CW01-02 (GW)	6/2/2003	18	< 5	< 5	< 5	< 10	< 50	< 5
CW01-02 (GW)	7/10/2003	20	< 5	< 5	< 5	< 10	< 50	< 5
CW01-02 (GW)	8/1/2003	27	< 5	< 5	< 5	< 10	< 50	< 5
CW01-02 (GW) CW01-02 (GW)	9/15/2003 10/7/2003	< 28 29	< 5 < 5	< 5	< 5	< 10	< 50	< 5
CW01-02 (GW)	11/4/2003	34	< 5	< 5 < 5	< 5	< 10	< 50	< 5
CW01-02 (GW)	12/4/2003	41	< 5	< 5	< 5 < 5	< 10 < 10	< 50 < 50	< 5 < 5
CW01-02 (GW)	1/13/2004	43	< 5	< 5	< 5	< 10	< 50	< 5
CW01-02 (GW)	2/17/2004	48	< 5	<5	< 5	< 10	< 50	< 5
CW01-02 (GW)	3/10/2004	57	< 5	< 5	< 5	< 10	< 50	< 5
CW01-02 (GW)	4/7/2004	67	< 5	< 5	< 5	< 10	< 50	< 5
CW01-02 (GW)	5/5/2004	63	< 5	< 5	< 5	< 10	< 50	< 5
CW01-02 (GW)	6/8/2004	70tic	< 5	< 5	< 5	< 10	< 50	< 5
CW01-02 (GW)	7/12/2004	68	< 5	< 5	< 5	< 10	< 50	< 5
CW01-02 (GW)	8/6/2004	69	< 5	< 5	< 5	< 10	< 50	< 5
CW01-02 (GW)	9/8/2004	94	< 5	< 5	< 5	< 10	< 50	< 5
CW01-02 (GW)	10/12/2004	94	< 5	< 5	< 5	< 10	< 50	< 5
CW01-02 (GW) CW01-02 (GW)	11/10/2004	85	< 5	< 5	< 5	< 10	< 50	< 5
CW01-02 (GW)	12/10/2004	87 99	< 5	<u>&lt;5</u>	< 5	< 10	< 50	< 5
CW01-02 (GW)	2/8/2005	86	< 5 < 5	< 5 < 5	< 5	< 10	< 50	< 5
CW01-02 (GW)	3/14/2005	66	< 5	< 5	< 5 < 5	< 10 < 5	< 50 < 50	< 5
CW01-02 (GW)	4/12/2005	63	< 5	< 5	< 5	< 5	< 50	< 5 < 5
CW01-02 (GW)	5/2/2005	73	< 5	< 5	< 5	< 5	< 50	< 5
CW01-02 (GW)	6/3/2005	70	< 5	< 5	< 5	< 5	< 50	< 5
CW01-02 (GW)	7/14/2005	90	< 5	< 5	< 5	< 5	< 50	< 5
CW01-02 (GW)	8/22/2005	76	< 5	< 5	< 5	14	84	< 5
CW01-02 (GW)	9/15/2005	70	< 5	< 5	< 5	< 5	< 50	< 5
CW01-02 (GW)	10/6/2005	74	< 5	< 5	< 5	< 5	< 50	< 5
CW01-02 (GW)	11/10/2005	73	< 5	< 5	< 5	< 5	< 50	< 5
CW01-02 (GW)	12/6/2005	82	< 5	< 5	< 5	< 5	< 50	< 5
CW01-02 (GW)	1/18/2006	69	< 5	< 5	< 5	< 5	< 50	< 5
CW01-02 (GW) GWCTS-EFFLUENT (GW)	2/13/2006	70	< 5	< 5	< 5	< 5	< 50	< 5
GWCTS-EFFLUENT (GW)	4/19/2000 11/22/2000	< 5 < 5	< 5 < 5	< 5 < 5	< 5	< 10	< 50	< 5
GWCTS-EFFLUENT (GW)	12/14/2000	< 5	<5	<5 <5	< 5 < 5	< 10 < 10	< 50 < 50	< 5 < 5
GWCTS-EFFLUENT (GW)	1/10/2001	< 5	< 5	< 5	< 5	< 10	< 50	< 5
GWCTS-EFFLUENT (GW)	2/7/2001	< 5	< 5	< 5	< 5	< 10	< 50	< 5
GWCTS-EFFLUENT (GW)	3/9/2001	< 5	< 5	< 5	< 5	< 10	< 50	< 5
GWCTS-EFFLUENT (GW)	4/11/2001	< 5	< 5	< 5	< 5	< 10	< 50	1 Itic
GWCTS-EFFLUENT (GW)	5/3/2001	< 5	< 5	< 5	< 5	< 10	< 50	18tic
GWCTS-EFFLUENT (GW)	7/11/2001	< 5	< 5	< 5	< 5	< 10	< 50	42tic
GWCTS-EFFLUENT (GW)	8/3/2001	< 5	< 5	< 5	< 5	< 10	< 50	51tic
GWCTS-EFFLUENT (GW)	9/11/2001	< 5	< 5	< 5	< 5	< 10	< 50	89tic
GWCTS-EFFLUENT (GW) GWCTS-EFFLUENT (GW)	10/5/2001 10/12/2001	< 5	< 5	< 5	< 5	< 10	< 50	110tic
GWCTS-EFFLUENT (GW)	11/20/2001	< 5 < 5	< 5 < 5	< 5	< 5	< 10	< 50	< 5
GWCTS-EFFLUENT (GW)	12/13/2001	<5	< 5	< 5 < 5	< 5 < 5	< 10 < 10	< 50	< 5
GWCTS-EFFLUENT (GW)	1/3/2002	< 5	< 5	< 5	< 5 < 5	< 10	< 50 < 50	370tic < 5
GWCTS-EFFLUENT (GW)	2/7/2002	< 5	< 5	< 5	< 5	< 10	< 50	< 5
GWCTS-EFFLUENT (GW)	3/11/2002	< 5	< 5	< 5	< 5	< 10	< 50	< 5
GWCTS-EFFLUENT (GW)	4/3/2002	< 5	< 5	< 5	< 5	< 10	< 50	< 5
GWCTS-EFFLUENT (GW)	5/16/2002	< 5	< 5	< 5	< 5	< 10	< 50	< 5
GWCTS-EFFLUENT (GW)	6/12/2002	< 5	< 5	15	6	< 10	< 50	960tic
GWCTS-EFFLUENT (GW)	6/28/2002	< 5	< 5	< 5	< 5	< 10	< 50	49tic
GWCTS-EFFLUENT (GW)	7/12/2002	< 5	< 5	< 5	< 5	< 10	< 50	< 5
GWCTS-EFFLUENT (GW)	8/8/2002	< 5	< 5	< 5	< 5	< 10	< 50	< 5
GWCTS-EFFLUENT (GW)	9/5/2002	< 5	< 5	< 5	< 5	< 10	< 50	< 5
GWCTS-EFFLUENT (GW) GWCTS-EFFLUENT (GW)	10/4/2002 11/6/2002	<5 <5	< 5 < 5	< 5 < 5	< 5 < 5	< 10 < 10	< 50 < 50	< 5 < 5

retarit telepek kulang kalang belang telepektet di keleparang beservat telepekter belang di belang belang bela



The Payne Firm, Inc.

TABLE 5: Ground Water Capture Treatment System (GWCTS) Sampling Results - Detected VOCs (µg/L)

Sample Location	Sample Date	Tetrachloroethene	Trichloroethene	cis-1,2-Dichloroethene	1,1-Dichloroethane	Methylene Chloride	ACETONE	Freon 113
GWCTS-EFFLUENT (GW)	12/6/2002	< 5	< 5	< 5	< 5	< 10	< 50	< 5
GWCTS-EFFLUENT (GW)	1/16/2003	< 5	< 5	< 5	< 5	< 10	< 50	< 5
GWCTS-EFFLUENT (GW)	2/5/2003	< 5	< 5	< 5	< 5	< 10	< 50	11tic
GWCTS-EFFLUENT (GW)	3/4/2003	< 5	< 5	< 5	< 5	< 10	< 50	7tic
GWCTS-EFFLUENT (GW)	4/4/2003	< 5	< 5	< 5	< 5	< 10	< 50	150tic
GWCTS-EFFLUENT (GW)	5/7/2003	< 5	< 5	< 5	< 5	< 10	< 50	340tic
GWCTS-EFFLUENT (GW)	6/2/2003	< 5	< 5	< 5	< 5	< 10	< 50	< 5
GWCTS-EFFLUENT (GW) GWCTS-EFFLUENT (GW)	7/10/2003 8/1/2003	< 5 < 5	< 5 < 5	< 5	< 5 < 5	< 10	< 50	< 5
GWCTS-EFFLUENT (GW)	9/15/2003	< 5	< 5	< 5 < 5	< 5	< 10 < 10	< 50	< 5 < 140
GWCTS-EFFLUENT (GW)	10/7/2003	< 5	< 5	< 5	< 5	< 10	< 50 < 50	170tic
GWCTS-EFFLUENT (GW)	11/4/2003	< 5	< 5	< 5	< 5	< 10	< 50	200tic
GWCTS-EFFLUENT (GW)	12/4/2003	< 5	< 5	<5	< 5	< 10	< 50	< 5
GWCTS-EFFLUENT (GW)	1/13/2004	< 5	< 5	< 5	< 5	< 10	< 50	< 5
GWCTS-EFFLUENT (GW)	2/17/2004	< 5	< 5	< 5	< 5	< 10	< 50	< 5
GWCTS-EFFLUENT (GW)	3/10/2004	< 5	< 5	< 5	< 5	< 10	< 50	25tic
GWCTS-EFFLUENT (GW)	4/7/2004	< 5	< 5	< 5	< 5	< 10	< 50	640tic
GWCTS-EFFLUENT (GW)	5/5/2004	< 5	< 5	< 5	< 5	< 10	< 50	120tic
GWCTS-EFFLUENT (GW)	6/8/2004	< 5	< 5	< 5	< 5	< 10	< 50	< 5
GWCTS-EFFLUENT (GW)	7/12/2004	< 5	< 5	< 5	< 5	< 10	< 50	< 5
GWCTS-EFFLUENT (GW)	8/6/2004	< 5	< 5	< 5	< 5	< 10	< 50	34tic
GWCTS-EFFLUENT (GW)	9/8/2004	< 5	< 5	< 5	< 5	< 10	< 50	120tic
GWCTS-EFFLUENT (GW)	10/12/2004	< 5	< 5	< 5	< 5	< 10	< 50	140tic
GWCTS-EFFLUENT (GW)	11/10/2004	< 5	< 5	< 5	< 5	< 10	< 50	260tic
GWCTS-EFFLUENT (GW)	12/10/2004	< 5	< 5	< 5	< 5	< 10	< 50	330tic
GWCTS-EFFLUENT (GW)	1/12/2005	< 5	< 5	< 5	< 5	< 10	< 50	230tic
GWCTS-EFFLUENT (GW) GWCTS-EFFLUENT (GW)	2/8/2005 3/14/2005	< 5 < 5	< 5 < 5	< 5	< 5	< 10	< 50	< 5
GWCTS-EFFLUENT (GW)	4/12/2005	< 5	< 5	< 5 < 5	< 5 < 5	< 5	< 50	< 5
GWCTS-EFFLUENT (GW)	5/2/2005	< 5	< 5	< 5	< 5	< 5 < 5	< 50	< 5
GWCTS-EFFLUENT (GW)	6/3/2005	< 5	< 5	< 5	< 5	< 5	< 50 < 50	16 < 5
GWCTS-EFFLUENT (GW)	7/14/2005	< 5	< 5	< 5	< 5	< 5	< 50	< 5
GWCTS-EFFLUENT (GW)	8/22/2005	< 5	< 5	< 5	< 5	9.5	120	< 5
GWCTS-EFFLUENT (GW)	9/15/2005	< 5	< 5	< 5	< 5	< 5	< 50	< 5
GWCTS-EFFLUENT (GW)	10/6/2005	< 5	< 5	< 5	< 5	< 5	< 50	13
GWCTS-EFFLUENT (GW)	11/10/2005	< 5	< 5	< 5	< 5	< 5	< 50	38
GWCTS-EFFLUENT (GW)	12/6/2005	< 5	< 5	< 5	< 5	< 5	< 50	91
GWCTS-EFFLUENT (GW)	1/18/2006	< 5	< 5	< 5	< 5	< 5	< 50	200
GWCTS-EFFLUENT (GW)	2/13/2006	< 5	< 5	< 5	< 5	< 5	< 50	300
GWCTS-POST PRIMARY (GW)	3/22/2000	< 5	< 5	< 5	< 5	< 10	< 50	< 5
GWCTS-POST PRIMARY (GW)	3/28/2000	< 5	< 5	< 5	< 5	< 10	< 50	< 5
GWCTS-POST PRIMARY (GW)	4/4/2000	< 5	< 5	< 5	< 5	< 10	< 50	< 5
GWCTS-POST PRIMARY (GW)	4/11/2000	< 5	< 5	< 5	< 5	< 10	< 50	< 5
GWCTS-POST PRIMARY (GW)	4/19/2000	< 5	< 5	< 5	< 5	< 10	< 50	< 5
GWCTS-POST PRIMARY (GW)	5/3/2000	< 5	< 5	< 5	< 5	< 10	< 50	< 5
GWCTS-POST PRIMARY (GW)	6/8/2000	< 5	< 5	< 5	< 5	< 10	< 50	30tic
GWCTS-POST PRIMARY (GW) GWCTS-POST PRIMARY (GW)	7/11/2000 8/4/2000	< 5 < 5	< 5	< 5	< 5	< 10	< 50	170tic
GWCTS-POST PRIMARY (GW)	9/18/2000	< 5	< 5 < 5	< 5 < 5	< 5	< 10	< 50	170tic
GWCTS-POST PRIMARY (GW)	10/11/2000	< 5	< 5	< 5	< 5 < 5	< 10 < 10	< 50	< 5
GWCTS-POST PRIMARY (GW)	11/3/2000	< 5	< 5	<5	< 5	< 10	< 50 < 50	89 92tic
GWCTS-POST PRIMARY (GW)	12/14/2000	< 5	< 5	< 5	< 5	111	< 50	120tic
GWCTS-POST PRIMARY (GW)	1/10/2001	< 5	< 5	< 5	<5	< 10	< 50	< 5
GWCTS-POST PRIMARY (GW)	2/7/2001	< 5	< 5	< 5	< 5	< 10	< 50	140tic
GWCTS-POST PRIMARY (GW)	3/9/2001	< 5	< 5	< 5	< 5	< 10	< 50	150tic
GWCTS-POST PRIMARY (GW)	4/11/2001	< 5	< 5	< 5	< 5	< 10	< 50	180tic
GWCTS-POST PRIMARY (GW)	5/3/2001	< 5	< 5	< 5	< 5	< 10	< 50	380tic
GWCTS-POST PRIMARY (GW)	7/11/2001	< 5	< 5	< 5	< 5	< 10	< 50	< 5
GWCTS-POST PRIMARY (GW)	8/3/2001	< 5	< 5	9	5	< 10	< 50	390tic
GWCTS-POST PRIMARY (GW)	9/11/2001	< 5	< 5	15	7	< 10	< 50	660tic
GWCTS-POST PRIMARY (GW)	10/12/2001	< 5	< 5	< 5	< 5	< 10	< 50	150tic
GWCTS-POST PRIMARY (GW)	11/20/2001	< 5	< 5	< 5	< 5	< 10	< 50	430tic
GWCTS-POST PRIMARY (GW)	12/13/2001	< 5	< 5	< 5	< 5	< 10	< 50	400tic
GWCTS-POST PRIMARY (GW)	1/3/2002	< 5	< 5	< 5	< 5	< 10	< 50	620tic
GWCTS-POST PRIMARY (GW) GWCTS-POST PRIMARY (GW)	2/7/2002	< 5	< 5	< 5	6	< 10	< 50	520tic
GWCTS-POST PRIMARY (GW) GWCTS-POST PRIMARY (GW)	3/11/2002 4/3/2002	< 5	< 5	< 5	6	< 10	< 50	820tic
GWCTS-POST PRIMARY (GW) GWCTS-POST PRIMARY (GW)	5/16/2002	< 5 < 5	< 5 < 5	< 5	6	< 10	< 50	1100tic
GWCTS-POST PRIMARY (GW)	6/12/2002	< 5	< 5	9	6	< 10	< 50	1500tic
GWCTS-POST PRIMARY (GW)	6/28/2002	< 5	< 5	20	6	< 10 < 10	< 50 < 50	970tic
GWCTS-POST PRIMARY (GW)	7/12/2002	< 5	< 5	< 5	< 5	< 10	< 50	1100tic 53tic
GWCTS-POST PRIMARY (GW)	8/8/2002	< 5	< 5	< 5	< 5	< 10	< 50	50tic
GWCTS-POST PRIMARY (GW)	9/5/2002	< 5	< 5	< 5	< 5	< 10	< 50	81tic
GWCTS-POST PRIMARY (GW)	10/4/2002	< 5	< 5	< 5	< 5	< 10	< 50	280tic
GWCTS-POST PRIMARY (GW)	11/6/2002	< 5	< 5	< 5	< 5	<10	< 50	270tic



aturuulikki organi Yakii Hiirikkii ka karuuran irra kan maanan

The Payne Firm, Inc.

TABLE 5: Ground Water Capture Treatment System (GWCTS) Sampling Results - Detected VOCs (µg/L)

Sample Location	Sample Date	Tetrachloroethene	Trichloroethene	cis-1,2-Dichloroethene	1,1-Dichloroethane	Methylene Chloride	ACETONE	Freon 113
GWCTS-POST PRIMARY (GW)	12/6/2002	< 5	< 5	< 5	< 5	< 10	< 50	320tic
GWCTS-POST PRIMARY (GW)	1/16/2003	< 5	< 5	< 5	< 5	< 10	< 50	480tic
GWCTS-POST PRIMARY (GW)	2/5/2003	< 5	< 5	< 5	< 5	< 10	< 50	560tic
GWCTS-POST PRIMARY (GW)	3/4/2003	< 5	< 5	< 5	< 5	< 10	< 50	670tic
GWCTS-POST PRIMARY (GW)	4/4/2003	< 5	< 5	7	< 5	< 10	< 50	460tic
GWCTS-POST PRIMARY (GW)	5/7/2003	8	< 5	10	< 5	< 10	< 50	640tic
GWCTS-POST PRIMARY (GW)	6/2/2003	74	< 5	< 5	< 5	< 10	< 50	410tic
GWCTS-POST PRIMARY (GW)	7/10/2003	< 5	< 5	< 5	< 5	< 10	< 50	480tic
GWCTS-POST PRIMARY (GW)	8/1/2003	< 5	< 5	< 5	< 5	< 10	< 50	460tic
GWCTS-POST PRIMARY (GW)	9/15/2003	< 5	< 5	< 10	< 5	< 10	< 50	< 870
GWCTS-POST PRIMARY (GW)	10/7/2003	< 5	< 5	12	< 5	< 10	< 50	630tic
GWCTS-POST PRIMARY (GW)	11/4/2003	10	6	14	< 5	< 10	< 50	570tic
GWCTS-POST PRIMARY (GW)	12/4/2003	< 5	< 5	< 5	< 5	< 10	< 50	240tic
GWCTS-POST PRIMARY (GW)	1/13/2004	< 5	< 5	< 5	< 5	< 10	< 50	490tic
GWCTS-POST PRIMARY (GW)	2/17/2004	< 5	< 5	< 5	< 5	< 10	< 50	520tic
GWCTS-POST PRIMARY (GW)	3/10/2004	< 5	< 5	3J	< 5	< 10	< 50	520tic
GWCTS-POST PRIMARY (GW)	4/7/2004	< 5	< 5	6	< 5	< 10	< 50	510tic
GWCTS-POST PRIMARY (GW)	5/5/2004	< 5	< 5	7	< 5	< 10	< 50	470tic
GWCTS-POST PRIMARY (GW)	6/8/2004	< 5	< 5	< 5	< 5	< 10	< 50	250tic
GWCTS-POST PRIMARY (GW)	7/12/2004	< 5	< 5	< 5	< 5	< 10	< 50	280tic
GWCTS-POST PRIMARY (GW)	8/6/2004	< 5	< 5	< 5	< 5	< 10	< 50	500tic
GWCTS-POST PRIMARY (GW)	9/8/2004	< 5	< 5	< 5	< 5	< 10	< 50	420tic
GWCTS-POST PRIMARY (GW)	10/12/2004	< 5	< 5	< 5	< 5	< 10	< 50	280tic
GWCTS-POST PRIMARY (GW)	11/10/2004	< 5	< 5	< 5	< 5	< 10	< 50	390tic
GWCTS-POST PRIMARY (GW)	12/10/2004	6	< 5	6	< 5	< 10	< 50	580tic
GWCTS-POST PRIMARY (GW)	1/12/2005	19	6	10	< 5	< 10	< 50	300tic
GWCTS-POST PRIMARY (GW)	2/8/2005	24	8	11	< 5	< 10	< 50	260tic
GWCTS-POST PRIMARY (GW)	3/14/2005	32	< 17	< 17	< 17	< 17	< 170	490
GWCTS-POST PRIMARY (GW)	4/12/2005	49	< 25	< 25	< 25	< 25	< 250	540
GWCTS-POST PRIMARY (GW)	5/2/2005	61	18	< 17	< 17	< 17	< 170	550
GWCTS-POST PRIMARY (GW)	6/3/2005	< 5	< 5	< 5	< 5	< 5	< 50	70
GWCTS-POST PRIMARY (GW)	7/14/2005	< 5	< 5	< 5	< 5	< 5	< 50	190
GWCTS-POST PRIMARY (GW)	8/22/2005	< 10	< 10	< 10	< 10	25	< 100	400
GWCTS-POST PRIMARY (GW)	9/15/2005	< 5	< 5	< 5	< 5	< 5	< 50	390E
GWCTS-POST PRIMARY (GWRE)	9/15/2005							380
GWCTS-POST PRIMARY (GW)	10/6/2005	< 17	< 17	< 17	< 17	< 17	< 170	430
GWCTS-POST PRIMARY (GWRE)	10/6/2005	< 5	< 5	< 5	< 5	< 5	< 50	430E
GWCTS-POST PRIMARY (GW)	11/10/2005	< 33	< 33	< 33	< 33	< 33	< 330	680
GWCTS-POST PRIMARY (GW)	12/6/2005	< 42	< 42	< 42	< 42	< 42	< 420	700
GWCTS-POST PRIMARY (GW)	1/18/2006	20	14	21	< 12	< 12	< 120	720
GWCTS-POST PRIMARY (GWRE)	1/18/2006	19	15	21	< 5	< 5	< 50	600E
GWCTS-POST PRIMARY (GW)	2/13/2006	52	25	18	< 8.4	< 8.4	< 84	560

The major Modern Seath Andrews of the constitute of the first of the first

VOC = Volatile organic compound  $\mu g/L$  = micrograms per liter tic = tentative identified compound



### Vernay Laboratories, Inc. Yellow Springs, Ohio Project No. 0292.11.26

TABLE 6: Utility Tunnel Sump Water Treatment System (UTSWTS) Sampling Results - Detected VOCs (µg/L)

Sample Location	Sample Date	Tetrachloroethene	Trichloroethene	cis-1,2-Dichloroethene	1,1-Dichloroethane	Methylene Chloride	Acetone	Freon 113
UTSWTS-EFFLUENT (GW)	10/11/2000	< 5	< 5	< 5	< 5	< 10	< 50	< 5
UTSWTS-EFFLUENT (GW)	12/14/2000	< 5	< 5	< 5	< 5	< 10	< 50	< 5
UTSWTS-EFFLUENT (GW)	2/7/2001	< 5 < 5	< 5 < 5	< 5	< 5	< 10	< 50	< 5
UTSWTS-EFFLUENT (GW) UTSWTS-EFFLUENT (GW)	3/9/2001	< 5	< 5	< 5 < 5	< 5 < 5	< 10 < 10	< 50 < 50	< 5 < 5
UTSWTS-EFFLUENT (GW)	4/11/2001	< 5	< 5	< 5	< 5	< 10	< 50	< 5
UTSWTS-EFFLUENT (GW)	5/3/2001	< 5	< 5	< 5	< 5	< 10	< 50	< 5
UTSWTS-EFFLUENT (GW)	7/11/2001	< 5	< 5	7	< 5	< 10	< 50	390tic
UTSWTS-EFFLUENT (GW)	7/25/2001	< 5	< 5	< 5	< 5	< 10	< 50	< 5
UTSWTS-EFFLUENT (GW)	8/3/2001	< 5	< 5	< 5	< 5	< 10	< 50	< 5
UTSWTS-EFFLUENT (GW)	9/11/2001	< 5 < 5	< 5 < 5	< 5 < 5	< 5	< 10	< 50	< 5
UTSWTS-EFFLUENT (GW) UTSWTS-EFFLUENT (GW)	11/20/2001	< 5	< 5	<5	< 5 < 5	< 10 < 10	< 50 < 50	< 5 < 5
UTSWTS-EFFLUENT (GW)	12/13/2001	< 5	< 5	< 5	< 5	< 10	< 50	< 5
UTSWTS-EFFLUENT (GW)	1/3/2002	< 5	< 5	< 5	< 5	< 10	< 50	< 5
UTSWTS-EFFLUENT (GW)	2/7/2002	< 5	< 5	< 5	< 5	< 10	< 50	< 5
UTSWTS-EFFLUENT (GW)	3/11/2002	< 5	< 5	< 5	< 5	< 10	< 50	< 5
UTSWTS-EFFLUENT (GW)	4/3/2002	< 5	< 5	< 5	< 5	< 10	< 50	< 5
UTSWTS-EFFLUENT (GW)	5/16/2002	< 5	< 5	< 5	< 5	< 10	< 50	< 5
UTSWTS-EFFLUENT (GW) UTSWTS-EFFLUENT (GW)	6/12/2002 7/12/2002	< 5 < 5	< 5 < 5	< 5 < 5	< 5 < 5	< 10 < 10	< 50 < 50	< 5 < 5
UTSWTS-EFFLUENT (GW)	8/8/2002	< 5	< 5	< 5	< 5	< 10	< 50	< 5
UTSWTS-EFFLUENT (GW)	9/5/2002	< 5	< 5	< 5	< 5	< 10	< 50	< 5
UTSWTS-EFFLUENT (GW)	10/4/2002	< 5	< 5	< 5	< 5	< 10	< 50	< 5
UTSWTS-EFFLUENT (GW)	11/6/2002	< 5	< 5	< 5	< 5	< 10	< 50	< 5
UTSWTS-EFFLUENT (GW)	12/6/2002	< 5	< 5	< 5	< 5	< 10	< 50	< 5
UTSWTS-EFFLUENT (GW)	1/16/2003	< 5	< 5	< 5	< 5	< 10	< 50	< 5
UTSWTS-EFFLUENT (GW) UTSWTS-EFFLUENT (GW)	2/5/2003 3/4/2003	< 5 < 5	< 5 < 5	< 5	< 5	< 10	< 50	< 5
UTSWTS-EFFLUENT (GW)	4/4/2003	< 5	< 5 < 5	< 5 < 5	< 5 < 5	< 10 < 10	< 50 < 50	< 5 < 5
UTSWTS-EFFLUENT (GW)	5/7/2003	< 5	< 5	< 5	< 5	< 10	< 50	< 5
UTSWTS-EFFLUENT (GW)	6/2/2003	< 5	< 5	< 5	< 5	< 10	< 50	< 5
UTSWTS-EFFLUENT (GW)	7/10/2003	< 5	< 5	< 5	< 5	< 10	< 50	< 5
UTSWTS-EFFLUENT (GW)	8/1/2003	< 5	< 5	< 5	< 5	< 10	< 50	< 5
UTSWTS-EFFLUENT (GW)	9/15/2003	< 5	< 5	< 5	< 5	< 10	< 50	< 5
UTSWTS-EFFLUENT (GW) UTSWTS-EFFLUENT (GW)	10/7/2003	< 5 < 5	< 5 < 5	< 5 < 5	< 5 < 5	< 10 < 10	< 50 < 50	< 5 < 5
UTSWTS-EFFLUENT (GW)	12/4/2003	< 5	< 5	<5	<5	< 10	< 50	<5
UTSWTS-EFFLUENT (GW)	1/13/2004	< 5	< 5	< 5	< 5	< 10	< 50	
UTSWTS-EFFLUENT (GW)	2/6/2004	< 5	< 5	< 5	< 5	< 10	< 50	< 5
UTSWTS-EFFLUENT (GW)	3/10/2004	< 5	< 5	< 5	< 5	< 10	< 50	< 5
UTSWTS-EFFLUENT (GW)	4/7/2004	< 5	< 5	< 5	< 5	< 10	< 50	< 5
UTSWTS-EFFLUENT (GW)	5/5/2004	< 5	< 5	< 5	< 5	< 10	< 50	< 5
UTSWTS-EFFLUENT (GW) UTSWTS-EFFLUENT (GW)	6/8/2004 7/12/2004	< 5 < 5	< 5 < 5	< 5 < 5	< 5 < 5	< 10 < 10	< 50	< 5
UTSWTS-EFFLUENT (GW)	8/6/2004	< 5	< 5	<5	< 5	< 10	< 50 < 50	< 5 < 5
UTSWTS-EFFLUENT (GW)	9/8/2004	< 5	< 5	< 5	< 5	< 10	< 50	< 5
UTSWTS-EFFLUENT (GW)	10/12/2004	< 5	< 5	< 5	< 5	< 10	< 50	< 5
UTSWTS-EFFLUENT (GW)	11/10/2004	< 5	< 5	< 5	< 5	< 10	< 50	< 5
UTSWTS-EFFLUENT (GW)	12/10/2004	< 5	< 5	< 5	< 5	< 10	< 50	< 5
UTSWTS-EFFLUENT (GW)	1/12/2005	< 5	< 5	< 5	< 5	< 10	< 50	< 5
UTSWTS-EFFLUENT (GW) UTSWTS-EFFLUENT (GW)	2/8/2005 3/14/2005	< 5	< 5	<5	< 5	< 10	< 50	< 5
UTSWTS-EFFLUENT (GW)	4/12/2005	< 5 < 5	< 5 < 5	< 5 < 5	< 5 < 5	< 5 < 5	< 50 < 50	< 5 < 5
UTSWTS-EFFLUENT (GW)	5/2/2005	< 5	<5	<5	< 5	< 5	< 50	< 5
UTSWTS-EFFLUENT (GW)	6/3/2005	< 5	<5	< 5	< 5	< 5	< 50	< 5
UTSWTS-EFFLUENT (GW)	7/14/2005	< 5	< 5	< 5	< 5	< 5	< 50	< 5
UTSWTS-EFFLUENT (GW)	8/22/2005	< 5	< 5	< 5	< 5	8.5	82	< 5
UTSWTS-EFFLUENT (GW)	9/15/2005	< 5	< 5	< 5	< 5	< 5	< 50	< 5
UTSWTS-EFFLUENT (GW)	10/6/2005	< 5	< 5	< 5	< 5	< 5	< 50	< 5
UTSWTS-EFFLUENT (GW) UTSWTS-EFFLUENT (GW)	11/10/2005	< 5 < 5	< 5 < 5	< 5 < 5	< 5	< 5	< 50	< 5
UTSWTS-EFFLUENT (GW)	1/18/2006	< 5 < 5	< 5	< 5 < 5	< 5 < 5	< 5 < 5	< 50 < 50	< 5 < 5
UTSWTS-EFFLUENT (GW)	2/13/2006	< 5	< 5	< 5	< 5	<5	< 50	< 5
UTSWTS-INFLUENT (GW)	10/11/2000	120	130	660	< 5	< 10	< 50	< 5
UTSWTS-INFLUENT (GW)	12/14/2000	170	140	710	< 5	< 10	68	17tic
UTSWTS-INFLUENT (GW)	1/10/2001	150	96	330	< 5	< 10	< 50	< 5
UTSWTS-INFLUENT (GW)	2/7/2001	55	36	190	< 5	< 10	330	< 5



The Payne Firm, Inc.

TABLE 6: Utility Tunnel Sump Water Treatment System (UTSWTS) Sampling Results - Detected VOCs (µg/L)

Sample Location	Sample Date	Tetrachloroethene	Tetrachloroethene Trichloroethene cis-1,2-Dichloroethen		1,1-Dichloroethane	Methylene Chloride	Acetone	Freon 113
UTSWTS-INFLUENT (GW)	3/9/2001	17	11	30	< 5	< 10	120	< 5
UTSWTS-INFLUENT (GW)	4/11/2001	37	32	130	< 5	< 10	< 50	< 5
UTSWTS-INFLUENT (GW)	5/3/2001	15	12	26	< 5	< 10	< 50	< 5
UTSWTS-INFLUENT (GW)	7/11/2001	6 < 5	7	28 < 5	< 5	< 10	< 50	< 5
UTSWTS-INFLUENT (GW) UTSWTS-INFLUENT (GW)	8/3/2001 9/11/2001	< 5	< 5 < 5	<5 <5	< 5 < 5	< 10 < 10	< 50 < 50	< 5 < 5
UTSWTS-INFLUENT (GW)	10/12/2001	< 5	< 5	72	< 5	< 10	< 50	< 5
UTSWTS-INFLUENT (GW)	11/20/2001	5	5	36	< 5	< 10	< 50	< 5
UTSWTS-INFLUENT (GW)	12/13/2001	5	6	14	< 5	< 10	< 50	< 5
UTSWTS-INFLUENT (GW)	1/3/2002	6	7	< 5	< 5	< 10	< 50	< 5
UTSWTS-INFLUENT (GW)	2/7/2002	< 5	7	< 5	< 5	< 10	< 50	< 5
UTSWTS-INFLUENT (GW)	3/11/2002	< 5	6	< 5	< 5	< 10	1400	< 5
UTSWTS-INFLUENT (GW)	4/3/2002	5	7	< 5	< 5	< 10	< 50	< 5
UTSWTS-INFLUENT (GW)	5/16/2002	< 5 < 5	6 < 5	< 5 < 5	< 5 < 5	< 10 < 10	< 50	< 5
UTSWTS-INFLUENT (GW) UTSWTS-INFLUENT (GW)	6/12/2002 7/12/2002	< 5	9	<5	< 5	< 10	< 50 < 50	< 5 < 5
UTSWTS-INFLUENT (GW)	8/8/2002	11	15	330	< 5	< 10	< 50	< 5
UTSWTS-INFLUENT (GW)	9/5/2002	29	33	390	< 5	< 10	< 50	< 5
UTSWTS-INFLUENT (GW)	10/4/2002	16	16	410	< 5	< 10	< 50	< 5
UTSWTS-INFLUENT (GW)	11/6/2002	22	22	800	< 5	< 10	< 50	< 5
UTSWTS-INFLUENT (GW)	12/6/2002	13	14	470	< 5	< 10	< 50	< 5
UTSWTS-INFLUENT (GW)	1/16/2003	< 5	< 5	35	< 5	< 10	< 50	< 5
UTSWTS-INFLUENT (GW)	2/5/2003	7	6	58	< 5	< 10	< 50	< 5
UTSWTS-INFLUENT (GW)	3/4/2003	< 5	< 5	25	< 5	< 10	< 50	< 5
UTSWTS-INFLUENT (GW)	4/4/2003	< 5	6	33	< 5	< 10	< 50	< 5
UTSWTS-INFLUENT (GW)	5/7/2003	11 5	12	240	< 5	< 10	< 50	< 5
UTSWTS-INFLUENT (GW) UTSWTS-INFLUENT (GW)	6/2/2003 7/10/2003	< 5	6 < 5	65	< 5 < 5	< 10 < 10	< 50 < 50	< 5 < 5
UTSWTS-INFLUENT (GW)	8/1/2003	< 5	6	62	< 5	< 10	< 50	< 5
UTSWTS-INFLUENT (GW)	9/15/2003	< 15	< 26	< 230	< 5	< 10	< 50	< 5
UTSWTS-INFLUENT (GW)	10/7/2003	14	22	170	< 5	< 10	< 50	< 5
UTSWTS-INFLUENT (GW)	11/4/2003	25	27	210	< 5	< 10	< 50	< 5
UTSWTS-INFLUENT (GW)	12/4/2003	15	17	98	< 5	< 10	< 50	< 5
UTSWTS-INFLUENT (GW)	1/13/2004	11	18	110	< 5	< 10	< 50	< 5
UTSWTS-INFLUENT (GW)	2/6/2004	15	24	110	< 5	< 10	< 50	< 5
UTSWTS-INFLUENT (GW)	3/10/2004	17	25	160	< 5	< 10	< 50	< 5
UTSWTS-INFLUENT (GW)	4/7/2004	13	21	150	< 5	< 10	< 50	< 5
UTSWTS-INFLUENT (GW) UTSWTS-INFLUENT (GW)	5/5/2004 6/8/2004	11	16	80 130	< 5 < 5	< 10 < 10	100	< 5
UTSWTS-INFLUENT (GW)	7/12/2004	58	68	250	< 5	< 10	< 50	< 5 < 5
UTSWTS-INFLUENT (GW)	8/6/2004	60	53	310	< 5	< 10	< 50	< 5
UTSWTS-INFLUENT (GW)	9/8/2004	120	110	300	< 5	< 10	< 50	< 5
UTSWTS-INFLUENT (GW)	10/12/2004	170	100	320	< 5	< 10	< 50	< 5
UTSWTS-INFLUENT (GW)	11/10/2004	150	75	380	< 5	< 10	< 50	< 5
UTSWTS-INFLUENT (GW)	12/10/2004	94	37	290	< 5	< 10	< 50	< 5
UTSWTS-INFLUENT (GW)	1/12/2005	< 5	< 5	< 5	< 5	< 10	< 50	< 5
UTSWTS-INFLUENT (GW)	2/8/2005	30	19	130	< 5	< 10	< 50	< 5
UTSWTS-INFLUENT (GW)	3/14/2005	19	27	200	< 5	< 5	< 50	< 5
UTSWTS-INFLUENT (GW) UTSWTS-INFLUENT (GW)	4/12/2005 5/2/2005	13 13	21 20	120 64	< 5 < 5	< 5 < 5	< 50 < 50	< 5
UTSWTS-INFLUENT (GW)	6/3/2005	28	56	170	< 5	< 5	< 50	< 5 < 5
UTSWTS-INFLUENT (GW)	7/14/2005	76	84	250	< 10	< 10	< 100	< 10
UTSWTS-INFLUENT (GW)	8/22/2005	120	89	250	< 10	24	< 100	< 10
UTSWTS-INFLUENT (GW)	9/15/2005	98	76	240	< 10	< 10	< 100	< 10
UTSWTS-INFLUENT (GW)	10/6/2005	120	78	260	< 17	< 17	< 170	< 17
UTSWTS-INFLUENT (GW)	11/10/2005	120	57	250	< 12	< 12	< 120	< 12
UTSWTS-INFLUENT (GW)	12/6/2005	91	48	240	< 10	< 10	< 100	< 10
UTSWTS-INFLUENT (GW)	1/18/2006	29	19	45	< 5	< 5	< 50	< 5
UTSWTS-INFLUENT (GW)	2/13/2006	28	32	96	< 5	< 5	< 50	< 5
UTSWTS-INTERMEDIATE (GW) UTSWTS-INTERMEDIATE (GW)	2/7/2002 3/11/2002	< 5 < 5	< 5 < 5	< 5 < 5	< 5 < 5	< 10	< 50	< 5
UTSWTS-INTERMEDIATE (GW)	4/3/2002	< 5	< 5	< 5 < 5	<5 <5	< 10 < 10	< 50 < 50	< 5 < 5
UTSWTS-INTERMEDIATE (GW)	5/16/2002	< 5	< 5	< 5	< 5	< 10	< 50	< 5
UTSWTS-INTERMEDIATE (GW)	6/12/2002	< 5	< 5	< 5	< 5	< 10	< 50	< 5
UTSWTS-INTERMEDIATE (GW)	7/12/2002	< 5	< 5	< 5	< 5	< 10	< 50	<5
UTSWTS-INTERMEDIATE (GW)	8/8/2002	< 5	< 5	< 5	< 5	< 10	< 50	< 5
UTSWTS-INTERMEDIATE (GW)	9/5/2002	< 5	< 5	< 5	< 5	< 10	< 50	< 5
UTSWTS-INTERMEDIATE (GW)	10/4/2002	< 5	< 5	< 5	< 5	< 10	< 50	< 5
UTSWTS-INTERMEDIATE (GW)	11/6/2002	< 5	< 5	5	< 5	< 10	< 50	< 5
UTSWTS-INTERMEDIATE (GW)	12/6/2002	< 5	< 5	11	< 5	< 10	< 50	< 5
UTSWTS-INTERMEDIATE (GW)	1/16/2003	< 5	< 5	< 5	< 5	< 10	< 50	< 5
UTSWTS-INTERMEDIATE (GW)	2/5/2003	< 5 < 5	< 5	< 5	< 5	< 10	< 50	< 5
UTSWTS-INTERMEDIATE (GW)	3/4/2003	1 < 3	< 5	< 5	< 5	< 10	< 50	< 5

na a sun uniferentaria PERS ERSAGA SE, una menera du constantible de la presidia de la comercia de la comercia



The Payne Firm, Inc.

TABLE 6: Utility Tunnel Sump Water Treatment System (UTSWTS) Sampling Results - Detected VOCs (µg/L)

Sample Location	Sample Date	Tetrachloroethene	Trichloroethene	cis-1,2-Dichloroethene	1,1-Dichloroethane	Methylene Chloride	Acetone	Freon 113
UTSWTS-INTERMEDIATE (GW)	4/4/2003	< 5	< 5	< 5	< 5	< 10	< 50	< 5
UTSWTS-INTERMEDIATE (GW)	5/7/2003	< 5	< 5	< 5	< 5	< 10	< 50	< 5
UTSWTS-INTERMEDIATE (GW)	6/2/2003	< 5	< 5	< 5	< 5	< 10	< 50	< 5
UTSWTS-INTERMEDIATE (GW)	7/10/2003	< 5	< 5	< 5	< 5	< 10	< 50	< 5
UTSWTS-INTERMEDIATE (GW)	8/1/2003	< 5	< 5	< 5	< 5	< 10	< 50	< 5
UTSWTS-INTERMEDIATE (GW)	9/15/2003	< 5	< 5	< 5	< 5	< 10	< 50	< 5
UTSWTS-INTERMEDIATE (GW)	10/7/2003	< 5	< 5	< 5	< 5	< 10	< 50	< 5
UTSWTS-INTERMEDIATE (GW)	11/4/2003	< 5	< 5	< 5	< 5	< 10	< 50	< 5
UTSWTS-INTERMEDIATE (GW)	12/4/2003	< 5	< 5	< 5	< 5	< 10	< 50	< 5
UTSWTS-INTERMEDIATE (GW)	1/13/2004	< 5	< 5	< 5	< 5	< 10	< 50	< 5
UTSWTS-INTERMEDIATE (GW)	2/6/2004	< 5	< 5	< 5	< 5	< 10	< 50	< 5
UTSWTS-INTERMEDIATE (GW)	3/10/2004	< 5	< 5	< 5	< 5	< 10	< 50	< 5
UTSWTS-INTERMEDIATE (GW)	4/7/2004	< 5	< 5	< 5	< 5	< 10	< 50	< 5
UTSWTS-INTERMEDIATE (GW)	5/5/2004	< 5	< 5	< 5	< 5	< 10	< 50	< 5
UTSWTS-INTERMEDIATE (GW)	6/8/2004	< 5	< 5	< 5	< 5	< 10	< 50	< 5
UTSWTS-INTERMEDIATE (GW)	7/12/2004	< 5	< 5	< 5	< 5	< 10	< 50	< 5
UTSWTS-INTERMEDIATE (GW)	8/6/2004	< 5	< 5	< 5	< 5	< 10	< 50	< 5
UTSWTS-INTERMEDIATE (GW)	9/8/2004	< 5	< 5	7	< 5	< 10	< 50	< 5
UTSWTS-INTERMEDIATE (GW)	10/12/2004	< 5	< 5	< 5	< 5	< 10	< 50	< 5
UTSWTS-INTERMEDIATE (GW)	11/10/2004	< 5	< 5	< 5	< 5	< 10	< 50	< 5
UTSWTS-INTERMEDIATE (GW)	12/10/2004	< 5	< 5	< 5	< 5	< 10	< 50	< 5
UTSWTS-INTERMEDIATE (GW)	1/12/2005	< 5	< 5	< 5	< 5	< 10	< 50	
UTSWTS-INTERMEDIATE (GW)	2/8/2005	< 5	< 5	< 5	< 5	< 10	< 50	< 5
UTSWTS-INTERMEDIATE (GW)	3/14/2005	< 5	< 5	< 5	< 5	< 5	< 50	< 5
UTSWTS-INTERMEDIATE (GW)	4/12/2005	< 5	< 5	< 5	< 5	< 5	< 50	< 5
UTSWTS-INTERMEDIATE (GW)	5/2/2005	< 5	< 5	< 5	< 5	< 5	< 50	< 5
UTSWTS-INTERMEDIATE (GW)	6/3/2005	< 5	< 5	< 5	< 5	< 5	< 50	< 5
UTSWTS-INTERMEDIATE (GW)	7/14/2005	< 5	< 5	< 5	< 5	< 5	< 50	< 5
UTSWTS-INTERMEDIATE (GW)	8/22/2005	< 5	< 5	< 5	< 5	10	110	< 5
UTSWTS-INTERMEDIATE (GW)	9/15/2005	< 5	< 5	< 5	< 5	< 5	< 50	< 5
UTSWTS-INTERMEDIATE (GW)	10/6/2005	< 5	< 5	< 5	< 5	< 5	< 50	< 5
UTSWTS-INTERMEDIATE (GW)	11/10/2005	< 5	< 5	< 5	< 5	< 5	< 50	< 5
UTSWTS-INTERMEDIATE (GW)	12/6/2005	< 5	< 5	< 5	< 5	< 5	< 50	< 5
UTSWTS-INTERMEDIATE (GW)	1/18/2006	< 5	< 5	< 5	< 5	< 5	< 50	< 5
UTSWTS-INTERMEDIATE (GW)	2/13/2006	< 5 U	< 5 U	<5 U	< 5 U	< 5 U	< 50 U	< 5 U

 $VOC = Volatile \ organic \ compound $$\mu g/L = micrograms \ per \ liter $$tic = tentative \ identified \ compound $$$ 

Vernay Laboratories, Inc. Project No. 0292.11.26 April 14, 2006

# RCRA CORRECTIVE ACTION PROJECT SCHEDULE Through Q1, 2006

Table 7: Project Schedule

,  ,	aak Nama	0/ Complete A O	2003		2004		2005		2006			-
	ask Name CRA CORRECTIVE ACTION PROJECT SCHEDULE	% Complete A S	ONDJFMAM	J   J   A   S   O   N   D	JJFMAMJ	J   J   A   S   U   N	J   F   M   A   M   J	J   A   S   U   N   D	J   F   M   A	A   IVI   J   J	A S U N	1
					7.0							
	1.0 CONSENT ORDER EFFECTIVE	100%										
	2.0 CURRENT CONDITIONS REPORT	100%	111111111111111111111111111111111111111									
T	3.0 EI RISK SCOPING	100%										
$\top$	4.0 Ground Water Capture Interim Measure	100%										
3	5.0 SOIL HOT SPOT INTERIM MEASURE ASSESSMENT	100%										
+	6.0 RCRA FACILITY INVESTIGATION	100%										
	6.1 Phase I: N&E in Cedarville Aquifer/Storm Sewer Backfill	100%				7		Ť				
	6.2 Phase II RFI	100%							J			
	6.2.1 Additional Data Needs	100%										
5	6.2.2 Fate and Transport Modeling	100%										
	6.2.3 Baseline Human Health and Ecological Risk Assessment	100%										
	•											
	6.2.4 Phase II Facility Investigation Report	100%										
	Submit Phase II RFI Report	100%										
	USEPA Approval of Phase II RFI Report	100%										
1	6.3 Ground Water Monitoring	86%										7
$\dagger$	1st Quarter 2003	100%	1000000									
	2nd Quarter 2003	100%										
+	3rd Quarter 2003	100%										
9	4th Quarter 2003	100%		S08303302 005555555								
)	1st Quarter 2004	100%			\$3333331							
1	2nd Quarter 2004	100%			10000000000000000000000000000000000000							
2	3rd Quarter 2004	100%				20000000000000000000000000000000000000						
3	4th Quarter 2004	100%										
	1st Half 2005	100%				221121212	\$2000000000000000000000000000000000000					
	2nd Half/4th Quarter 2005	100%					P					
	1st Quarter 2006	100%										
	1st Half/2nd Quarter 2006	0%										
3	3rd Quarter 2006	0%										
9	2nd Half/4th Quarter 2006	0%										

Vernay Laboratories, Inc. Project No. 0292.11.26 April 14, 2006

## RCRA CORRECTIVE ACTION PROJECT SCHEDULE Through Q1, 2006

#### Table 7: Project Schedule

ID Task Name		0/ Complete	2003		2004	A   B A		2005			2006	
70 6.4 Additional Soil So	urce Investigation	% Complete A S	U   N   U   J   F   N	I A M J J A S O	J J F M	A IVI J J A	POND	J F M A	IVI J J	AJOINID	J F NI A NI J	JASUN
74 6.5 El Risk Data Need	s	100%										
7 7.0 EI REPORT FOR GRO	JND WATER	22%										
8 Data Evaluation		100%										
79 Prepare Draft Report		100%										
		201										
Submit Draft Report to	USEPA	0%									h	
USEPA Review of Dra	t Report	0%										
D	and Damart	001										
Prepare and Submit Fi	пан кероп	0%										
USEPA Review and Ap	pprove Final Report	0%										
4 0 0 EL DEDORT FOR LUIS	AN LEALTH	4000/										
8.0 EI REPORT FOR HUM	AN NEALIN	100%										
7 9.0 WELL SURVEY FOLLO	OW UP AND WATER WELL SAMPLING	61%										
88 2005 Well Survey Folio	W. I. In and Water Wall Campling	100%										T
2005 Well Survey Folio	w-Up and Water Well Sampling	100%										
9 2006 Well Survey Follo	w-up and Water Well Sampling	0%										
0 10.0 PROPOSE TO USEPA	A FINAL CORRECTIVE MEASURES	57%										
10.0 PROPUSE TO USEPA	A FINAL CURRECTIVE MEASURES	5/%					<b>\</b>					
1 Treatability Study Eval	uation	100%										
! Treatability Studies		50%										
. Treatability Studies		30 /0										
Idenfify PRGs and Cor	rective Measures Objectives	95%										
Screening and Develor	oment of Potential Corrective Measures	50%										
5 Detailed Analysis and	Comparison of Selected Corr. Measures	0%										h
6 Prepare Draft Correctiv	re Measures Report	0%										<b>*</b>
7 Submit Draft Corrective	e Measures Report to USEPA	0%										
8 USEPA Review of Dra	t Report	0%										
Prepare and Submit Fi	nal Corrective Measures Report	0%										
0 11.0 USEPA SELECTS FIN	AL CORRECTIVE MEASURES	0%										
1 LICEDA Calanta Director	and Final Corrective Measures	00/										
1 USEPA Selects Propos	sed Final Corrective Measures	0%										
Public Review of Propo	sed Final Corrective Measures	0%										
3 Prepare Response to F	Dublic/LISEDA Commente	00/										
5 Prepare Response to F	Public/USEPA Comments	0%										
USEPA Determination	of Final Corrective Measures	0%										
05 12.0 COMMENCE IMPLEM	ENTATION OF FINAL CORRECTIVE MEASURES	0%										
12.0 COMMENCE IMPLEM	LITATION OF FINAL CORRECTIVE MEASURES	U70										