

Opportunities for Methane Emissions Reductions in Natural Gas Processing: Brief Overview

Turkmenistan Symposium on Gas Systems Management: Methane Mitigation April 26 – 29, 2010, Ashgabat, Turkmenistan

Don Robinson, Vice President ICF International

- U.S. Processing Sector Methane Emissions
- Overview of Technologies and Practices
- Methane Saving Opportunities
 - Compressor seals
 - Leak detection, quantification and repair
 - Acid gas removal
- Contact Information and Further Information

2007 U.S. Processing Sector Methane Emissions (2007)

Methane to Markets

EPA. *Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990 – 2007.* April, 2009. Available on the web at: epa.gov/climatechange/emissions/usinventoryreport.html Note: Natural Gas STAR reductions from gathering and boosting operations are reflected in the production sector.

NaturalGas

Emission Sources in Processing Plants

Methane to Markets

- U.S. Processing Sector Methane Emissions
- Overview of Technologies and Practices
- Methane Saving Opportunities
 - Compressor seals
 - Leak detection, quantification and repair
 - Acid gas removal
- Contact Information and Further Information

Overview of Technologies and Practices

- 29 technologies and practices that apply to the processing sector
 - 17 focused on operating practices
 - 12 focused on technologies
- Relevant processing technologies and practices:

Operating practices

Methane to Markets

- Begin leak detection, quantification and repair at processing plants
- Eliminate unnecessary equipment and/or systems
- Rerouting glycol skimmer gas
- Pipe glycol dehydrator to vapor recovery unit
- Inspect and repair compressor station blowdown valves

Technologies

- Convert gas-driven pneumatic devices to instrument air
- Install flash tank separators in glycol dehydrators
- Use of composite wrap repair
- Install pressurized storage of condensate
- Use ultrasound to identify leaks

- U.S. Processing Sector Methane Emissions
- Overview of Technologies and Practices
- Methane Saving Opportunities
 - Compressor seals
 - Leak detection, quantification and repair
 - Acid gas removal
- Contact Information and Further Information

Compressor Seals

nane to Markets

- Rod packing in reciprocating compressors leak gas by design
 - Anywhere between 1.7 to 25.5 m³/h depending on age of packing
 - Replace rod packing to minimize leaks
- Seal oil degassing, from centrifugal compressors, can vent 1.13 to 5.7 m³/h to the atmosphere
 - Use dry seals to avoid the use of seal oil
- More information on emission reductions from compressor seals can be found in the presentation "Methane Reductions at Compressor Stations"

- U.S. Processing Sector Methane Emissions
- Overview of Technologies and Practices
- Methane Saving Opportunities
 - Compressor seals
 - Leak detection, quantification and repair
 - Acid gas removal
- Contact Information and Further Information

Methane to Markets

Leak Detection, Quantification and Repair by Leak Imaging

- Majority of fugitive methane emissions are from a a relatively small number of leaking components
 - Valves (30%)
 - Connectors (24%)
 - Compressor seals (23%)
 - Open-ended lines, crankcase vents, pressure relief devices and pump seals (23%)
- Leak imaging
 - Real-time visual image of gas leaks
 - Quicker identification & repair of leaks
 - Screen hundreds of components an hour
 - Screen inaccessible areas simply by viewing them
- More information can be found in the presentation "Methane Leak Detection and Measurement"

- U.S. Processing Sector Methane Emissions
- Overview of Technologies and Practices
- Methane Saving Opportunities
 - Compressor seals
 - Leak detection, quantification and repair
 - Acid gas removal
- Contact Information and Further Information

Acid Gas Removal (AGR) – What is the Problem?

Wellhead natural gas may contain acid gases

ane to Markets

- Hydrogen sulfide (H₂S) and CO₂ are corrosive to gathering/boosting and transmission lines, compressors, pneumatic instruments, and distribution equipment
- Acid gas removal processes have traditionally used an aqueous amine solution to absorb acid gas
- Amine regeneration strips acid gas (and absorbed methane)
 - CO₂ (with methane) is typically vented to the atmosphere, flared, or recovered for enhanced oil recovery (EOR)
 - H₂S is typically flared in low concentrations or sent to sulfur recovery

AGR - Kvaerner Membrane Process

- Membrane separation of CO₂ from feed gas
 - Cellulose acetate spiral wound membrane
- High CO₂ permeate (effluent or waste stream) exiting the membrane is vented or blended into fuel gas
- Low CO₂ product exiting the membrane exceeds pipeline spec and is blended with feed gas

AGR- Kvaerner Membrane Technology

- CO₂ (and some methane) diffuse axially through the membrane
- High-CO₂ permeate exits from center of tube; enriched product exits from outer annular section
- One application for fuel gas permeate
 - Methane/CO₂ waste stream is added with fuel gas in a ratio to keep compressor emissions in compliance
- Design requirements
 - Upstream separators remove contaminants which may foul membrane
 - Line heater may be necessary

NaturalGas

AGR- Is Recovery Profitable using Kvaerner Membrane?

Costs

Methane to Markets

- Conventional DEA AGR would cost TMT 12.8 to TMT 14.3 million capital, TMT 1.43 million operation and maintenance (O&M) per year
- Kvaerner Membrane process cost TMT 4.28 to TMT 4.85 million capital, TMT 0.06 to TMT 0.14 million O&M per year
- Optimization of permeate stream
 - Permeate mixed with fuel gas, TMT 855/Mcm fuel credit
 - Only installed enough membranes to take feed from >3% to >2% CO₂, and have an economic supplemental fuel supply for compressors
- In addition, offshore Middle East is using NATCO membrane process on gas with 90% CO₂, achieving pipeline spec quality

AGR - Molecular Gate[®] CO₂ Removal

- Adsorbs acid gas (CO₂ and H₂S) in fixed bed
- Molecular sieve application selectively adsorbs acid gas molecules of smaller diameter than methane
- Bed regenerated by depressuring
 - ~10% of feed methane lost in "tail gas" depressuring
 - Route tail gas to fuel
- Applicable to lean gas sources

AGR - Is Recovery Profitable using Molecular Gate[®] CO₂ Removal?

- Molecular Gate[®] costs are 20% less than amine process
 - 0.0002 to 0.035 TMT/Mcm product depending on scale
- Fixed-bed tail gas vent can be used as supplemental fuel
 - Eliminates venting from acid gas removal
- Other Benefits

ane to Markets

- Allows wells with high acid gas content to produce (alternative is shut-in)
- Can dehydrate and remove acid gas to pipeline specs in one step
- Less operator attention

AGR - Morphysorb[®] Process

- Morphysorb[®] has a 30% to 40% operating cost advantage over DEA or Selexol^{TM 1}
 - 66% to 75% less methane absorbed than DEA or Selexol[™]
 - About 33% less total hydrocarbons (THC) absorbed¹
 - Lower solvent circulation volumes
- Morphysorb[®] can process streams with high (>10%) acid gas composition
- At least 25% capital cost advantage from smaller contactor and recycles¹
- Flashing of Morphysorb recycling recovers about 80% of methane that is absorbed²

```
1 – GTI
```

2 – Oil and Gas Journal, July 12, 2004, p 57, Fig. 7

Comparison of AGR Alternatives

	Amine (or Selexol™) Process	Morphysorb [®] Process	Kvaerner Membrane	Molecular Gate [®] CO ₂
Absorbent or Adsorbent	Water & amine (Selexol™)	Morpholine derivatives	Cellulose acetate	Titanium silicate
Methane Savings Compared to Amine Process		66 to 75% less methane absorption	Methane in permeate gas combusted for fuel	Methane in tail gas combusted for fuel
Regeneration	Reduce pressure & heat	Reduce pressure	Replace membrane about 5 years	Reduce pressure to vacuum
Primary Operating Costs	Amine (Selexol™) & steam	Electricity	Nil	Electricity
Capital Cost	100%	75%	35%	<100%
Operating Cost	100%	60% to 70%	<10%	80%

Contact Information and Further Information

Methane to Markets

- More detail is available on these practices and over 80 others online at: <u>epa.gov/gasstar/tools/recommended.html</u>
- For further assistance, direct questions to:

Roger Fernandez EPA Natural Gas STAR Program <u>fernandez.roger@epa.gov</u> (202) 343-9386 Don Robinson ICF International <u>drobinson@icfi.com</u> (703) 218-2512

