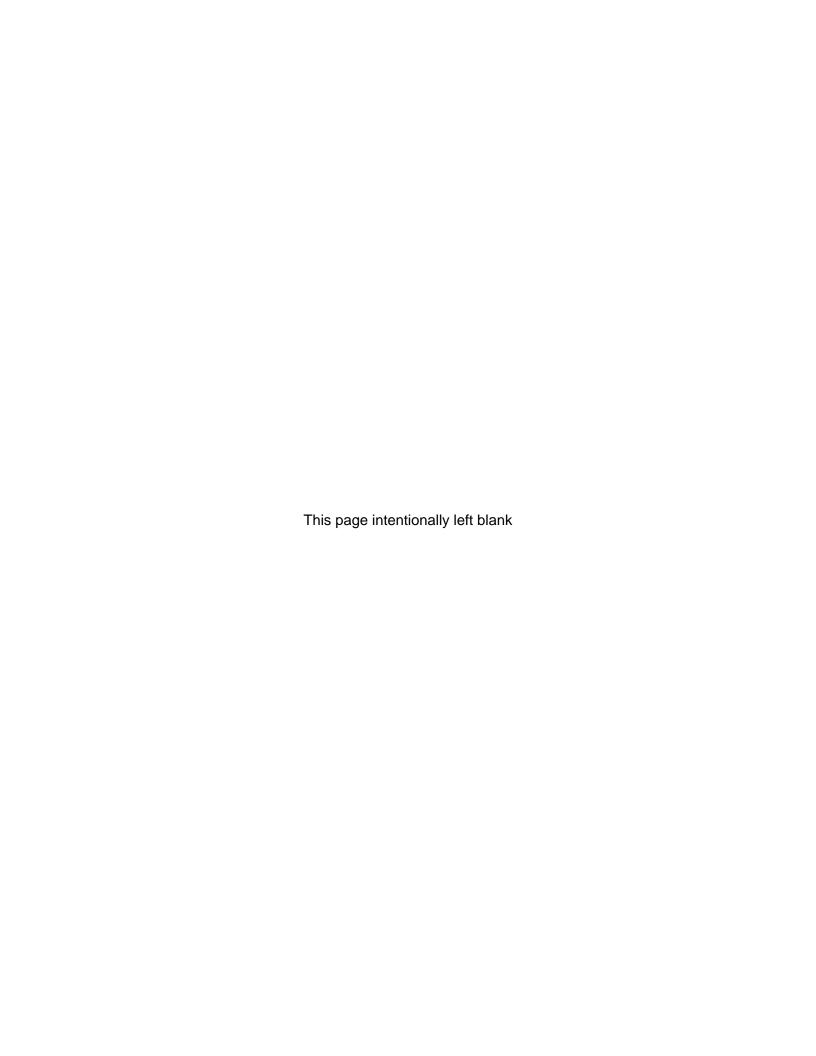
Groundwater Flow Model Progress Report 01, Red Hill Bulk Fuel Storage Facility


JOINT BASE PEARL HARBOR-HICKAM, O'AHU, HAWAI'I

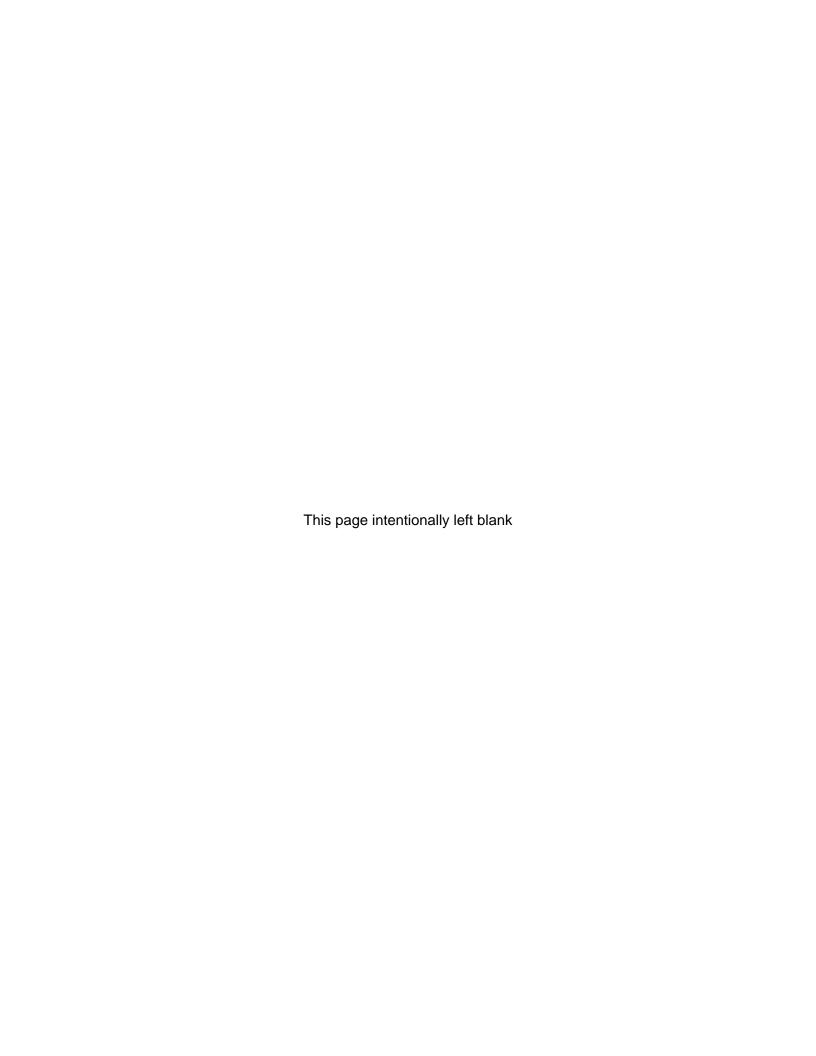
Administrative Order on Consent in the Matter of Red Hill Bulk Fuel Storage Facility, EPA Docket Number RCRA 7003-R9-2015-01 and DOH Docket Number 15-UST-EA-01, Attachment A, Statement of Work Section 6.2, Section 7.1.2, Section 7.2.2, and Section 7.3.2

April 5, 2017 Revision 00

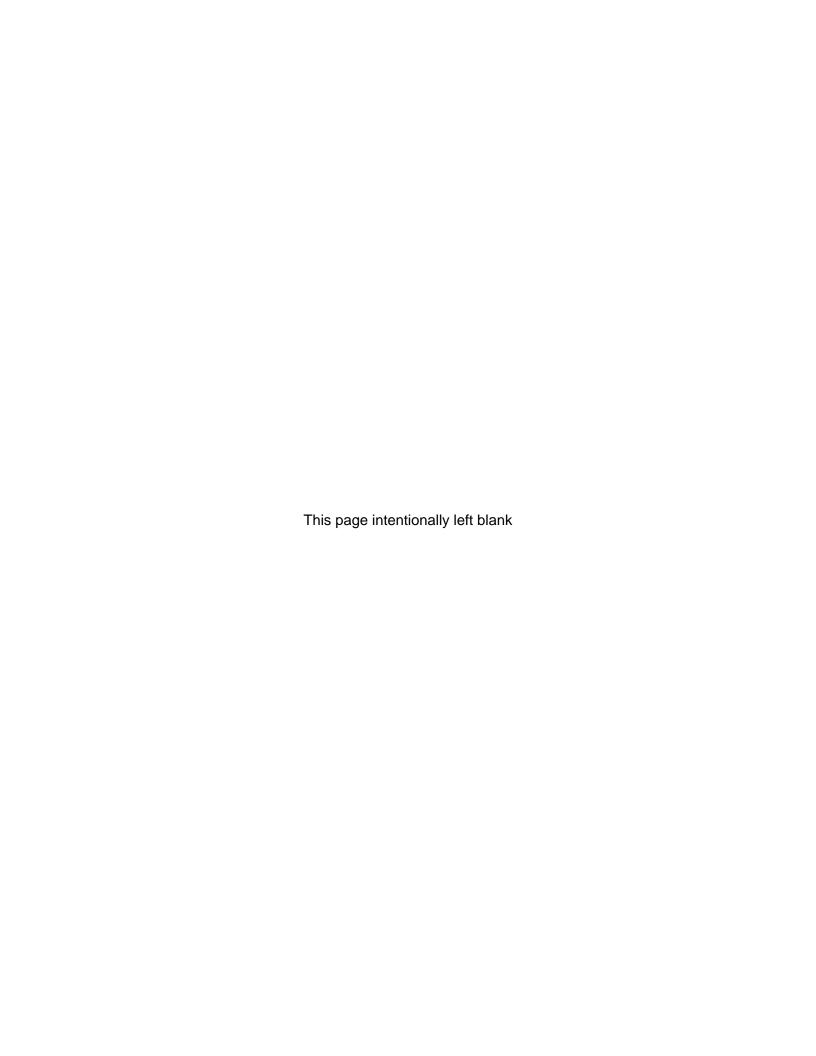
Comprehensive Long-Term Environmental Action Navy Contract Number N62742-12-D-1829, CTO 0053

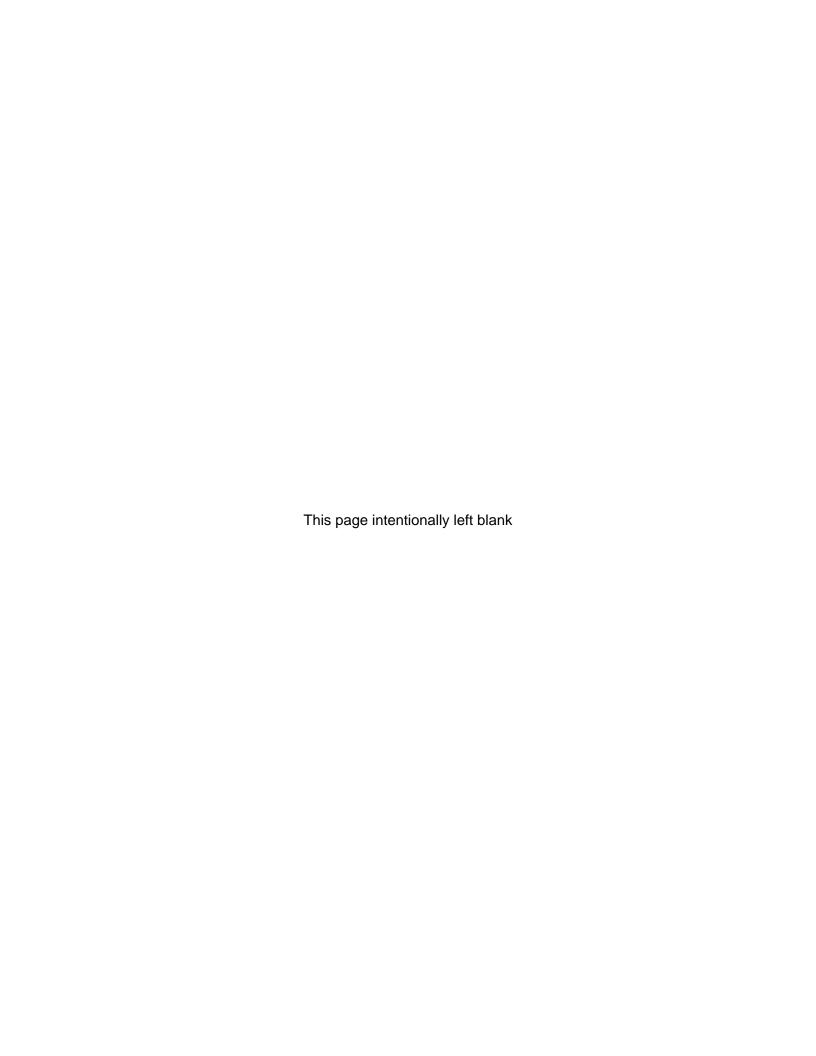
Groundwater Flow Model Progress

2 Report 01, Red Hill Bulk Fuel


- Storage Facility
- 4 JOINT BASE PEARL HARBOR-HICKAM, O'AHU, HAWAI'I
- 5 Administrative Order on Consent in the Matter of Red Hill Bulk Fuel Storage
- 6 Facility, EPA Docket Number RCRA 7003-R9-2015-01 and
- 7 DOH Docket Number 15-UST-EA-01, Attachment A, Statement of Work
- 8 Section 6.2, Section 7.1.2, Section 7.2.2, and Section 7.3.2
- 9 April 5, 2017
- 10 Revision 00

- 11 Prepared for:
- 12 Defense Logistics Agency Energy
- 13 8725 John J Kingman Rd Suite 4950
- 14 Fort Belvoir, VA 22060-6222
- 15 Prepared by:
- 16 AECOM Technical Services, Inc.
- 17 **1001 Bishop Street, Suite 1600**
- 18 Honolulu, HI 96813-3698
- 19 Prepared under:


20


- 21 Comprehensive Long-Term Environmental Action Navy
- 22 Contract Number N62742-12-D-1829, CTO 0053

1		CONTENTS	
2	Acro	onyms and Abbreviations	V
3	1.	Introduction	1
4		1.1 Reporting Period	1
5	2.	Work Completed This Period	1
6 7 8 9 10 11 12 13		 2.1 Current Status 2.1.1 Technical Progress 2.1.2 Technical Issues 2.1.3 RHMW08 and RHMW09 Boring Logs and Well Construction Diagrams 2.2 Submittal of Modeling Deliverables 2.2.1 Current Period 2.2.2 Next Period 	1 1 8 8 8 8 8
14	3.	Schedule Status	13
15	4.	Outstanding Issues	13
16	5.	Anticipated Work Next Reporting Period	13
17	6.	References	14
18	APP	ENDIX	
19	A	Boring Logs and Well Construction Diagrams, RHMW08 and RHMW09	
20	FIG	URES	
21	1	Pumping Well Locations	5
22 23	2	Model Boundary and Locations for Comparison of Simulated Heads of GHB and SHB	ç
24	3	Comparison of Simulated Heads of GHB and SHB (NE/SW Orientation)	11
25	4	Comparison of Simulated Heads of GHB and SHB (NW/SE Orientation)	11
26	TAB	BLES	
27	1	Summary of Model Files Received	2
28	2	Well Geometry and Pumping Rates for the Local Model	۷

1		ACRONYMS AND ABBREVIATIONS
2	AOC	Administrative Order on Consent
3	BWS	Board of Water Supply, City and County of Honolulu
4	CF&T	contaminant fate and transport
5	CSM	conceptual site model
6	CWRM	Commission on Water Resource Management, State of Hawai'i
7		Department of Land and Natural Resources
8	ft	feet
9	GHB	general-head boundary
10	mgd	million gallons per day
11	msl	mean sea level
12	SHB	specified-head boundary
13	SME	subject matter expert
14	SOW	scope of work
15	SWAP	Source Water Assessment Program
16	USGS	United States Geological Survey
17	WP	work plan

1. Introduction

- 2 This Groundwater Flow Model Progress Report 01 is the first of a series of modeling progress
- 3 reports that describes the technical status of the groundwater flow modeling effort being conducted
- 4 for the Investigation and Remediation of Petroleum Product Releases and Groundwater Protection
- 5 and Evaluation project at the Red Hill Bulk Fuel Storage Facility ("Facility"), Joint Base Pearl
- 6 Harbor-Hickam, O'ahu, Hawai'i. The progress report is a component of the overall project reporting
- as specified in the Work Plan / Scope of Work (WP/SOW) (DON 2017). The WP/SOW presents the
- 8 process, tasks, and deliverables that address the goals and requirements of Statement of Work
- 9 Sections 6 and 7 of the Administrative Order on Consent (AOC) In the Matter of Red Hill Bulk Fuel
- 10 Storage Facility (EPA Docket No: RCRA 7003-R9-2015-01; DOH Docket No: 15-UST-EA-01)
- 11 (EPA Region 9 and DOH 2015). Submittal of groundwater flow model progress reports at a
- minimum of every 4 months is stipulated in AOC Statement of Work Section 7.1.2.

13 1.1 REPORTING PERIOD

- Reporting period 01 covered in this report represents progress for the first 4-month period following
- 15 conditional approval of the project WP/SOW by the Regulatory Agencies, which was received by the
- Navy on December 5, 2016 (EPA Region 9 and DOH 2016).

17 2. Work Completed This Period

18 2.1 CURRENT STATUS

- 19 The groundwater modeling work completed during this reporting period included assessing the
- 20 usefulness and limitations of the existing data for the planned groundwater modeling, which are
- 21 described in the Existing-Data Summary and Evaluation Report for Groundwater Flow and
- 22 Contaminant Fate and Transport Modeling dated March 5, 2017. In addition, a detailed review of
- the archived 2007 model files was performed to evaluate the groundwater model reported in the *Red*
- 24 Hill Bulk Fuel Storage Facility Final Technical Report (DON 2007). A summary of files received is
- shown in Table 1. The archived model files were found to provide a reasonable starting point for the
- 26 model update, but some uncertainties and limitations have been identified as discussed below and as
- 27 detailed in the Data Gap Analysis Report for Groundwater Flow and Contaminant Fate and
- 28 Transport [CF&T] Modeling that is currently being prepared. These issues will be addressed when
- 29 updating the 2007 model to incorporate new data being collected in the Red Hill area, refine the
- model setup, and calibrate the model for current conditions.

31 **2.1.1** Technical Progress

- 32 The main objectives of evaluating the archived model files were to evaluate whether the archived
- 33 model files are sufficiently complete to allow numerical model simulations, and to compare the
- 34 parameter values and simulation results to those described in the Red Hill Final Technical Report
- 35 (DON 2007).
- Work performed to date has involved opening the model files received and tabulating the files by
- 37 filename, date, and content. Table 1 summarizes the model files received; the files show 24 different
- 38 model runs, which include both groundwater flow (MODFLOW 2000) and reactive transport
- 39 (RT3D) input files. The model files were then compared to the previously reported parameter values.
- 40 model layers, grid-cell sizes, pumping well locations, and pumping rates. During this process,
- 41 selected archived model files were converted from MODFLOW 2000 to MODFLOW 2005 for
- 42 additional simulations.

Table 1: Summary of Model Files Received

			(Total)	Model Layer	Model		
File Sources and Folder Names	Model File Name	Model Features	Pumping Rate, mgd	Elevation Range (m)	Dated/ Developed	Model Evaluation	Notes
Rotzoll	RH_19ssBC	Steady state flow model	42.646	-350 to 556	01/07/07	Checked pumping rates	Converted from v6, and fixed in v10.1; deleted other non-necessary model files
	RH_23_17d_Bob	Transient flow model	_	_	07/10/07	Reported initial steady state of 131 days, and followed by 53 stress periods & 276 time steps for 17 days transient calibration (DON 2007)	Not convertible & not operable files due to incomplete model files
	RH_25_Rhoff_max	Steady state flow model, with no pumping from Red Hill Shaft	57.886	-350 to 556	01/27/14	Converted from MODFLOW 2000 to MODFLOW 2005	Converted modeling platform to GMS v10.2
	RH_25_ssBC	Steady state flow model, with no pumping from Red Hill Shaft	1	I	01/27/14	01/04/00	Converted flow to v10.2
TEC Red Hill CFT Files (Redhill Model_New-BC)	TPH-Compliance_New-BC	Flow and transport model, with pumping of Hālawa Shaft, Red Hill Shaft, and others	116.702	-350 to 556	08/06/07	Converted from MODFLOW 2000 to MODFLOW 2005, converted boundary conditions from specified head to general head (GHB), simulated flow, processed contours	Converted to GMS v10.1, and extensively evaluated; both flow and transport are in running conditions with the latest flow field for transport, compared to original flow model only
070915_1118 RT3D Simul Inst Rx	Instn-Rx	Flow and transport	_	_	04/30/07	_	Reviewed (briefly)
070915_1136 RT3D Simul Bz Compl III	Benzene-III	Flow and transport	-	-	04/12/07	_	Reviewed (briefly)
070915_1204 RT3D TPH Compl Run3	TPH-Compliance_New-BC-III	Flow and transport	_	_	08/09/07	_	Reviewed (briefly)
070915_1242 RT3D Drought TPH Compl2	TPH-Compliance_New-BC-II	Flow and transport	_	_	08/06/07	_	Reviewed (briefly)
070918_0636 RT3D Simul Bz Compl I	Drought	Flow and transport	_	_	04/30/07	_	Reviewed (briefly)
070918_1151 RT3D Simul Bz Compl I NewBC	Benzene_Compliance_ New-BC	Flow and transport	_	_	08/09/07	_	Converted to GMS v10.1, and extensively evaluated; both flow and transport are in running conditions with the latest flow field for transport, compared to original flow model only

File Sources and Folder Names	Model File Name	Model Features	(Total) Pumping Rate, mgd	Model Layer Elevation Range (m)	Model Dated/ Developed	Model Evaluation	Notes
071004_1144 Default Rx	Benezene_Compliance_ New-BC-II	Flow and transport	_	_	08/11/07	_	Reviewed (briefly)
071004_1203 Benzene VI	Benzene-VI	Flow and transport	_	_	04/16/07	_	Reviewed (briefly)
071004_1225 Drought	Drought	Flow and transport	_	_	04/16/07	_	Reviewed (briefly)
071004_1246 LNAPL at IG	LNAPL-at-IG	Flow and transport	_	_	05/22/07	_	Reviewed (briefly)
071004_1305 Navy Rerun I	Navy_Re_Run-I	Flow and transport	_	_	09/13/07	_	Reviewed (briefly)
071010_0655 Navy Rerun II	Navy_Re_Run-II	Flow and transport	_	_	09/14/07	_	Reviewed (briefly)
071010_0715 Porosity10	Porosity-10	Flow and transport	_	_	05/01/07	_	Reviewed (briefly)
071016_0655 Sensitiv I	Sensitivity-1	Flow and transport	_	_	04/27/07	_	Converted to GMS v10.1, and extensively evaluated; both flow and transport are in running conditions with the latest flow field for transport, compared to original flow model only
071016_0710 Sensitiv II	Sensitivity-II	Flow and transport	_	_	05/18/07	_	Reviewed (briefly)
071016_0727 Sensitiv V	Sensitivity-V	Flow and transport	_	_	04/27/07	_	Reviewed (briefly)
071030_1335 TPH Compl MOD2 UH Modeling	Multiple SWAP models	Flow and transport	_	_	06/28/05	_	Reviewed (briefly)
071031_0618 Sensitiv III	Sensitivity-III	Flow and transport	_	_	04/28/07	_	Reviewed (briefly)
071031_0637 Sensitiv IV	Sensitivity-IV	Flow and transport	_	_	05/05/07	_	Reviewed (briefly)

Source Water Assessment Program

SWAP Notes:

TPH_Compliance_New-BC is applicable to update of both flow and transport.
 Benzene_Compliance_New-BC is applicable to update of both flow and transport.

Sensitivity-1 is applicable to update of both flow and transport.
 All transport models used RT3D code.
 MODFLOW and MODPATH were used for saturated groundwater flow, and particle tracking.

9

10

11

12 13

14

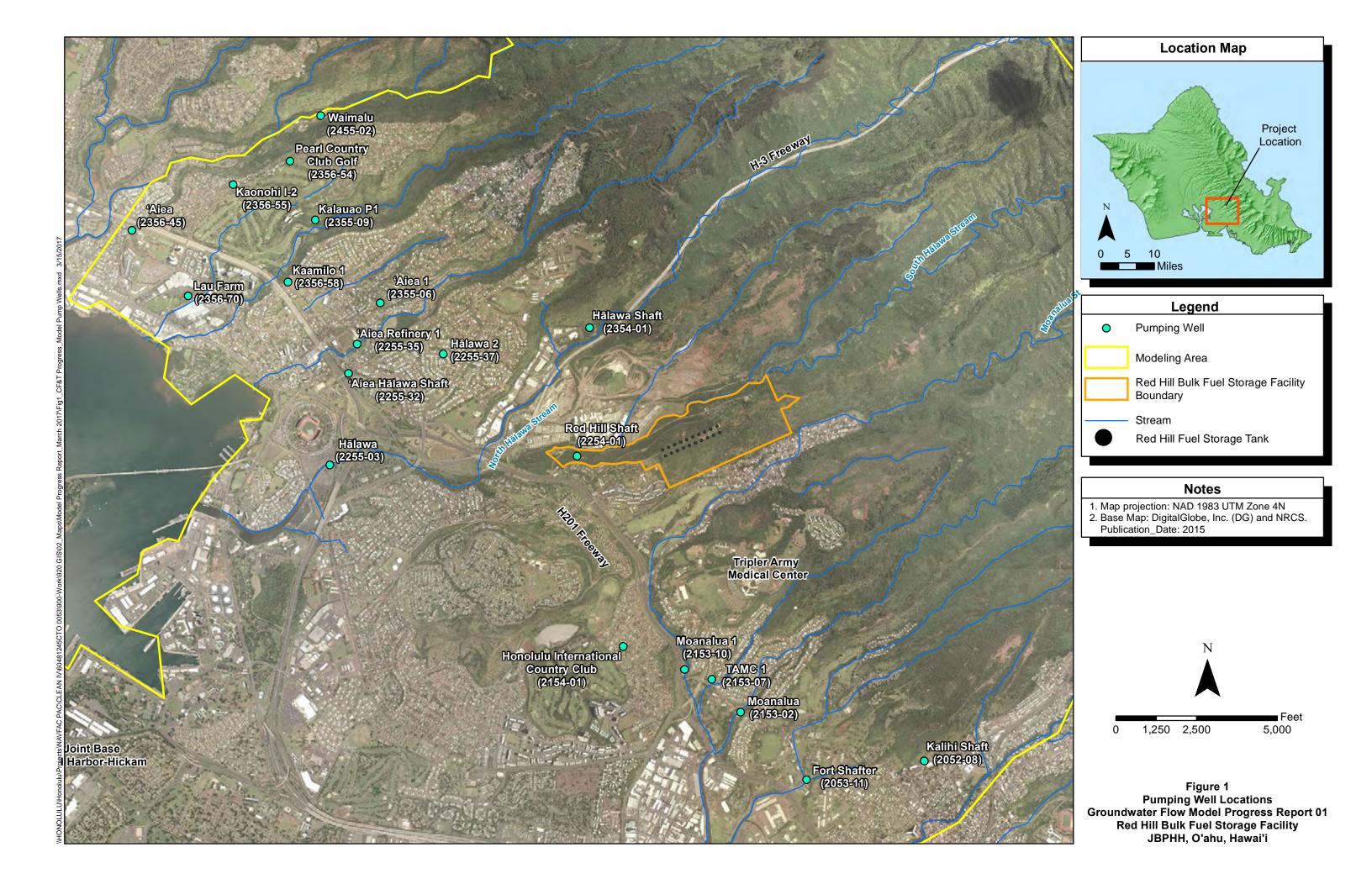
15 16

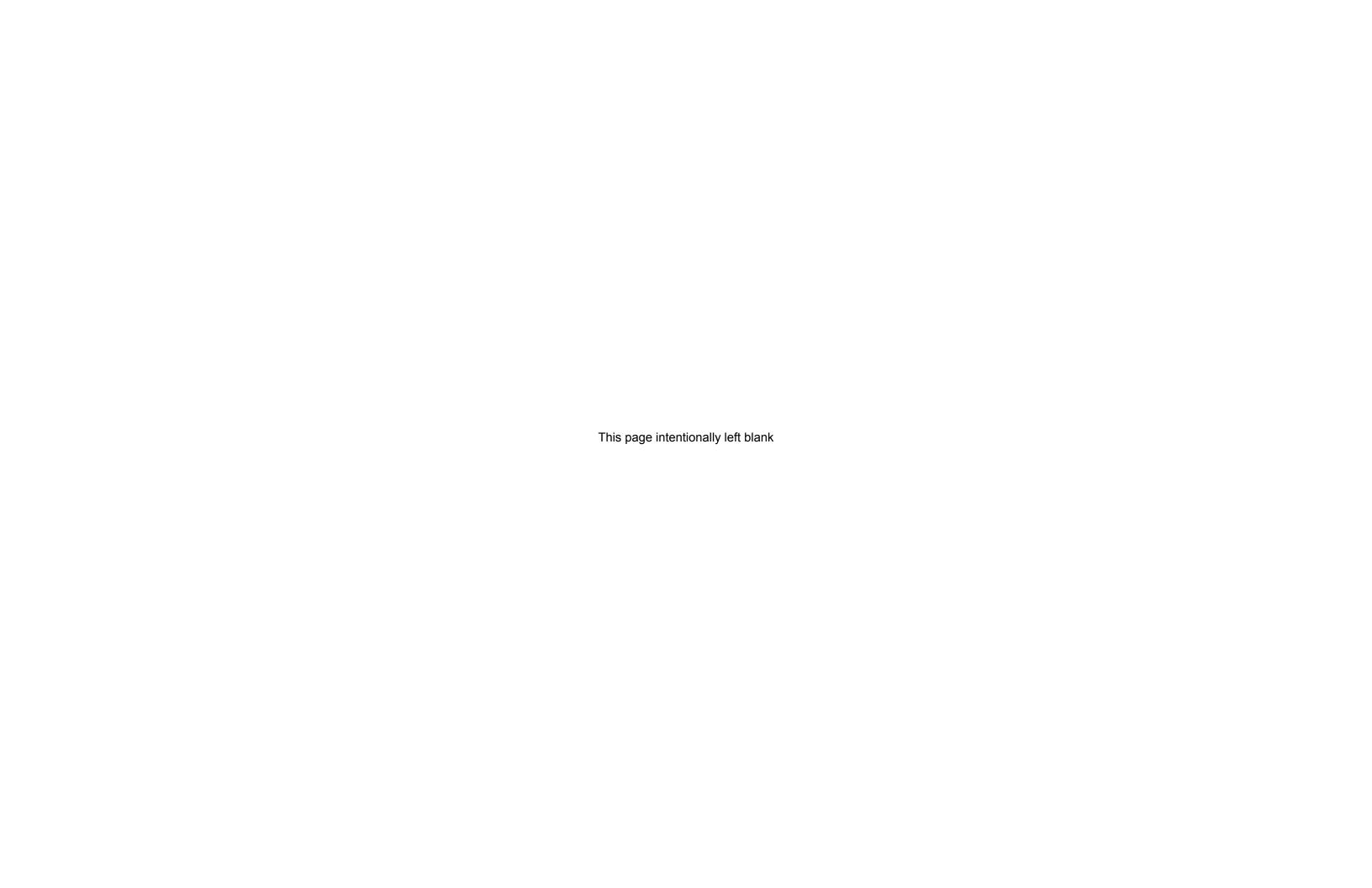
17

The model files show the groundwater model layers and parameter values are consistent with the local groundwater model setup and results described in the 2007 model report (DON 2007). Well locations and pumping rates assigned in the model were identified for three different scenarios, which total 45 million gallons per day (mgd), 58 mgd, and 81 mgd for all the pumping wells combined. Figure 1 shows the pumping well locations within the model, and Table 2 shows the pumping rates of wells for these three scenarios compared to the previously reported rates (DON 2007).

An additional set of MODFLOW files represents the groundwater flow modeling described in the brief 2014 modeling addendum (Rotzoll 2014). In 2014, this additional groundwater flow modeling was performed to determine the effects of petroleum contamination occurring at the Facility on the nearby Board of Water Supply (BWS) wells (Rotzoll 2014). The model parameters were the same as the August 2007 model, except that the model was analyzed with the Navy Red Hill Shaft (03-2254-01) not in operation. The 2014 modeling delineated 10-year capture zones for drinking water wells near the Facility under two pumping scenarios: 1) withdrawal at all surrounding wells except Red Hill Shaft (03-2254-01) at a 10-year average pumping rate and 2) withdrawal at all surrounding wells except Red Hill Shaft.

Table 2: Well Geometry and Pumping Rates for the Local Model


Aquifer	Well No.	Elevation (ft msl)	Top Screen (ft msl)	Bottom Screen (ft msl)	Pump Rate (mgd)
Waimalu	2255-32	95	14	-4	0.48
	2255-35	119	-32	-77	0.03
	2255-37	256	-29	-49	0.99
	2354-01_1	165	0	-18	4.58 ^a
	2354-01_2	367	2	-16	2.29
	2354-01_3	492	3	-15	1.83
	2354-01_4	535	5	-13	1.37
	2354-01_5	541	7	-11	0.92
	2354-01_6	489	8	-10	0.46
	2355-03	304	16	-38	0.79
	2355-06	258	-32	-102	1.24
	2355-09	160	-61	-253	8.72
	2356-45-53	25	-180	-315	1.19
	2356-54	374	-21	-178	0.78
	2356-55	252	-37	-290	1.33
	2356-58	147	-43	-193	1.00
	2356-70	18	-152	-202	0.04
	2455-02	128	-12	-78	0.28
Red Hill	2254-01_1	200	24	-10	1.76
	2254-01_2	200	24	-10	0.88
	2254-01_3	194	24	-10	0.70
	2254-01_4	240	24	-10	0.53
	2254-01_5	299	24	-10	0.35
	2254-01_6	322	24	-10	0.18
Moanalua	2052-08	160	30	6	7.43
	2053-11	21	-154	-309	0.64
	2153-02	20	-59	-269	0.04
	2153-07	30	-22	-272	0.37
	2153-10	36	-114	-264	3.27
	2154-01	14	-89	-280	0.29


Source: (DON 2007), Appendix L, Table 7

ft fee

msl mean sea level

^a For the maximum pumping rate scenario (81 mgd total), the Hālawa Shaft pumping rate equals 27.46 mgd.

- 1 Another important goal of this work was to evaluate the perimeter boundaries of the 2007 local
- 2 model to ascertain whether the boundary conditions assigned may affect or constrain future model
- 3 results, and if so, whether the perimeter boundary locations need to be revised for future model
- 4 simulations. Each perimeter boundary (shown on Figure 2) extends vertically from the top of the
- 5 upper model layer to the bottom of the lowest model layer.
- 6 As described in the previous Red Hill groundwater modeling report (DON 2007), specified-head
- 7 boundary (SHB) conditions were assigned along each side of the local model area. Head values
- 8 assigned to these SHBs were imported from the regional Source Water Assessment Program
- 9 (SWAP) model (DON 2007).
- The 2007 local model boundaries are located along natural hydrogeologic boundaries, each of which
- is 2 miles or more from the Facility. The northeastern boundary lies along the east side of the dike-
- free basalt area mapped by the United States Geological Survey (USGS) (Izuka et al. 2016). The
- 13 northwestern model boundary is located along the center of Waimalu Valley (Figure 2), about
- 2.5 miles away from the Facility and about 1.8 miles north of BWS's Hālawa Shaft at the closest
- point. The USGS regional model (Oki 2005) assigned a valley-fill barrier along the bottom of
- Waimalu Valley on the basis of well logs.
- 17 The southeast boundary is located along the middle of Kalihi Valley, which is about 2.5 miles south
- of the Facility at the closest point. The USGS regional model (Oki 2005) also used Kalihi Valley as
- 19 the southern boundary, and specified it to be a no-flow boundary to reflect the presence of a deep
- valley fill barrier, which likely exceeds 1,000 feet thickness (Oki 2005). The western boundary of the
- 21 2007 model is located along the shore of Pearl Harbor (Figure 2), which is about 2.8 miles west of
- the Facility and about 1.4 miles west of Hālawa Shaft at the closest point.
- Work during this period evaluated whether the locations of the SHBs in the 2007 model unduly
- 24 constrain future modeling results. This evaluation included conducting new simulations with the
- 25 2007 flow model after setting different boundary conditions, known as general-head boundary
- 26 (GHB) conditions, at the same locations as the SHBs. In MODFLOW, a GHB package is used to
- simulate a head-dependent flux boundary. On the other hand, the basic SHB package is used to set
- constant values of hydraulic head along the boundary. Unlike a SHB, a MODFLOW GHB allows the
- 29 hydraulic head to change along the boundary in response to pumping within the model domain.
- Thus, the degree to which the SHB locations may affect the model results (e.g., constrain pumping
- 31 drawdowns) were evaluated by comparing model simulations using the same pumping wells and
- pumping rates after changing the SHBs to GHBs.
- 33 These new model simulations show no substantial differences in simulated heads using GHBs
- compared to SHBs, even for the highest pumping rate scenario (81 mgd). To illustrate this finding,
- plots have been prepared showing hydraulic heads simulated by the 2007 model along two lines
- crossing the area of interest in the vicinity of the Facility, Red Hill Shaft, and Hālawa Shaft, as
- 37 indicated on Figure 2. Figure 3 is oriented northeast to southwest, and Figure 4 is oriented northwest
- 38 to southeast across the model area. The Y-axis of these plots shows the model-simulated heads
- 39 (groundwater table elevations) using SHB conditions, and the X-axis shows the heads simulated by
- 40 the model after assigning the GHBs. There is no substantial difference in simulated water level
- 41 contours for the model with GHB conditions compared to using SHB conditions, indicating that the
- 42 SHBs do not constrain the model's capability to simulate groundwater levels caused by pumping
- wells in the area of interest, even with high pumping rates. Thus, it is concluded that there is no need
- 44 to change the locations of the perimeter boundaries for future model simulations.

4

5

6

7

8

9

10

11 12

13

14

15

16

1718

19

20

21

22

23

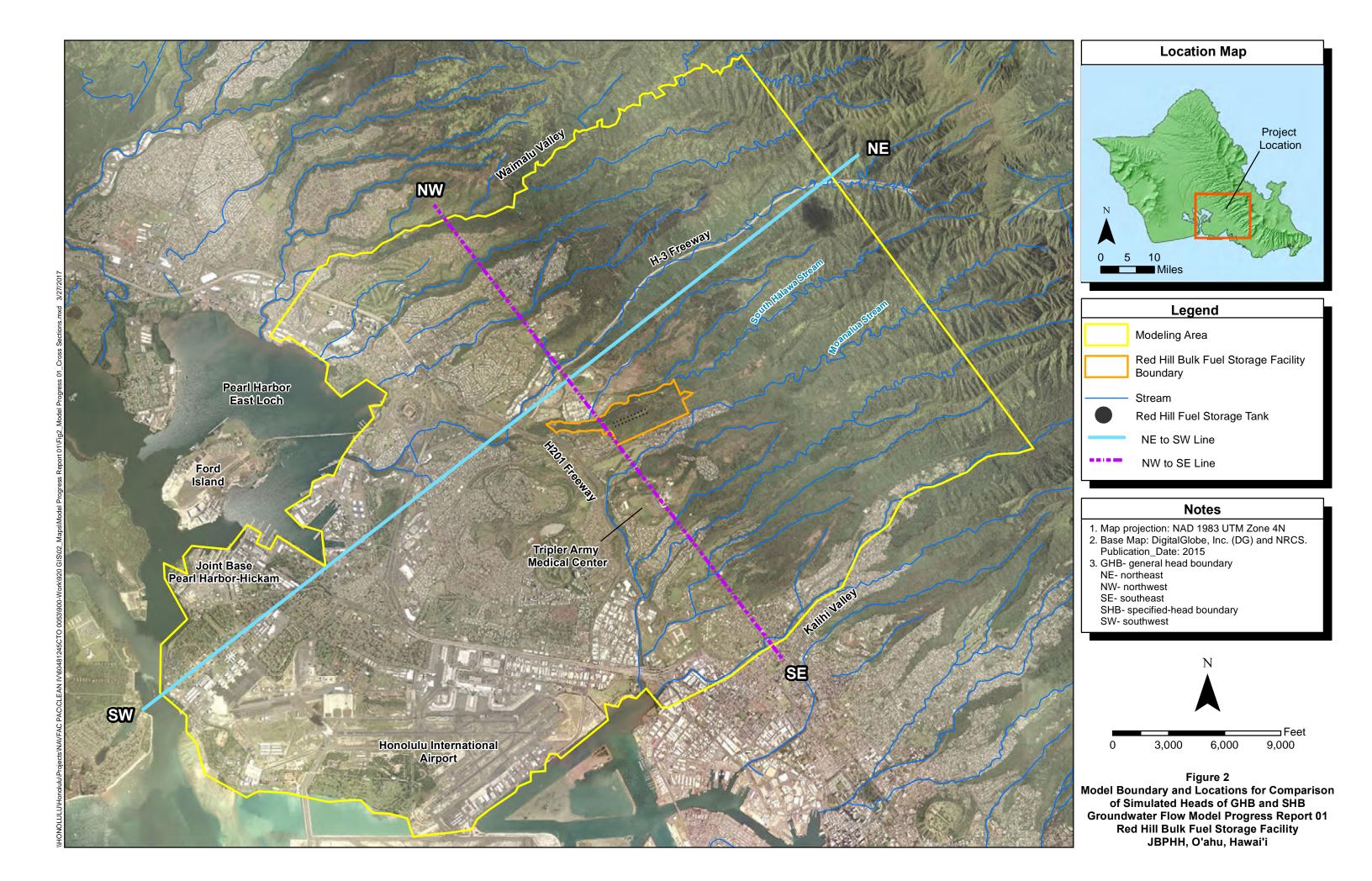
24

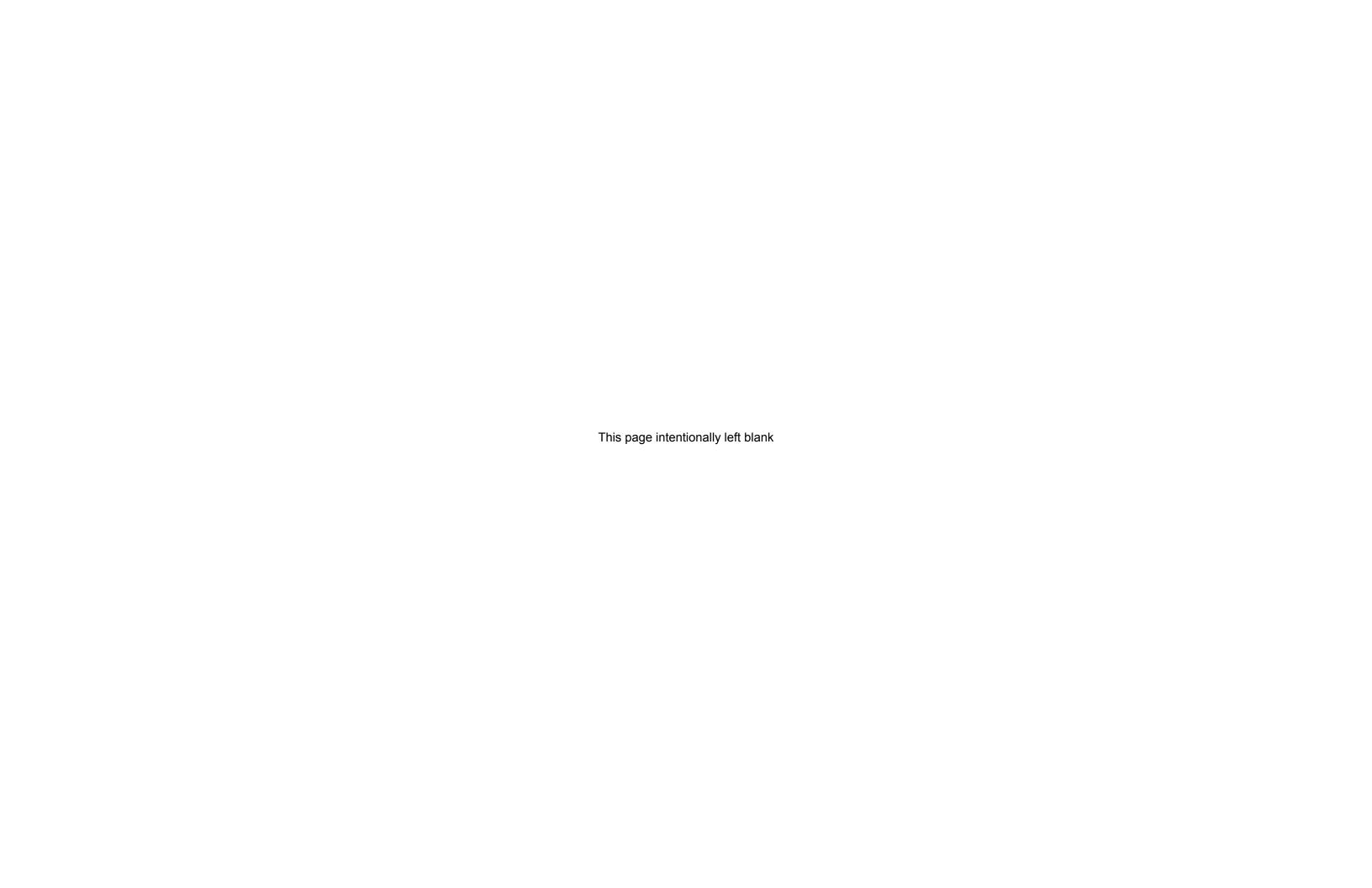
25

26

27

2.1.2 Technical Issues


- The work so far has revealed several uncertainties and limitations in the archived model files, including:
 - It is not possible to directly match individual model files or sets of files to the simulation scenarios described in the 2007 modeling report (DON 2007) with the information currently obtained because the archived files are not organized or named the same as scenarios previously reported. Additional information will need to be obtained to match the files to the simulation scenarios.
 - A calibrated base case model simulation was not identified in the model files that were
 provided, and thus it is not possible to independently evaluate the previous steady-state
 calibration. However, it is intended to run the 2007 model to simulate non-pumping
 conditions at Red Hill Shaft to compare the results to the recently measured groundwater
 levels (November 2016).
 - Some sets of model files do not contain all of the input files needed to run simulations using MODFLOW 2000, and converting those files to MODFLOW 2005 may be problematic. This is not likely to invalidate any of the 2007 modeling results but may complicate future use of the archived model files.
 - Both the 2007 and 2014 model simulations involved other pumping wells that were not reported (DON 2007), and no information for these wells, such as well I.D., rationale of the pumping rates, and screen depth interval has been obtained. This is not likely to invalidate any of the 2007 modeling results but will require additional effort to obtain the missing well information.
 - Both the 2007 and 2014 models show errors regarding starting heads and bottom elevations, e.g., starting heads below bottom elevations, and/or specified heads below bottom elevations in some model cells. This is a minor technical issue, which may need more evaluation before using the 2007 model for additional simulations. During the model update, refining or reconstructing the model layers is expected to fix this issue.


28 2.1.3 RHMW08 and RHMW09 Boring Logs and Well Construction Diagrams

- 29 Lithological boring logs and well construction diagrams for new monitoring wells RHMW08 and
- 30 RHMW09, constructed between July and October 2016, are presented in Appendix A.

31 2.2 SUBMITTAL OF MODELING DELIVERABLES

- 32 2.2.1 Current Period
- 33 Other relevant deliverables submitted during this reporting period include:
- Final Fourth Quarter 2016 Quarterly Groundwater Monitoring Report, Red Hill Bulk Fuel
 Storage Facility (February 2017)
- Existing Data Summary and Evaluation Report for Groundwater Flow and Contaminant
 Fate and Transport Modeling, Red Hill Bulk Fuel Storage Facility (March 5, 2017)

2

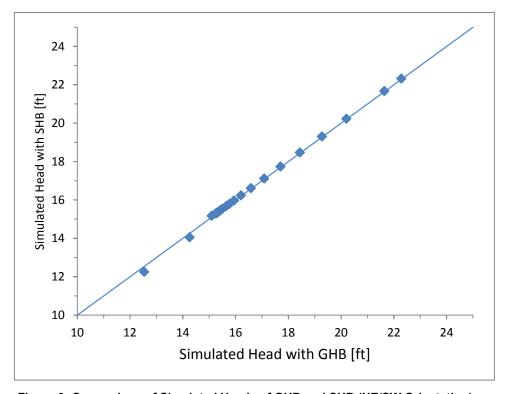


Figure 3: Comparison of Simulated Heads of GHB and SHB (NE/SW Orientation)

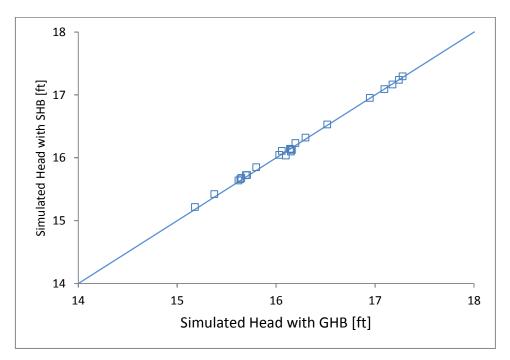
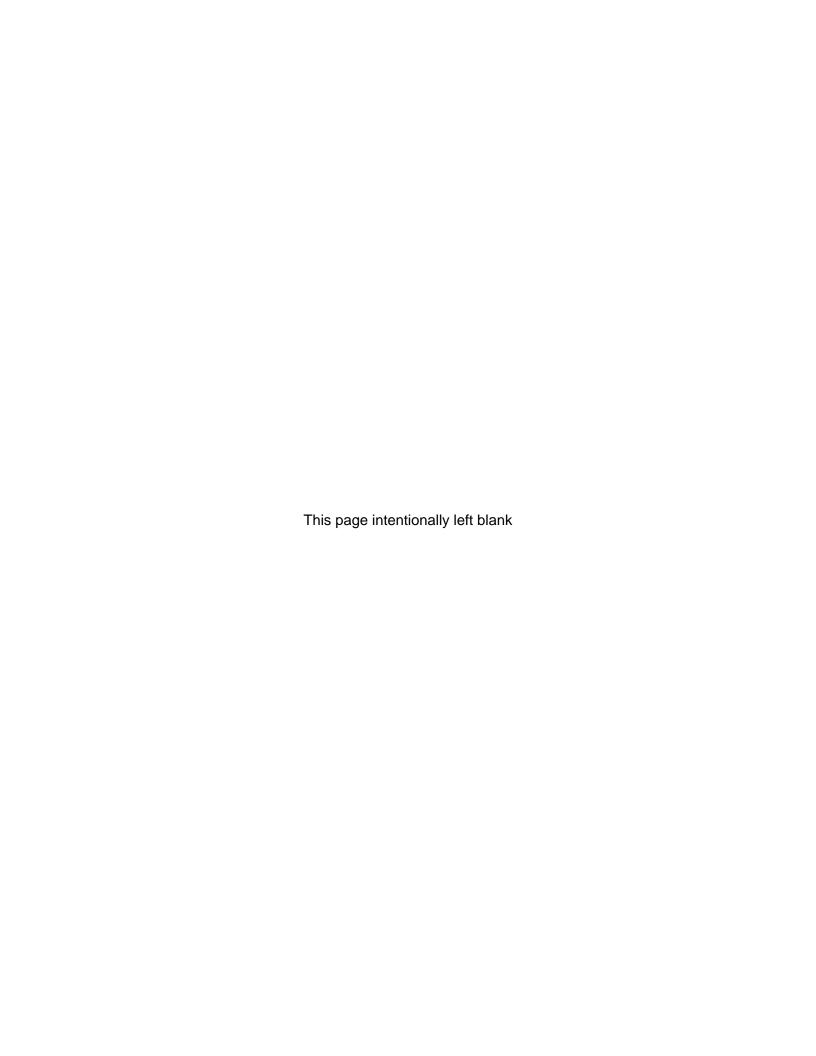



Figure 4: Comparison of Simulated Heads of GHB and SHB (NW/SE Orientation)

7

8

18 19

20

24

25

26

28

34

35

2.2.2 Next Period

- 2 Additional deliverables due for submittal during the next 4-month reporting period include:
- Data Gap Analysis Report for Groundwater Flow and Contaminant Fate and Transport
 Modeling, Red Hill Bulk Fuel Storage Facility
- Conceptual Site Model Development and Evaluation Plan, Red Hill Bulk Fuel Storage
 Facility
 - Attenuation Evaluation Plan, Red Hill Bulk Fuel Storage Facility
 - Groundwater Model Evaluation Plan, Red Hill Bulk Fuel Storage Facility
- Final First Quarter 2017 Quarterly Groundwater Monitoring Report, Red Hill Bulk Fuel
 Storage Facility
- Final Second Quarter 2017 Quarterly Groundwater Monitoring Report, Red Hill Bulk Fuel
 Storage Facility

13 3. Schedule Status

14 The modeling is proceeding on schedule; no delays are anticipated at the present time.

15 4. Outstanding Issues

Outstanding issues center around filling the data gaps identified in the forthcoming *Data Gap Analysis Report*.

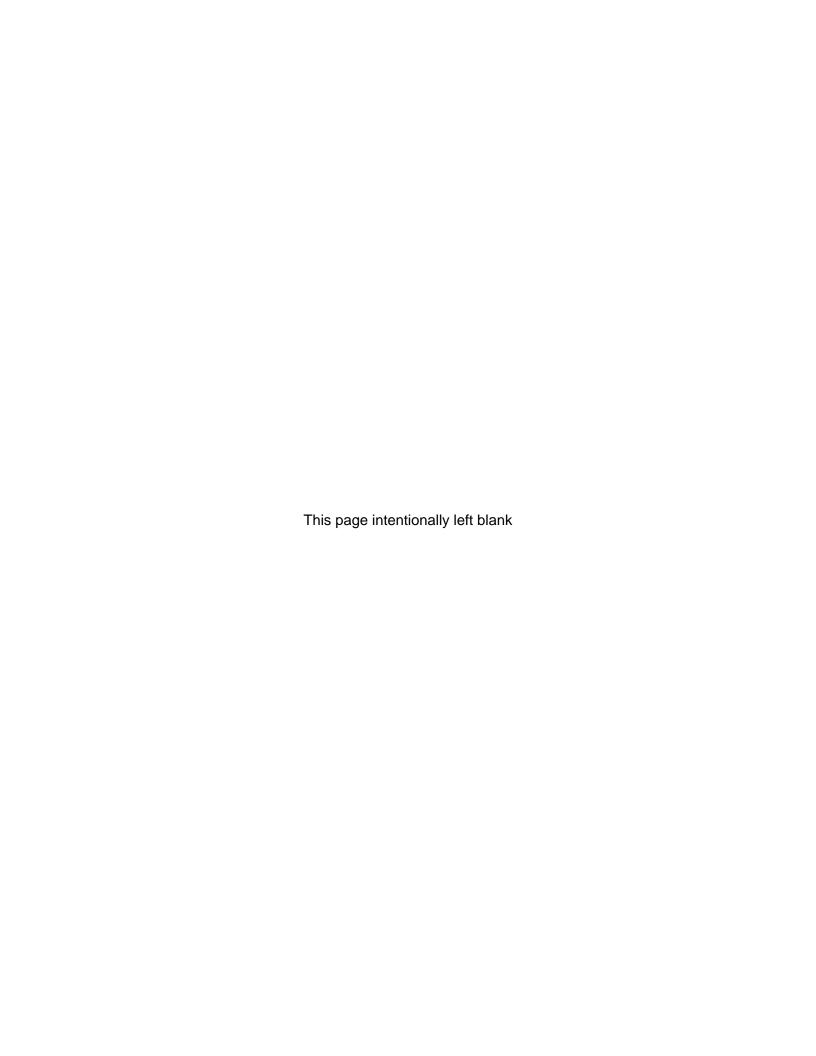
5. Anticipated Work Next Reporting Period

- Present initial findings of 2007 model evaluation to Regulators and subject matter experts (SMEs).
- Continue to evaluate the 2007 flow and transport model.
- Evaluate new hydrogeologic information to develop the conceptual site model (CSM) and update the 2007 flow model, including:
 - Well locations, construction details, borehole geologic logs and pumping data (from BWS and the Hawai'i Department of Land and Natural Resources' Commission on Water Resource Management [CWRM])
- May 2015 pumping test data from BWS and USGS
 - Evaluate screen depth intervals in monitoring wells for model calibration
- GIS shape files from USGS for maps of groundwater recharge rates, caprock thickness
 and top of basalt
- 31 Map showing altitude of base of fresh water aquifer (from CWRM and/or USGS)
- Participate in meeting with USGS to discuss and obtain in-progress USGS modeling
 files for hydraulic properties along 2007 model boundaries
 - Work closely with project team to develop detailed geological characterization of the Red Hill area, including basalt and clinker beds and effective porosity distributions
- Participate in detailed planning of regional aquifer test with synoptic monitoring, and assist with coordination of stakeholder activities.

2

3

4


- Prepare the CSM Development and Update Plan and Groundwater Model Evaluation Plan.
 - Present updated CSM in the next *Groundwater Flow Model Progress Report*, anticipated for submittal in August 2017.

6. References

- Department of the Navy (DON). 2007. *Red Hill Bulk Fuel Storage Facility Final Technical Report, Pearl Harbor, Hawaii*. Prepared by TEC Inc., Honolulu, HI. Pearl Harbor, HI: Naval Facilities

 Engineering Command, Pacific. August.
- 8 . 2017. Work Plan / Scope of Work, Investigation and Remediation of Releases and
 9 Groundwater Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, Joint Base Pearl
 10 Harbor-Hickam, Oah'u, Hawai'i; January 4, 2017, Revision 02. Prepared by AECOM Technical
 11 Services, Inc., Honolulu, HI. Prepared for Defense Logistics Agency Energy, Fort Belvoir, VA,
 12 under Naval Facilities Engineering Command, Hawaii, JBPHH HI.
- Environmental Protection Agency, United States, Region 9; and Department of Health, State of Hawaii (EPA Region 9 and DOH). 2015. Administrative Order on Consent In the Matter of Red Hill Bulk Fuel Storage Facility, EPA Docket No: RCRA 7003-R9-2015-01; DOH Docket No: 15-UST-EA-01. September.
- 2016. "Conditional Approval of Red Hill AOC SOW Deliverable under Sections 6 & 7 Work Plan/Scope of Work, Investigation and Remediation of Releases and Groundwater
 Protection and Evaluation, Red Hill Bulk Fuel Storage Facility, November 5, 2016 Revision 01."
 Letter from Bob Pallarino, EPA Red Hill Project Coordinator, and Steven Chang, DOH Red Hill
 Project Coordinator, to: Captain Richard D. Hayes, Navy Region Hawaii. December 2, 2016.
- Izuka, S. K., J. A. Engott, M. Bassiouni, A. G. Johnson, L. D. Miller, K. Rotzoll, and A. Mair. 2016.
 Volcanic Aquifers of Hawai'i—Hydrogeology, Water Budgets, and Conceptual Models.
 Scientific Investigations Report 2015–5164. Water Availability and Use Science Program. U.S.
 Geological Survey.
- Oki, D. S. 2005. Numerical Simulation of the Effects of Low-Permeability Valley-Fill Barriers and the Redistribution of Ground-Water Withdrawals in the Pearl Harbor Area, Oahu, Hawaii. Scientific Investigations Report 2005-5253. U.S. Geological Survey.
- Rotzoll, K. 2014. "Addendum to Rotzoll and El-Kadi (2007) Numerical Ground-Water Flow Simulation for Red Hill Fuel Storage Facilities, NAVFAC Pacific, Oahu, Hawaii." To: J. Shimabuku, NAVFAC HI; E. Lau, HBWS; cc: R. Whittier, HDOH; A. El-Kadi, University of Hawaii. January 29. Water Resources Research Center, University of Hawaii.

1 Appendix	A :
2 Boring Logs and Well Construction Diagram	ns,
3 RHMW08 and RHMW	/09

Project Location: CTO53 Project Number: 60481245

Key to Log

Sheet 1 of 2

Į	Proje	CL NU	HIDE	1.	004	Ю 12	.43														
ſ				D/)Ck	· · ·	ORE		T							0		SOII			
	Elevation, feet	Depth, feet	Run No.		⊗ T	Fractures per Foot	RQD, %	Fracture Drawing	Number	Lithology	ı	MATERIA	AL DE	SCRIPTI	ON	Well Schematic	Type	Number Number	Blows /12 in	Drill Time [Rate, ft/hr]	FIELD NOTES AND TEST RESULTS
	1	2	3	4	5	6	7	8	9	10			11			12	13	14	15	16	17
١	CC	DLUMN	DES	CRII	PTI	ONS	:														
	1 2 3 4 5 6	Elevati Depth: Run No Box No corresp interva run. Fractur breaks applica R Q D: (pieces interva	Distriction Distri	Eleva stance Number or run: Amoulated er Foo ctures ced by ie to li	etion (in : (in : er of er of unt (i) as i (it: (n e) ack (i) ality ore (i) as i	(in feet) the if the clin per length (Fraction) of cor Desi greate	belove individual core in the foot core	ov the dual of coore reference for alled for all all for all	colla corine hich pre recov ency ency corract //	ecover ecover ered of ') The es not ures. unt (in s in le	red from the livided by land include mention include mentions include mentions and include mentions are mentions.	om the ne coring length of if naturally nechanical ates not of intact core ach coring ded by	9 10 11 12 13 14 15	fractures a descriptive Lithology: represent obelow. Description (Munsel), to descriptive of fractures Well Schelinstallation. Sample Ty shown; sar Sample Nt. Blows /12	re described i terms defined A graphic le differing soil a n: Lithologie exture, grain setems are de soumbered in matic: So; graphic symlope: Type on pler symbols imber: Sar in.: Numbe	n Collid on S og of r nd typ c desc size, w fined c n Colur chema bols an f soil s are e mple ic	imn 1 heet nater es; gi ription eathe on Sh nn 9 tic of re exp samp xplain dentifi	11 (key 2 (Iter ial encraphic n in the ering, eet 2. using piezololained le collined be ication	yed by ns a the counter symb is orders streng Also, terms meter, d below ected elow.	er number rough ered usions are er: roc th, and abbred define inclina w. at dept per. advance	g). ing symbols to explained k type, color d other features; viated description d on Sheet 2. ometer or well th interval
Key	8	Fractu mecha cross-s	with re re Dra nical t section	espec wing: oreaks nal axi	t to t	the de Sketc owing the c	egree th of t g the core.	e of fra he na angle "NR"	actur tura of t indi	ring. Ily occ he frac cates i	ne indication in indication in indication in income in indication in ind		16 17	Drill Time of each run Field Note regarding of	n; drill rate (in s and Test Re	drop (u e (in 24 feet po esults pling r	inless 4-hou er hoi <u>:</u> nade	other or clock or) is r Comm by dri	wise r k) mar eporte nents a ller or	noted). king sted in broad observed in the state of the	eart and finish rackets. servations ersonnel. Field
	<u> 1 Y</u>	<u> PICAL</u>	MAI	<u>ERI/</u>	AL (<u>JRA</u>	PHI	<i>3</i>	MB	<u>OLS</u>											
IILL CORE LOGS.GPJ; 10/28/2016		Silty S		•	•	-		×× ×× ××		Claye	ey SAND	(SC)		Fat CLA	Y (CH)			8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	BA	SALT	Breccia
CORE	<u>TY</u>	<u> PICAL</u>	SAN	IPLE	R G	RAF	PHIC	SYI	ИВ	<u>OLS</u>			<u>0</u>	THER GR	APHIC SYN	/BOL	<u>.s</u>				
; FIIE: CTO53 RED HILL	X IY	Grab Modif samp 'PICAL	ied C ler wi	alifori th bra	ass I			МВО] Ls	Stand (SPT	dard Pend) split spo	etration oon sampler	<u>∑</u>	samplii Water of drillii Minor	ater encount ng (ATD) level measui ng and samp change in ma	red at oling aterial	spec	cified perties	time a	after co	•
JD KEY		Blank grout	casii	ng in	cem	nent				Blanl	k casing i	n filter sand	-		d or transitio				DDF	\/I A T I	ONE

Report: CTO53 RED HILL WITH WELL AND PID KEY;

pellets

Blank casing in cement-bentonite grout

Blank casing in bentonite

File: CTO53 RED HILL CORE LOGS.GPJ; 10/28/2016 Key

Soil classifications are based on the Unified Soil Classification System. Descriptions and stratum lines are interpretive; field descriptions may have been modified to reflect lab test results. Descriptions on these logs apply only at the specific boring locations and at the time the borings were advanced; they are not warranted to be representative of subsurface conditions at other locations or

Slotted casing in filter

Filter sand, native fill or

slough

FIELD AND LABORATORY TEST ABBREVIATIONS

LL Liquid Limit (from Atterberg Limits)

ы Plasticity Index (from Atterberg Limits), NP=Non Plastic

PP PP Pocket penetrometer field consitency reading, tst

SA Sieve Analysis, %fines (<#200 sieve) and gravel (>#4 sieve)

WA Wash on #200 sieve, % fines (<#200 sieve)

UC Unconfined compressive strength (qu), psf

Project Location: CTO53
Project Number: 60481245

Key to Log

Sheet 2 of 2

KEY TO DESCRIPTIVE TERMS USED ON CORE LOGS

DISCONTINUITY DESCRIPTORS

a Dip of discontinuity, measured relative to a plane normal to the core axis.

b <u>Discontinuity Type:</u>

F - Fault
 J - Joint
 Sh - Shear
 Fo - Foliation
 V - Vein
 B - Bedding

e Amount of Infilling:

Su - Surface Stain Sp - Spotty Pa - Partially Filled Fi - Filled No - None

c Aperture (inches):

W - Wide (0.5-2.0)
MW - Moderately Wide (0.1-0.5)
N - Narrow (0.05-0.1)
VN - Very Narrow (<0.05)
T - Tight (0)

f Surface Shape of Joint:

PI - Planar Wa - Wavy St - Stepped Ir - Irregular

d Type of Infilling:

- Biotite My - Mylonite - Clay CI - None No - Calcite Ca Ру Pyrite _ Ch Chlorite Quartz Ep - Epidote Sd Sand - Iron Oxide Fe Si Silt SiCI - Silty Clay Н - Healed Uk - Unknown - Potassium

g Roughness of Surface:

Slk - Slickensided [surface has smooth, glassy finish with visual evidence of striations]

S - Smooth [surface appears smooth and feels so to the touch]
 SR - Slightly Rough [asperities on the discontinuity surfaces are distinguishable and can be felt]

 R - Rough [some ridges and side-angle steps are evident; asperities are clearly visible, and discontinuity surface feels very abrasive]

VR - Very Rough [near-vertical steps and ridges occur on the discontinuity surface]

ROCK WEATHERING / ALTERATION

Description

Residual Soil

Completely Weathered/Altered

Highly Weathered/Altered

Moderately Weathered/Altered

Slightly Weathered/Altered Fresh/Unweathered

Recognition

Original minerals of rock have been entirely decomposed to secondary minerals, and original rock fabric is not apparent; material can be easily broken by hand

Original minerals of rock have been almost entirely decomposed to secondary minerals, although original fabric may be intact; material can be granulated by hand

More than half of the rock is decomposed; rock is weakened so that a minimum 2-inch-diameter sample can be broken readily by hand across rock fabric

Rock is discolored and noticeably weakened, but less than half is decomposed; a minimum 2-inch-diameter sample cannot be broken readily by hand across rock fabric

Rock is slightly discolored, but not noticeably lower in strength than fresh rock Rock shows no discoloration, loss of strength, or other effect of weathering/alteration

ROCK STRENGTH

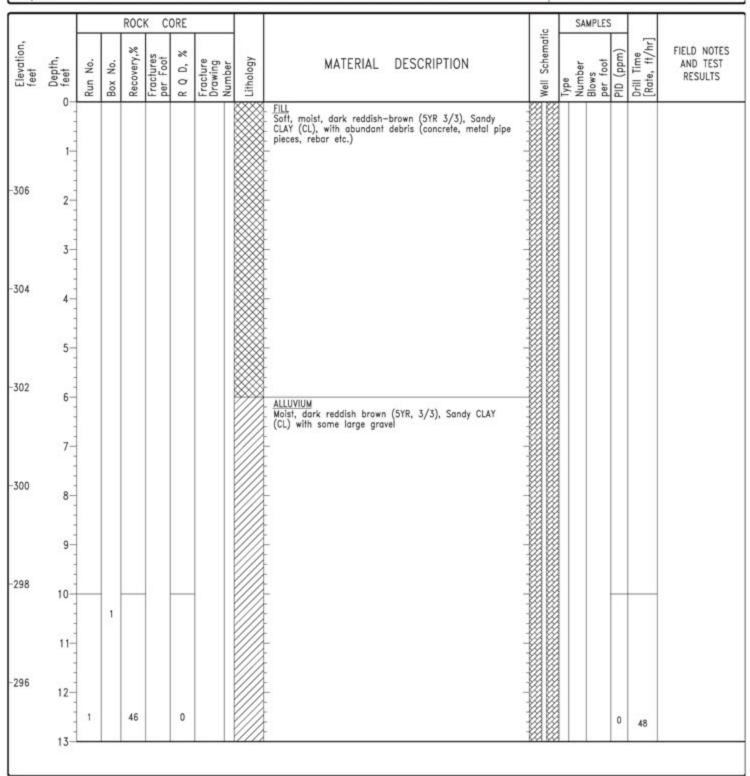
Description

Extremely Weak Rock Very Weak Rock Weak Rock Medium Strong Rock Strong Rock Very Strong Rock Extremely Strong Rock

Recognition

Can be indented by thumbnail
Can be peeled by pocket knife
Can be peeled with difficulty by pocket knife
Can be indented 5 mm with sharp end of pick
Requires one hammer blow to fracture
Requires many hammer blows to fracture
Can only be chipped with hammer blows

Approximate UCS Range


35 to 150 psi 150 to 750 psi 750 to 3,500 psi 3,500 to 7,500 psi 7,500 to 15,000 psi 15,000 to 37,500 psi >37,5000 psi

Project Location: CT053 Project Number: 60481245

Log of Boring RHMW08

Sheet 1 of 20

Date(s) Drilled	08/17/2016	Logged By	D.Rector, J Kronen	Checked By (Date) J.	Kronen
Drilling Method	HQ core / air rotary	Drill Bit Size/Type	HQ diamond bit / 8" tricone bit	Total Depth of Borehole	315.0 feet
Drill Rig Type	Mobile B-59 / T3	Drilling Contractor	Valley Well Drilling	Approximate Surface Elevation	307.8
Groundwater Level		Location		Inclination from Horizontal/Bearing	90*
Borehole Completion	4-inch diameter monitoring well. See	RHMW08 Well	Cross Section for details	Hammer Data 140	bs/30-inch drop

Project Location: CT053 Project Number: 60481245 Log of Boring RHMW08

Sheet 2 of 20

				ROC	K C	ORE			o	SA	MPLES				
Elevation, feet	Depth, feet	Run No.	Box No.	Recovery,%	Fractures per Foot	R Q D, %	Fracture Drawing Number	Lithology	MATERIAL DESCRIPTION	Well Schematic		Blows per foot	PID (ppm)	Drill Time [Rate, ft/hr]	FIELD NOTES AND TEST RESULTS
294	14-							0 3 0 0 0 3 0 0 0 5 5 0 0 6 0	BASALT Volcanic Breccia Red (2.5YR, 4/8) mottled with dark reddish gray (2.5YR, 4/1), moderately weathered, weak rock						
92	16-				0		<u></u>		1. 45, J, N, Mn, Su, Pl, SR 2. 30-50, J, N, Mn, SP, Ir, SR						
90	17-	2		96	1	60	XX						0	72	
88	19-				1										
36	21-				1		X								
14	23-	3		96	10+	56	X		highly fractured zone				0	60	
2	25		2		2		X		highly weathered and fractured zone becomes moderately strong, with 2% vesicles						
00	27-	4		100	1	66			1. 60, J, N, Mn, Sp, PI, SR 2. 65, J, N, Mn, SP, PI, SR 3. 70, J, N, CI, Sp, Wa, R becomes weak				0	48	
	29				10+		×	6 3 8 8 8 3 8 8 8 3 8 8	highly fractured zone						

Project Location: CT053 Project Number: 60481245 Log of Boring RHMW08

Sheet 3 of 20

	- 1			ROC	K C	ORE				0	S	AMPLES	5		
feet feet	Depth, feet	Run No.	Box No.	Recovery,%	Fractures per Foot	R Q D, %	Fracture Drawing Number		MATERIAL DESCRIPTION	Well Schematic	Type	Blows per foot	PID (ppm)	Drill Time [Rate, ft/hr]	FIELD NOTES AND TEST RESULTS
78	30				0		M	10 2 2 10 2 2 10 2 2 10 2 2 10 2 2 10 2 2			000000000000000000000000000000000000000				
	31-				NA				BASALT Volcanic Breccia Red (2.5YR, 4/8), highly to completely weathered, extremely weathered. Breaks down to a soft moist Sandy CLAY(CL)		-				
76	32-	5		73	NA	0					-		0	170	
	33				NA O		NR N		BASALT Massive a'a Dark gray (N3), slightly weathered, strong		00000000				
74	34-	6		50	NA.	40	NR NR		BASALT a'a Clinker Red (2.5YR, 4/8) mottled with gray (2.5YR, 4/1), highly weathered weak rock		000000000000000000000000000000000000000		0	30	
	35		3		NA						4				
72	36-				NA						000000000				
70	37-	7		100	NA	12							0	72	
	39-				NA				1. 65, J, N, Mn, Su, Pi, SR		000000000000000000000000000000000000000				
68	40				1				BASALT Massive a'a Dark gray (N3), slightly weathered, strong to very strong, with 2% vesicles (vesicles mostly 0.5mm with few 5.0mm in diameter).		000000000000000000000000000000000000000				
	41-				2		M		1. 75, J, Mw, Fe+Mn, Sp, PI, SR - 2. 20, J, N, Fe, Sp, PI, SR 3. 18, J, N, Fe+Mn, Sp, PI, SR 4. 22, J, N, Fe+Mn, Sp, PI, SR 5. 60, J, N, Fe, Sp, PI, SR	$\nabla Z X \nabla Z$	2				
66	42	8		100	2	78			5. 60, J, N, Fe, Sp, Pl, SR		0000000000		0	84	
201	43-				1		- 2				-			04	
64	44				NA		2		becomes moderately weathered with 3% vesicles, that are stretched and varying in size BASALT a'a Clinker		00000000				

Project Location: CT053 Project Number: 60481245 Log of Boring RHMW08

Sheet 4 of 20

				ROC	K C	ORE		0	SA	MPLES	5				
Elevation, feet	Depth, feet 45	Run No.	Box No.	Recovery,%	Fractures per Foot	R Q D, %	Fracture Drawing Number	Lithology	MATERIAL DESCRIPTION	Well Schematic	Type Number	Blows per foot	PID (ppm)	Drill Time [Rate, ft/hr]	FIELD NOTES AND TEST RESULTS
262	46-		4		NA NA		NR		Red (2.5YR, 4/8) to dark red (2.5YR, 3/6), highly weathered weak rock.						
60	48-	9		50	NA NA	0							0	168	
58	49-				NA NA										
56	51-	10		96	NA NA	0							0	108	
54	53-				1				BASALT Massive a'a Dark gray (N3), moderately weathered, strong, with 15% vesicles (vesicles 1.0 mm to 5.0mm in diameter, few are partially filled with clay or calcite, partially stretched). 1. 85, J, N, CI+Fe, Sp, PI, R						
52	55-				1		H		▼ with a few large (>7.0 mm) vesicles						
60	57-	11	5	100	1	96			1. 30, J, N, CI, Pa, Wa, R 2. 20, J, N, Mn, Sp, Pl, SR 3. 10, J, N, Fe, Su, Pl, SR				0	84	
8	59-				O NA			\$ 3 \$ 5 \$ 5 \$ 5 \$ 5 \$ 5 \$ 5 \$ 5 \$ 5 \$ 5	BASALT Volcanic Breccia Dark gray (N3) closts with reddish yellow (5YR, 7/8) matrix, highly weathered, weak to moderately strong.						

Project Location: CT053 Project Number: 60481245 Log of Boring RHMW08

Sheet 5 of 20

	- [ROC	K C	ORE				0	S	AMPLES	S		
Elevation, feet	Depth,	Run No.	Box No.	Recovery,%	Fractures per Foot	R Q D, %	Fracture Drawing Number	Lithology	MATERIAL DESCRIPTION	Well Schematic	Type	Blows per foot	PID (ppm)	Drill Time [Rate, ft/hr]	FIELD NOTES AND TEST RESULTS
46	62				NA										
	63-	12		80	NA	NA		0 3 0 0 0 0 0 5 0					0	60	
14	64-				NA			8.3×8.							
					NA		NR	2 3 2 2 3 3 3 2 3 3 3 2 3 3 3							
2	65				0		М		→ becomes moderately weathered, strong						
	66-		6		0		M								
0	67-	13		100	0	95	M						0	60	
	68				0										
8	69-				0		М								
	70				NA.		/_	0 2 0 2 0 0 2 0 0 2 0 0 2 0 0	red (2.5YR, 5/8), highly weathered, weak						
21	71-				0		×	2 3 2 2 3 2 2 5 3 2 5 3							
6	72	14		100	0	52	M		BASALT Massive a'a				0	84	
	73				0				BASALT Massive a'a Dark gray (N3), moderately weathered, moderately strong, with 2% vesicles, 1.0 mm in diameter. 1. 50, J, N, Mn, SP, PI, SR						
4	74-				10+		1			\$2000 S					
	75		7		0		~		weak zone with many mechanical fractures becomes moderately weathered, strong to very strong						
2	76-						M								
	77				0		M								

Project Location: CT053 Project Number: 60481245

Log of Boring RHMW08

Sheet 6 of 20

				ROC	K C	ORE					S	AMPLE:	S		7
Elevation, feet	Depth, feet	Run No.	Box No.	Recovery,%	Fractures per Foot	R Q D, %	Fracture Drawing Number	Lithology	MATERIAL DESCRIPTION	Well Schematic		Blows per foot	PID (ppm)	Drill Time [Rate, ft/hr]	FIELD NOTES AND TEST RESULTS
230	78-	15		100	0	100					-		0	72	
28	80				0						***************************************				
226	81-	16		100	0	99	1		with 5% vesicles that are 0.5 mm to 5.0 mm and slightly stretched 1. 10, J, N, Cl, Sp, Wa, SR 2. 40, J, N, Cl+Fe, Sp, Wa, SR				0	72	
24	84-		8		0	9.	M								Drilled to 100 feet on 8-19-2016. Apparent perched water zone noticed
22	86-				1	88	1		1. 65, J, N, Cl, Sp, Wa, SR 2. 75, J, N, Cl+Fe, Sp, Wa, SR 3. 30, J, N, Cl, Su, Wa, SR 4. 35, J, N, Cl, Sp, Wa, SR 5. 80, J, N, Cl+Fe, Sp, Wa, SR		-				around 92 feet bgs based on groundwater level measurements and water observed recharging in the borehole. This
20	87 88 89	17		100	1 1	98	M 23 M						0	72	coincides with a basalt a'a clinker interval encounter between 90.8 feet and 93.5 feet bgs. Drilled ahead to 14 feet bgs on 8-26-2016. Encountered mass a'a basalt flow at 1
18	90				1		M 45		vesicles partially filled with carbonate		000000000000000000000000000000000000000				feet to 114.5 feet to Depth to water dropped to 123 feet bgs. A basalt a'a clinker interval
16	91-	18		100	NA NA NA	20			BASALT a'a Clinker Dark gray (N3) with red oxidation (2.5YR, 4/8), highly weathered, weak, with red clay on the surface of may clasts.				0	102	encountered between 100 feet and 110 febgs may also continue the second water. Borehole was backfilled with bentonite until conductor casing could be installed to seal off perched zones.

Project Location: CT053 Project Number: 60481245 Log of Boring RHMW08

Sheet 7 of 20

				ROC	K C	ORE				o	S	AMPLES	5		
Elevation, feet	Depth, feet	Run No.	Box No.	Recovery,%	Fractures per Foot	R Q D, %	Fracture Drawing Number	Lithology	MATERIAL DESCRIPTION	Well Schematic	Type	Blows per foot	PID (ppm)	Drill Time [Rate, ft/hr]	FIELD NOTES AND TEST RESULTS
14	94-	19	9	100	10+	52	M		BASALT Massive a'a Dark gray (N3), moderately weathered, moderately strong, with 10% vesicles. Some vesicles are large, irregularly shaped and partially filled with red clay.				0	60	
	95				10+	1	м						-		
12	96-				1		M M M								
	97-	20		100	1	90	M		dark gray (N3), moderately weathered, moderately strong to strong				0	72	
0	98-				2		3		increase to 20% vesicles				*	72	
	99				1		4 M		1. 60, J, N, CI+Fe, Sp, Wa, SR 2. 50, J, N, CI+Fe, Sp, Wa, SR 3. 45, J, N, No, N, Wa, SR 4. 10, J, N, SI+Fe, Sp, Wa, SR						
08	100				NA		M		BASALT a'a Clinker Dark gray (N3) with red oxidation (2.5YR, 4/8), highly weathered, weak, with red clay on the surface of may clasts.						
)6	101-	21		80	NA	8			solid piece of massive a'a				0	72	
	102-	22	10	100	NA.	NA.								Regue	
4	104	22	10	100	NA.	NA.	-9		welded a'a clinker				0	360	
	105	23		100	NA	NA			: J :				0	300	
2	106				NA										
	107-	24		80	NA	NA							0	132	
0	108				NA				with some welded a'a clinker						
	109				NA										

Project Location: CT053 Project Number: 60481245 Log of Boring RHMW08

Sheet 8 of 20

				ROCI	K C	DRE				0	S	AMPLES	5		
Elevation, feet	Depth,	Run No.	Box No.	Recovery,%	Fractures per Foot	R Q D, %	Fracture Drawing Number	Lithology	MATERIAL DESCRIPTION	Well Schematic	Type	Blows per foot	PID (ppm)	Drill Time [Rate, ft/hr]	FIELD NOTES AND TEST RESULTS
98	109	25		80	NA	NA							0	60	
					1				BASALT Massive a'a Dark gray (N3), moderately to slightly weathered, strong, with 7% vesicles that are slightly stretched.						
96	111-				2		2		1. 10, J, N, Cl, Sp, Wa, SR 2. 30, J, N, Cl+Fe, Sp, Wa, SR 3. 30, J, N, Cl, Sp, Ir, R 4. 20, J, N, Fe+Cl, Sp, Wa, SR						
	112-	26		100	1	75	M 4 M		highly weathered zone with clay on surface of				0	60	
4	113-		11		0		M		✓ increase to 15% vesicles						
	114-				NA		м		BASALT a'a Clinker Dark gray (N3) with red oxidation (2.5YR, 4/8), highly weathered, weak, with red clay on the surface of may						
2	115				NA				weathered, weak, with red clay on the surface of may clasts.						
	116-				NA										
10	117-	27		72	NA	NA							0	180	
	118-				0		M	XXXX XXXX XXXX XXXX XXXX XXXX	BASALT Massive a'a Dark gray (N3), moderately to slightly weathered, strong, with 10% vesicles that are slightly stretched.						
18	119-				4		10004		1. 20, J, Mw, Fe+Cl, Sp, Wa, SR 2. 30, J, N, Fe+Cl, Sp, Wa, SR 3. 25, J, N, Fe+Cl, Sp, Wa,SR 4. 35, J, N, No, N, Wa, SR						
	120				2		X								
6	121-	28		94	2	57	M		1. Many mechanical fractures partially coated with Fe 2. 50, J, Mw, Fe+Mn, Su, Pl, SR 3. 50, J, N, Fe+Mn, Sp, Pl, SR 4. 20, J, N, No, N, Wa, SR				0	222	
	122-				0		>-M		with a few large vesicles				9.65		
4	123-		12		1		1		decrease to 1% vesicles					_	
	124-	29		100	0	100	M		increase to 5% vesicles 1. 70, J, N, Fe, Su, Pl, SR				0	60	

Project Location: CT053 Project Number: 60481245 Log of Boring RHMW08

Sheet 9 of 20

				ROC	K C	ORE				o	S	AMPLES	5		
feet feet	Depth, feet 125	Run No.	Box No.	Recovery,%	Fractures per Foot	R Q D, %	Fracture Drawing Number	Lithology	MATERIAL DESCRIPTION	Well Schematic	Type	Blows per foot	PID (ppm)	Drill Time [Rate, ft/hr]	FIELD NOTES AND TEST RESULTS
82	126				NA NA	56			BASALT a'a Clinker Dark gray (N3) with red oxidation (2.5YR, 4/8), highly weathered, weak to very weak, matrix supported.						
80	127	30		52	NA NA	NA							0	144	
78	129				1		NR								
76	131-	31		96	NA NA	NA NA							200		
,,	133	31		30	NA NA	NA			with manganese staining on some the surface of some of the clasts				0	130	
74	134	32	13	90	1	60	M		BASALT Massive a'a Dark gray (N3), moderately to highly weathered, strong rock. becomes highly fractured				0	360	
72	136-				10+				1. 40-70, J, Mw, Fe+Cl, Sp, Ir, SR						
70	137-	33		72	O NA	8	M		massive a'a pieces, dark gray (N3), moderately weathered, strong, 15% vesicles BASALT a'a Clinker Dark gray (N3) with red oxidized clay (2.5YR, 4/8), highly weathered, weak to very weak				0	72	
58	139-				NA		NR						2		
	141				NA .										

Project Location: CT053 Project Number: 60481245 Log of Boring RHMW08

Sheet 10 of 20

				ROC	K C	ORE			SAMPLES
Elevation, feet	Depth,	Run No.	Box No.	Recovery,%	Fractures per Foot	R Q D, %	Fracture Drawing Number	Lithology	MATERIAL DESCRIPTION Well Schamber (pop month) Plot (ppm) (
66	142-	34		50	NA NA	0	NR		0 26
54	143	35		92	0	92			BASALT Massive a'a Dark gray (N3), slightly weathered, very strong, with 7% vesicles
52	145		14		0		1 2 M		
0	147	36		94	0	74	M M		1. 60, J, T, Mn, Su, Pl, S 2. 45, J, N, Cl, Fi, Wa, SR 3. 85, J, N, Cl, Fi, Wa, SR
58	150				2		45 1		1. 90, J, Vn, Fe+Mn, Su, Pl, S
66	151-	37		100	5	50	2 M 3 4		1. 90, J, Vn, Fe+Mn, Su, Pl, S 2. 0, J, N, Cl, Pa, Wa, SR 3. 20, J, T, Fe+Mn, Su, Wa, SR 4. 10, J, Vn, Cl, Fi, Wa, SR 5. 80, J, Vn, Cl, Fi, Pl, SR 6. 45. J, T, Fe, Su, Wa, SR
4	153-		15		0		M	90	BASALT Pahoehoe Dark reddish brown (10R 3/4), moderately weathered, strong, 10-15% small vesicles
52	155-				2		M 1	9	1. 60, J, T, Fe, Su, PI, SR 2. 10, J, T, Fe, Su, PI, S 3. 45, J, T, Mn, Su, PI, SR 4. 45, J, N, CI, Fi, PI, SR 5. 45, J, N, CI, Fi, PI, SR 6. 45, J, N, Fe, Su, PI, SR 7. 60, J, Vn, Fe, Su, PI, SR

Project Location: CT053 Project Number: 60481245 Log of Boring RHMW08

Sheet 11 of 20

				ROC	K C	DRE				0	SA	AMPLES	5		
feet feet	Depth, feet	Run No.	Box No.	Recovery,%	Fractures per Foot	R Q D, %	Fracture Drawing Number	Lithology	MATERIAL DESCRIPTION	Well Schematic	Type	Blows per foot	PID (ppm)	Drill Time [Rate, ft/hr]	FIELD NOTES AND TEST RESULTS
50	158	38		100	2	80		Y	Dark gray (N3), slightly weathered, with 25-30% vesicles				0	100	
48	159				3				✓ vesicles increase in size to >1/8" in diameter ✓						
	160				0			Y	1. 30, J, Vn, Mn, Su, Wa, R 2. 45, J, N, Cl, Fi, Wa, SR 3. 10, J, N, Cl, Pa, Wa, R 4. 10, J, N, Cl, Pa, Ir, R 5. 70, J, T, Fe+Mn, Su, Pl, SR						
6	162	39	2000	100	1	78		9	Dark reddish brown (10R 3/4), moderately weathered				0		
14	163-		16		1			7	weathered				0	60	
	165				1		8		1 45 J Vo Cl Po Ir R						
2	166-				0			Y	1. 45, J, Vn, Cl, Pa, Ir, R 2. 20, N, Cl, Fi, Wa, R 3. 30, T, Mn, Su, Pl, SR						
10	167	40		100	1	78	3	7	√ flow boundary				0	100	
8	169				2		MM	9	Dark gray (N3), slightly weathered to fresh,	y ar y					
	171-		17		0		M	7	strong, with 30% vesicles						
66	172	41		100	0	86	M	y)	20% vesicles, up to 1/4" diameter				0	100	

Project Location: CT053 Project Number: 60481245 Log of Boring RHMW08

Sheet 12 of 20

		_	_	ROC	K C	ORE				.	S	AMPLE	S		
Elevation, feet	Depth, feet	Run No.	Box No.	Recovery,%	Fractures per Foot	R Q D, %	Fracture Drawing Number	Lithology	MATERIAL DESCRIPTION		Type	Blows per foot	PID (ppm)	Drill Time [Rate, ft/hr]	FIELD NOTES AND TEST RESULTS
34	174-				3			7	1. 30, J, Vn, Fe+Mn, Su, Pl, SR 2. 85, J, Vn, Cl, Pa, Wa, SR 3. 10, J, Vn, Cl, Pa, Wa, SR						
32	175—				1			70	1. O, J, N, CI, Fi, Wa, SR 2. O, J, Vn, CI, Pa, Wa, SR 3. 70, J, Mw, CI, Fi, Wa, SR						
50	177-	42		100	0	36		90					0	75	
28	179		18		1				4. 45, J, T, Fe+Mn, Su, Wa, SR						
26	181-				1				1. 20, J, T, Fe, Su, Ir, SR 2. 70, J, T, Fe, Su, Wa, SR 3. 70, J, N, Cl, Pa, Wa, SR flow boundary						
24	183-	43		100	0	78		90					0	100	
12	185				0		3 M M		4. 10, J, T, Fe+Mn, Su, Wa, SR 5. 70, J, Vn, Fe+Mn, Su, Wa, SR BASALT a'a Clinker Dark gray (N3) with red Clay (2.5YR, 4/8), highly weathered, weak to very weak						
22	186	44		70	1	0	M		very little recovery BASALT Massive a'a Dark gray (N3), slightly weathered, very strong, with 15% vesicles						
20	188-	44		72	2	0	M		highly fractured 1. 90, J. Mw, Cl, Fi, Wa, R 2. 30, J, N, Cl, Pa, Pl, SR				0	43	

Project Location: CT053 Project Number: 60481245

Log of Boring RHMW08

Sheet 13 of 20

			_	ROC	K C	ORE		1 1		24	AMPLES			
feet feet	Depth, 681 681	Run No.	Box No.	Recovery,%	Fractures per Foot	R Q D, %	Fracture Drawing Number	Lithology	MATERIAL DESCRIPTION	Number	Blows per foot	PID (ppm)	Drill Time [Rate, ft/hr]	FIELD NOTES AND TEST RESULTS
18	190-		19		1				3. 30, J, N, Cl, Pa, Pl, SR					
	191				2		M S		1. 10, J, T, Fe, Su, Wa, SR 2. 10, J, Vn, Cl, Pa, Wa, SR 3. 20, J, Vn, Cl, Pa, Wa, SR					
6	192				NA		3		BASALT a'a Clinker Grayish red (10R, 4/2), highly to completely weathered, very weak, with clay infilling			0		
	193	45		100	NA NA	10							60	
4	194				NA.	S								
2	195				NA				thin zone of massive a'a core					
0	197-	46		100	NA 1	0	7		BASALT Massive a'a Dark gray (N3), slightly weathered, strong, with fractures with clay infilling			0	60	
U	198				3		1		1. 90, J, N-Mw, CI, Fi, Wa, SR 2. 0, J, T, Fe+Mn, Su, PI, S 3. 85, J, Vn, CI, Pa, PI, S					
8	200				2		4		4. Complex fractures, J. N. Ci, Pa, Wa, SR					
	201		20		NA 2				Grayish red (10R, 4/2), highly to completely weathered, very weak, with clay infilling BASALT Massive a'a Dark gray (N3), slightly weathered, strong, with fractures with clay infilling, with 1-5% vesicles					
6	202	47		100	2	75	1		1. 10, J, N, Cl, Fi, Wa, R 2. 45, J, Mw, Cl, Fi, Wa, SR 3. 45, J, N, Cl, Pa, Pl, SR 4. 45, J, T, Fe+Mn, Wa, SR 5, 0, J, Vn-N, Cl, Pa, St, R			0	50	
4	203-				2		3	***** ***** ***** ****	- 5, U, J, YN-N, CI, PG, ST, K					
	205				0		5							

Project Location: CT053 Project Number: 60481245 Log of Boring RHMW08

Sheet 14 of 20

				ROC	K C	ORE				o	SA	MPLES			
Elevation, feet	Depth,	Run No.	Box No.	Recovery,%	Fractures per Foot	R Q D, %	Fracture Drawing Number	Lithology	MATERIAL DESCRIPTION	Well Schematic	Type	Blows per foot	PID (ppm)	Drill Time [Rate, ft/hr]	FIELD NOTES AND TEST RESULTS
02	206				1		M		1. 45, J, T-Vn, Fe+Mn, Pa, Pl, SR 2, Complex fractures, J, T-Vn, Fe+Mn, Su, Pl, S						
	207	48		100	2	63	× 2								
00	208				0		M		10% vesicles				0	45	
	209	49		100	0	95	M		1. 10, J, Mw, Cl, Fl, Ir, SR				0	40	
8	210				2		M		5% vesicles 1. 70, J, N, Cl, Pa, Wa, SR						
6	211				1		M		1. 70, J, N, Cl, Pa, Wa, SR 2. 20, J, Vn, Cl+Fe, Su, Ir, SR 3. 0, J, Vn, Cl+Fe, Su, Ir, SR 4. 0, J, N, Cl, Pa, Wa, SR						
ŏ	212-	50		100	1	40	3						0	45	
4	214-				3		-м		5 00 1 Va N CI Pa PI S	-					
	215				2		5 M M		5. 90, J, Vn-N, Cl, Pa, Pl, S 6. 0, J, Mw, Cl, Fi, Wa, R						
2	216				1		1		1. 80, J, T, Fe+Mn, Su, PI-Wa, S 2. 60, J, Bn, Fe, Su, PI, S 3. 0, J, T, Fe+Mn, Su, Wa, SR						
	217	E+		100	2	74	3						55		
)	218	51		100	0	74	м						0	50	
	219				0		М		→ becomes Welded a'a Clinker						
3	220				NA .				BASALT a'a Clinker Dark reddish brown (10R, 4/6), highly to completely weathered, very weak to weak						
	221							290							

Project Location: CT053 Project Number: 60481245

Log of Boring RHMW08

Sheet 15 of 20

				ROC	K C	ORE				0	S	AMPLES	5		
Elevation, feet	Depth, feet 721	Run No.	Box No.	Recovery,%	Fractures per Foot	R Q D, %	Fracture Drawing Number	Lithology	MATERIAL DESCRIPTION	Well Schematic	Type	Blows per foot	PID (ppm)	Drill Time [Rate, ft/hr]	FIELD NOTES AND TEST RESULTS
36	222-	52		94	NA O	20			BASALT Pahoehoe Thin flows with variable color (10R, 4/6 to 10R, 4/2), moderately weathered, moderatel strong to strong, with 30% vesicles 1/2" in diameter vesicles become 1/8" in diameter				0	50	
4	224-				0		,	7	1. 50, J, Vn, Fe+Mn, Su, Pl, SR						
2	225				2	5	12		1. 40, J, T, Fe+Mn, Su, Pl, SR 2. 40, J, T, Fe+Mn, Su, Wa, SR vesicles vary in size						
0	227	53		100	0	68	M		Dark gray (N3), slightly weathered, strong to moderately strong				0	100	
3	229-				2		×3		3. Complex of 10, 70, 70, 0 degree, J, T, Fe+Mn, Su, Wa, SR 40% very small vesicles (1/16" diameter)						
	231-				0		1	7	Too tell, silicia residues (1,710 distributor)						
3	232-	54		100	0	72	A	7	1. 10, J, Vn-N, Cl, Pa, St, SR 2. 70, J, Vn, Cl, Pa, Wa, SR 3. 0, J, Mw, Cl, Fi, Wa, R 4. 90, J, Vn, Cl, Pa, Wa, SR 5. 0, J, T, Fe, Su, Pl, SR				0	150	
1	234				1		4	7							
2	235				0			7	→ 30% vesicles (1/4" to 1/8" diameter)						
	237						M	IJ)	→ 30%-40% vesicles (1/16" diameter)						

Project Location: CT053 Project Number: 60481245

Log of Boring RHMW08

Sheet 16 of 20

				ROC	K C	ORE			SAMPLES
Elevation, feet	teeth,	Run No.	Box No.	Recovery,%	Fractures per Foot	R Q D, %	Fracture Drawing Number	Lithology	MATERIAL DESCRIPTION Well Schamber foot per foo
0	238-	55		100	2	96	2	Y Y	0 100 vesicles (1/4" to 1/8" diameter)
	239				0		м		1. 30, J, Vn, Cl, Pa, Pl, SR 2. 60, J, Vn, Cl, Pa, Pl, SR
8	240				0		-	9	
	241				1		M		moderately reddish brown (10R, 4/6), moderately weathered, moderately strong to strong
6	242	56		100	2	58	M	9	
	243				1		3 M	50	1. 45, J, T, Fe, Su, Pl, S 2. 0, J, Mw, Cl, Pa, Ir, R 3. 90, J, N, Cl, Fi, Wa, SR 4. 45, J, Bn, Cl, Pa, Wa, SR 5. 80, J, N, Cl, Fi, Wa, SR
4	244				1		5	7	
	245				1		M	9	strong dark gray (N3), slightly weathered, strong to
2	246				2		1	9	1. 70, J, T, Fe+Cl, Su, Pl, SR 2. 20, J, N, Cl, Pa, Wa, SR 3. 40, J, N, Cl, Pa, Wa, SR 4. 30, J, T, Fe+Cl, Su, Pl SR 5. 0, J, N, Cl, Fl, Wa, SR
•	247-	57		100	3	80	2	7	4. 30, J, T, Fe+Cl, Su, PI SR 5. 0, J, N, Cl, Fl, Wa, SR
0	248-				0		3	y y	
8	249				2		4	50	
Ĭ	250				2		1	9	
6	251-				2		3	70	1. 45, J, Vn, Cl, Pa, Pl, SR 2. 45, J, Vn, Cl, Pa, Pl, SR 3. 45, J, Vn, Cl, Fi, Pl, SR 4. 30, J, N, Cl, Fi, Pl, SR 5. 15, J, N, Cl, Fi, Pl, SR
7	252-	58		100	1	84	M M	Y)	_ 5. 15, J, N, Cl, Fi, Pl, SR

Project Location: CT053 Project Number: 60481245 Log of Boring RHMW08

Sheet 17 of 20

				ROC	K C	ORE				o l	SA	MPLES			
feet feet	Depth, feet 753	Run No.	Box No.	Recovery,%	Fractures per Foot	R Q D, %	Fracture Drawing Number	Lithology	MATERIAL DESCRIPTION	Well Schematic	Type	Blows per foot	PID (ppm)	Drill Time [Rate, ft/hr]	FIELD NOTES AND TEST RESULTS
4	254				0		M M M M 5	95	moderately reddish brown (10R, 4/6), moderately weathered, moderately strong						
2	255—				2		1 2	95	dark gray (N3), slightly weathered, moderately strong to strong 1. 15, J, Vn, Cl, Fi, Pl, SR 2. 45, J, N, Cl, Fi, Ir, R 3. 10, J, Vn, Cl, Pa, Wa, SR 4. 45, J, Vn, Cl, Pa, Pl, SR 5. 45, J, Nw, Cl, Fi, Wa, SR				0		
)	257-	59		80	1	52	3 4		4. 45, J, Vn, Cl, Pa, Pl, SR 5. 45, J, Nw, Cl, Fi, Wa, SR					60	
3	259-				0		5	7	no recovery 40% vesicles (<1/16" diameter)						
6	261-	60		100	3	74	1 2 3 4 M	7	1. 20, J, Mw, Cl, Fi, Ir, R 2. 20, J, T, Fe+Mn, Su, Pl, S 3. 30, J, Mw, Cl, Fi, Wa, SR 4. 90, J, N, Cl, Fi, Wa, SR Tlow boundary 30% vesicles (1/16" to 1/8" diameter)				0	5000	
ı	263-	00		100	2	74	5 M M		5. 45, J, Vn, Cl, Pa, Pl, SR 6. 0, J, N-MW, Cl, Fl, Wa, SR 7. J, Vn, Fe+Cl, Su, Pl, SR					60	
2	265				1		, 7 M	9							
)	267-	61		100	0	86	1		1. 5, J, Vn, Cl, Pa, Wa, R				0	150	
	269														

Project Location: CT053 Project Number: 60481245

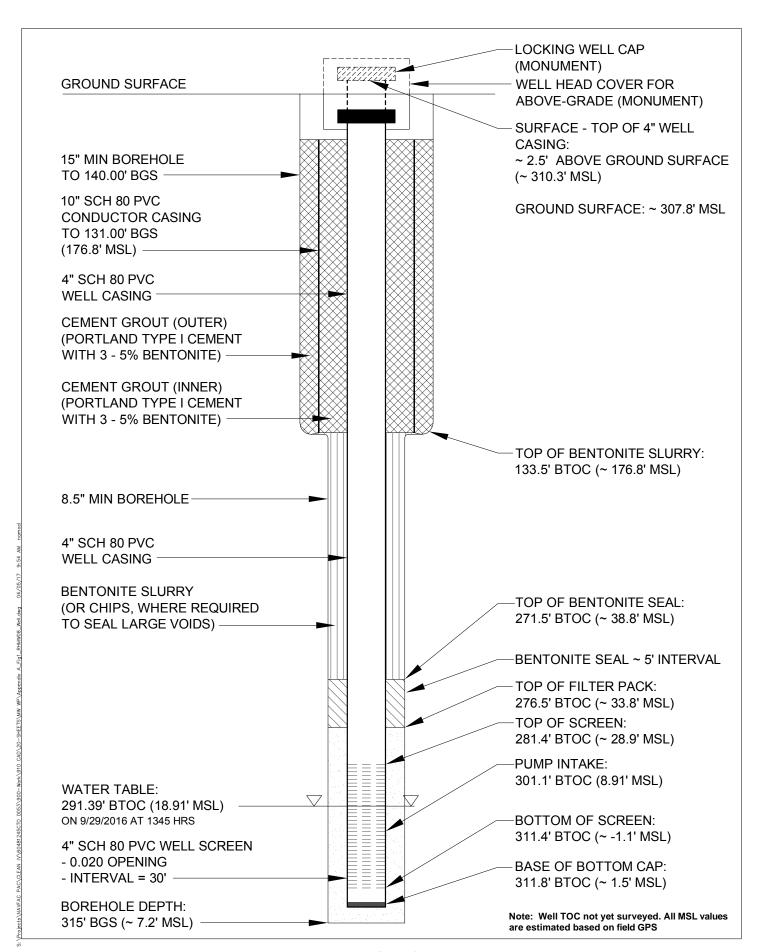
Log of Boring RHMW08

Sheet 18 of 20

				ROC	K C	ORE				o	SA	MPLES	5		
Elevation, feet	Depth, 695 feet	Run No.	Box No.	Recovery,%	Fractures per Foot	R Q D, %	Fracture Drawing Number	Lithology	MATERIAL DESCRIPTION	Well Schematic	Type Number	Blows per foot	PID (ppm)	Drill Time [Rate, ft/hr]	FIELD NOTES AND TEST RESULTS
38	270				0		N.M.	9	highly weathered, weak, with vesicles filled with						
	271				0				→ dark gray (N3), slightly weathered, very strong						
66	272-				0	ā		5							
	273	62		100	0	88	N ₁		1. 90, J, N, CI, Pa, Wa, R 2, 60, J, Vn, CI, Pa, PI, SR				0	100	
34	274				1		2	¥ \$7 \$7							
52	275				1		1	Y	grayish red (10R, 8/2), moderately weathered, moderately strong, with 20% small vesicles						
,,,	276				1		M	7	dark yellowish brown (10YR, 2/2), moderately to slightly weathered, strong, with 30% vesicles (1/8" to 1/4" diameter)						
30	277-	63		100	0	84	M	y y	1. 20, J, Vn, Cl Pa, Ir, R 2. 30, J, Vn, Cl, Pa, Pl, SR 3. 75, J, Vn, Cl, Fi, Pl SR 4. 70, J, Vn, Cl, Pa, Pl, SR				0	150	
28	279				1		M	Y)	dark gray (N3), slightly weathered, very strong, with 20% vesicles (1/4" to 1/2" diameter)						
	280-				0			9	1. O. J. Vn. Cl. Fi. Wa. Pl. SR						
26	282	6.4		100	1	00	1		1. 0, J, Vn, Cl, Fi, Wa, Pl, SR 2. 60, J, T, Fe+Mn, Su, Pl, SR 3. 70, J, T, Fe, H, Pl, SR				8:		
	283	64		100	0	92		9					0	75	
4	284				2		77		moderately weathered, strong, with 40% vesicles (<1/16" diameter)						
	285						/	Va	1	H					

Project Location: CT053 Project Number: 60481245

Log of Boring RHMW08

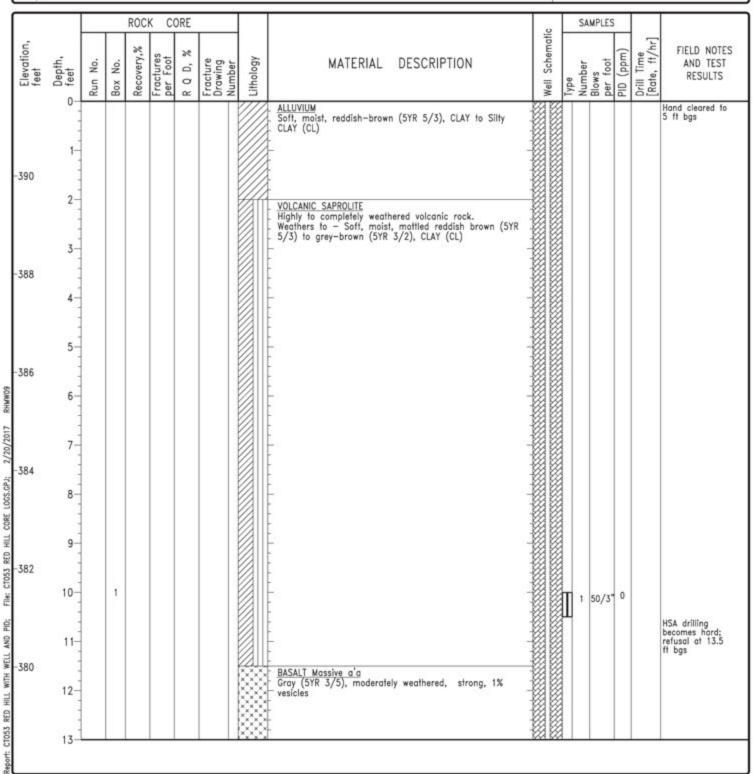

Sheet 19 of 20

		<u></u>	_	ROCI	K C	ORE			<u></u>	L	SA	MPLE	S		
Elevation, feet	Depth, feet feet	Run No.	Box No.	Recovery,%	Fractures per Foot	R Q D, %	Fracture Drawing Number	Lithology	MATERIAL DESCRIPTION	Truck	Number	Blows	PID (ppm)	Drill Time [Rate, ft/hr]	FIELD NOTES AND TEST RESULTS
22	286-				2		- N	90	1. 0, J, N, CI, Fi, Wa, SR 2, 0, J, N, CI, Fi, Wa, SR						
	287				1		3 M		moderately dark gray (N4), slightly weathered, very strong to moderately strong with 40% vesicles (<1/16" diameter)						
0	288	65		100	1	66	M 4		slightly weathered, very strong, with 35% vesicles (1/8" to 1/4" diameter)				0	100	
	289				1	EC.	5		_ 3. 30, J, Mw. Cl, Fi, Pl, SR 4. 70, J, T, Fe+Mn, Su, Pl, S 5. 60, J, T, Fe+Mn, Su, Wa, SR						
8	290				1			9	1. 75, J, Bn, Cl, Pa, Pl, SR 2. 60, J, T, Fe+Cl, Su, Pl, SR 3. 20, J, Bn, Fe+Cl, Pa, Pl, SR						
6	291				1		1		- 5. 25, 5, 51, 10, 11, 51						
	292-	66		96	0	66	м	Y D	1. 0, J, N, CI, Fi, Wa, SR 2, 0, J, N, CI, Fi, Wa, SR				0	100	
4	294				2		23	Y)	(<18" diameter)						
	295				0		M	y	T. H.						
2	296				2		M	Y	2. 0, J, Vn, Fe+Cl, Pa, Wa, S 40% to 50% vesicles (<1/16" diameter)						
	297	67		90	1	60	Š M M	y y	1. 80, J, Vn, Cl, Pa, Pl, SR 2. 0, J, Vn, Fe+Cl, Pa, Wa, S 40% to 50% vesicles (<1/16" diameter) 3. 50, J, T, Fe, Su, Pl, SR BASALT a'a Clinker light brown (5YR, 6/4) to moderate reddish orange (10R, 6/6), highly weathered, weak no recovery				0	100	
0	298				NA.		3 M	5	BASALT a'a Clinker light brown (5YR, 6/4) to moderate reddish orange (10R, 6/6), highly weathered, weak					(755)	
	299				NA				(10R, 6/6), highly weathered, weak	300000000000000000000000000000000000000					
	300-				NA .										

Project Location: CT053 Project Number: 60481245 Log of Boring RHMW08

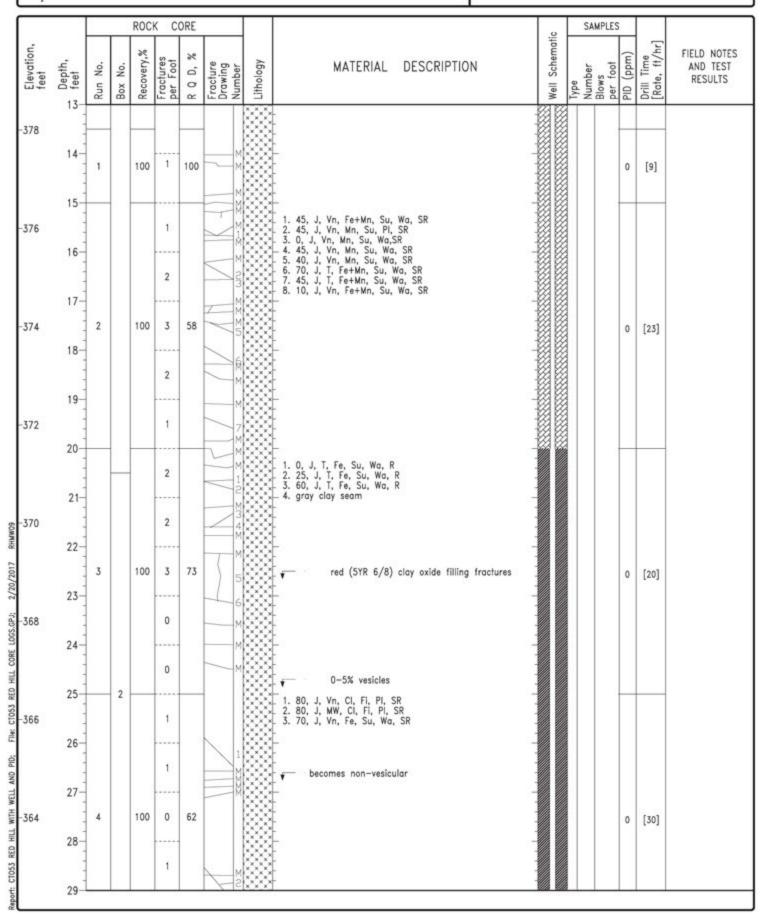
Sheet 20 of 20

				ROC	K C	ORE				o	5	AME	PLES			
Elevation, feet	Depth,	Run No.	Box No.	Recovery,%	Fractures per Foot	R Q D, %	Fracture Drawing Number	Lithology	MATERIAL DESCRIPTION	Well Schematic	Type	Rlows	per foot	PID (ppm)	Drill Time [Rate, ft/hr]	FIELD NOTES AND TEST RESULTS
-6	302	68		87	NA NA	0			thin flow of massive a'a, grayish red (10R, 4/2), moderately weathered, strong					0	36	
-4	303-													20		Boring drilled with tricone reaming bit from 303 to 315. No core recovered or logged.
-2	305-															
-0	307-															
2	309-															
4	311-															
6	313-															
8	315															
	317															


Appendix A Figure 1
Cross Section of RHMW08 Monitoring Well
Red Hill Bulk Fuel Storage Facility
JBPHH, O'ahu, Hawai'i

Project Location: CT053 Project Number: 60481245

Log of Boring RHMW09


Sheet 1 of 26

Date(s) Drilled	07/19/2016	Logged By	D.Rector	Checked By (Date) J. Kronen
Drilling Method	HQ core / air rotary	Drill Bit Size/Type	HQ diamond bit / 8" tricone bit	Total Depth of Borehole 405.0 feet
Drill Rig Type	Mobile 8-59 / T3	Drilling Contractor	Valley Well Drilling	Approximate Surface Elevation 391.52
Groundwater Level	El. 17.7' (7/29/2016)	Location	N73533.685 E1675173.406	Inclination from Horizontal/Bearing 90*
Borehole Completion	4-inch diameter monitoring well. See	RHMW09 Well	Cross Section for details	Hammer Data 140 lbs/30-inch drop

Project Location: CT053 Project Number: 60481245 Log of Boring RHMW09

Sheet 2 of 26

Project Location: CT053 Project Number: 60481245 Log of Boring RHMW09

Sheet 3 of 26

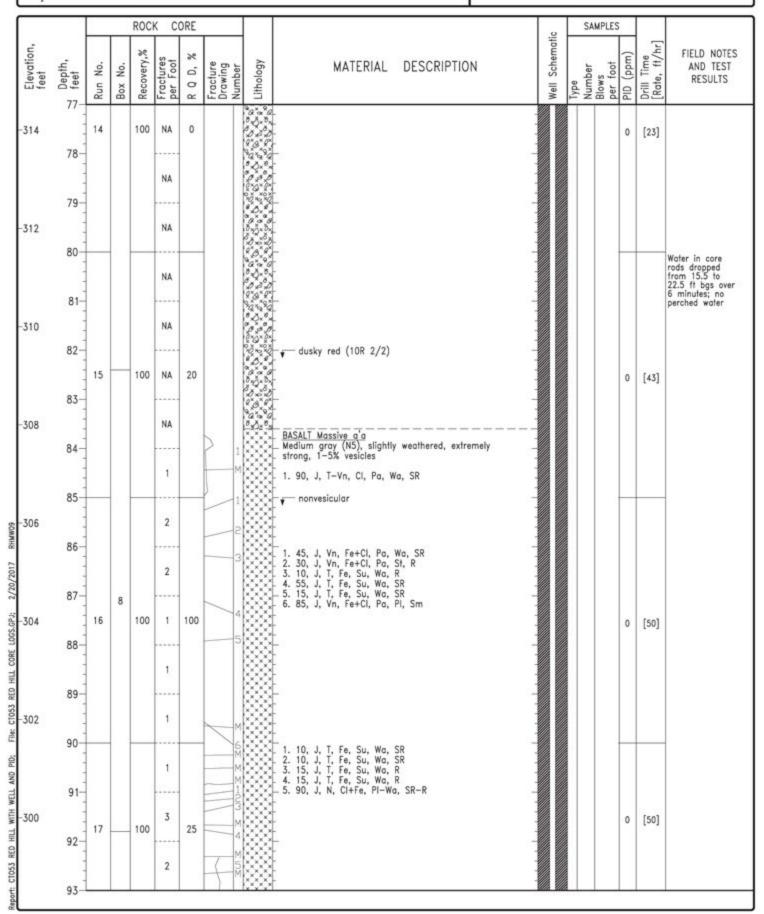
				ROCI	(C(ORE				.0	2/	AMPLE	S		
Elevation, feet	Depth, feet	Run No.	Box No.	Recovery,%	Fractures per Foot	R Q D, %	Fracture Drawing Number	Lithology	MATERIAL DESCRIPTION	Well Schematic	Type	Blows per foot	PID (ppm)	Drill Time [Rate, ft/hr]	FIELD NOTES AND TEST RESULTS
362	30				1		M 3								
	31-				4		3 45		1. 20, J, T, Fe, Su, PI, SR 2. 15, J, T, Fe, Su, PI, SR 3. 70, J, T, Fe, Su, PI, SR 4. 0, J, T, Ch, Su, IR, SR 5. 80, J, T, Fe, Su, Wa, SR						
360	32-				NA				BASALT a'a Clinker Reddish brown (5YR 5/3), moderately to highly weathered, moderately strong to weak, welded locally						
•••	33-	5		70	NA	13			a'a core, slightly weathered, strong				0	[21]	
558	34-				NA		M		BASALT Massive a'a Orangish-red (10R 4/4), slightly weathered, strong, aphanitic, 10-15% vesicles						
56	35		3	· /	NA NA				No recovery BASALT Massive a'a Reddish gray-brown (5YR 5/2), slightly weathered, very strong, massive, fractured, 10-15% vesicles						
30	36-				0		MM M		gray (5YR 5/1), less weathered						
554	37-	6		100	4	53	1						0	[20]	
	38-				3		¥ ====5		1. 0, J, T, Fe, Su, Pl, SR 2. 45, J, T, Fe, Su, Pl, SR 3. 45, J, Vn, Cl, Fi, Pl, SR 4. 0, J, T, Fe, Su, Wa, SR 5. 30, J, T, Fe, Su, Wa, SR 6. 0, J, T, Fe, Su, Wa, SR 7. 0, J, T, Fe, Su, Wa, SR 8. 45, J, T, Fe, Su, Wa, SR					[20]	
52	39				3		6 7 8								
	40				NA		М		BASALT a'a Clinker Dark gray (N3) with mottled reddish brown (5YR 5/3) Fe-oxide, highly to completely weathered, very weak to weak, welded locally						
50	41				NA.				meun, meided locally						
	42-	7		64	NA	7			a'a core, gray (N3), slightly weathered, strong to				0	[30]	
48	43-				NA				very strong (N3), slightly weathered, strong to very strong						
	44-				NA				no recovery						

Project Location: CT053 Project Number: 60481245

Log of Boring RHMW09

Sheet 4 of 26

		1_		ROC	K C(ORE				್ಷಲ	SA	MPLES	S		
Elevation, feet	Depth, feet	Run No.	Box No.	Recovery,%	Fractures per Foot	R Q D, %	Fracture Drawing Number	Lithology	MATERIAL DESCRIPTION	Well Schematic	Type Number	Blows per foot	PID (ppm)	Drill Time [Rate, ft/hr]	FIELD NOTES AND TEST RESULTS
346	45				1	- 8			BASALT Massive a'a Gray (N4), slightly weathered, extremely strong, 15% vesicles						
40	46-		,				M								
			4		1		M		2. 70, J, T, Fe, Su, Wa, R 3. 10, J, T, Fe, Su, Wa, SR						
	47-						MI		- 1. 25, J, T, Fe, Su, Wa, SR 2. 70, J, T, Fe, Su, Wa, R 3. 10, J, T, Fe, Su, Wa, SR 4. 30, J, T, Fe, Su, Wa, R 5. 70, J, T, Fe, Su, Wa, SR - 6. 45, J, T-Vn, Fe, Su, PL, SR						
44		8		100	2	66	3						0	[38]	
	48-														Water level
					1										recorded - no water encountered
	49-						M		ol pa						
42					3		M 5								
	50-						6		← 1% vesicles				H		
					NA		M	556	BASALT a'a Clinker Reddish brown (5YR 5/3), highly weathered, weak,						
	51-								mottled (STR 5/3), highly weathered, weak,						
40					NA										
	52-							000	BASALT Massive a'a						
		9		80	0	55	M		Gray (N4), slightly weathered, extremely strong, large stretched vesicles - 10-15%, massive				0	[35]	
	53-								1. 10, J, T, Fe, SU, Wa, SR						
38					1:		1	****							
	54-							H	BASALT a'a Clinker Dark gray (N3) mottled, highly weathered, weak, welded locally						
					NA				welded locally						
36	55-				0		M		BASALT Massive a'a Medium dark gray (N4), slightly weathered, extremely strong, 15% vesicular						
36	56-						M								
	-		5		NA		1		BASALT a'a Clinker Gray (N4), moderately weathered, very weak						
	57-						3		BASALT Massive a'a Dark gray (N3), slightly to moderately weatered, strong, 5-10% vesicles						
34		10		82	3	53	4		1. O, J, N, Fe, Sp, Wa, SR 2. 90, J, N, Fe+Cl+Mn, Sp, Wa, SR				0	[33]	
	58-						4	****	3 30 J N Mn+Fe Sn Wn SR						
					1		-	****	4. 10, J, N, Cl+Mn, Sp, Wa, SR 5. 60, J, N, Cl+Mn, Sp, Wa, SR						
	59-														
32					NA				possible void						
	60							****	medium gray (N3)						
					1		M								
	61						M	Ç×Ç×Ç×							

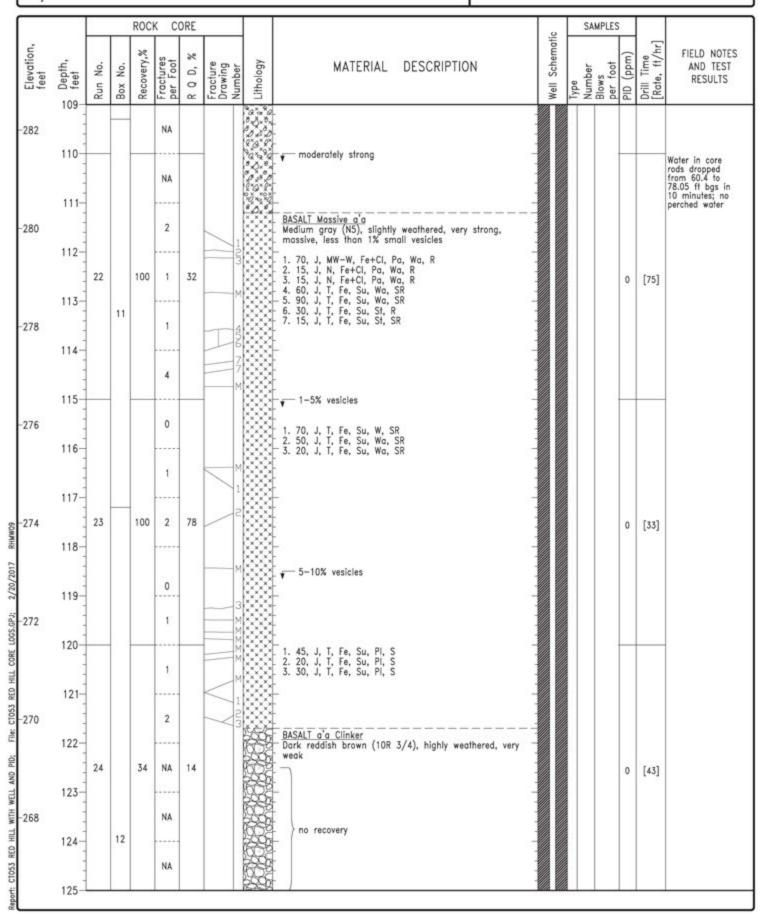

Project Location: CT053 Project Number: 60481245 Log of Boring RHMW09

Sheet 5 of 26

		Ĵ		ROC	K C	ORE			SAMPLES
Elevation, feet	Depth,	Run No.	Box No.	Recovery,%	Fractures per Foot	R Q D, %	Fracture Drawing Number		MATERIAL DESCRIPTION Well Schading Mountain School
330	62-	11		100	3	75	3 45		1. 15, J, N, M, Sp, Wa, SR 2. 60, J, Mn+Uk, Sp, Wa, SR 3. 10, J, Mn+Cl, Sp, Wa, SR 4. 45, J, N, Fe, Sp, Wa, SR 5. 45, J, N, Fe+Mn, Sp, Wa, SR
328	63				2		55 5 M		
326	65-		6		1		M 12 XX	95	BASALT Pahoehoe Brown (5YR 4/4), moderately weathered, weak to moderately strong, 100% infilling of vesicles with clay, 40% small vesicles
324	67-	12		100	1	14	234	9	0 [50]
322	69-				0		5 6 M	9	highly fractured, very weak 1. 40, J, T, Fe, Su, SR 2. 45, J, T, Fe, Su, SR 3. 30, J, T, Fe, Su, SR 4. 0, J, T, Fe, Su, SR 5. 0, J, T, Fe, Su, SR 6. 70, J, Vn, Cl, Pa, SR
320	70 71				NA NA			9	completely weathered, extremely weak, pervasive alteration of pahoehoe
25	72-	13		40	NA.	0		9	0 [100]
18	74-				NA NA			9	no recovery
16	75— 76—		7		NA NA				BASALT Volcanic Breccia Dark reddish brown (10R 3/4), variegated colors of clasts, moderately to highly weathered, weak
	77-							8*0*8* 80*88	

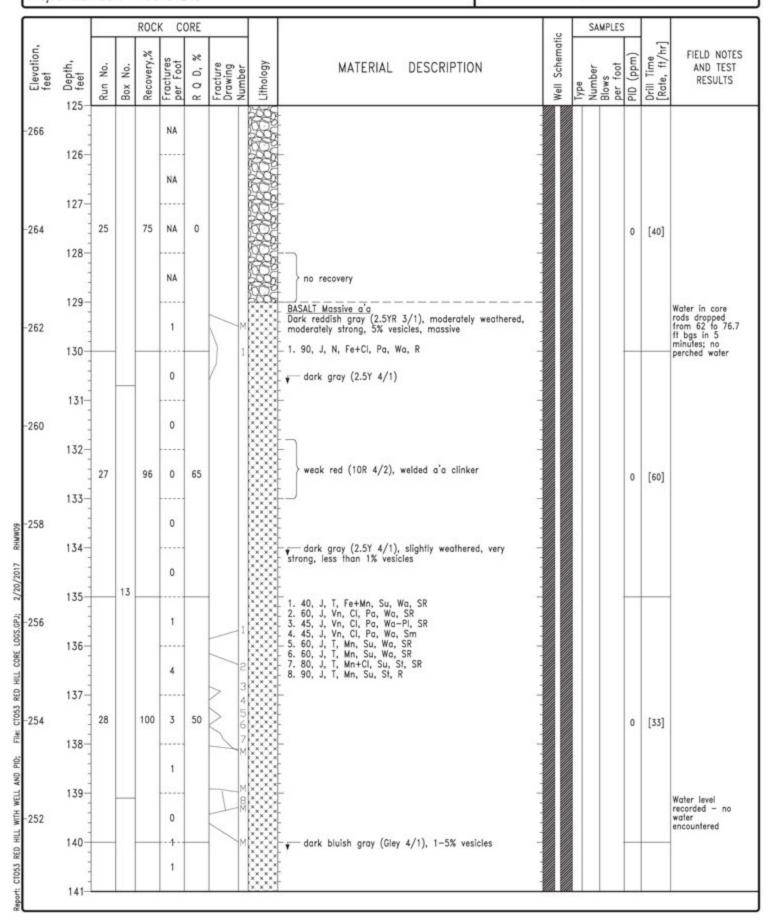
Project Location: CT053 Project Number: 60481245 Log of Boring RHMW09

Sheet 6 of 26

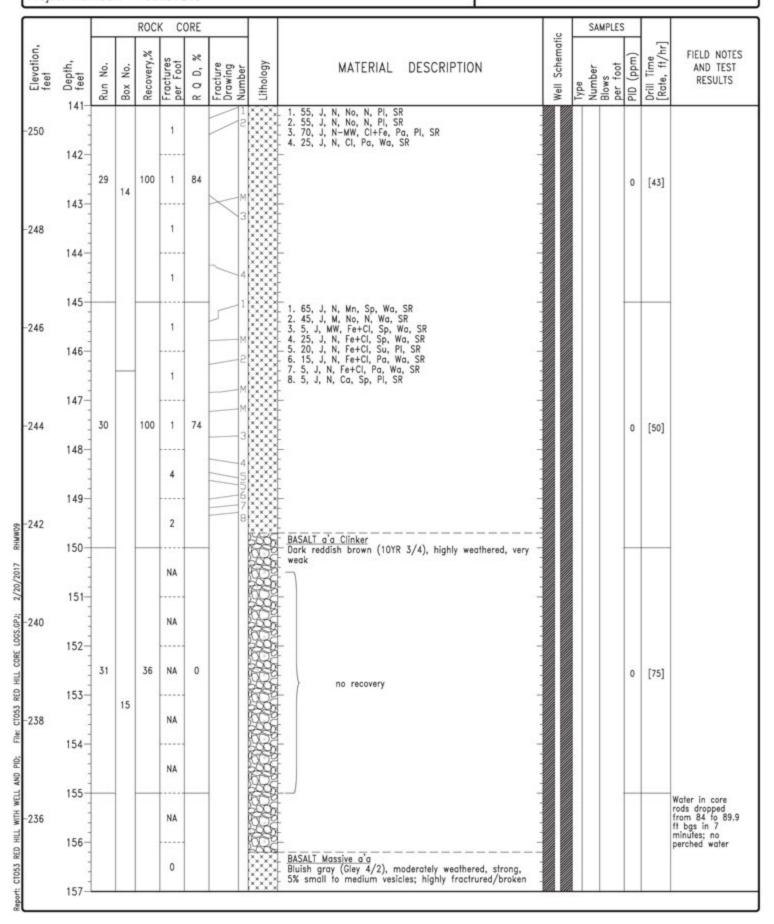

Project Location: CT053 Project Number: 60481245 Log of Boring RHMW09

Sheet 7 of 26

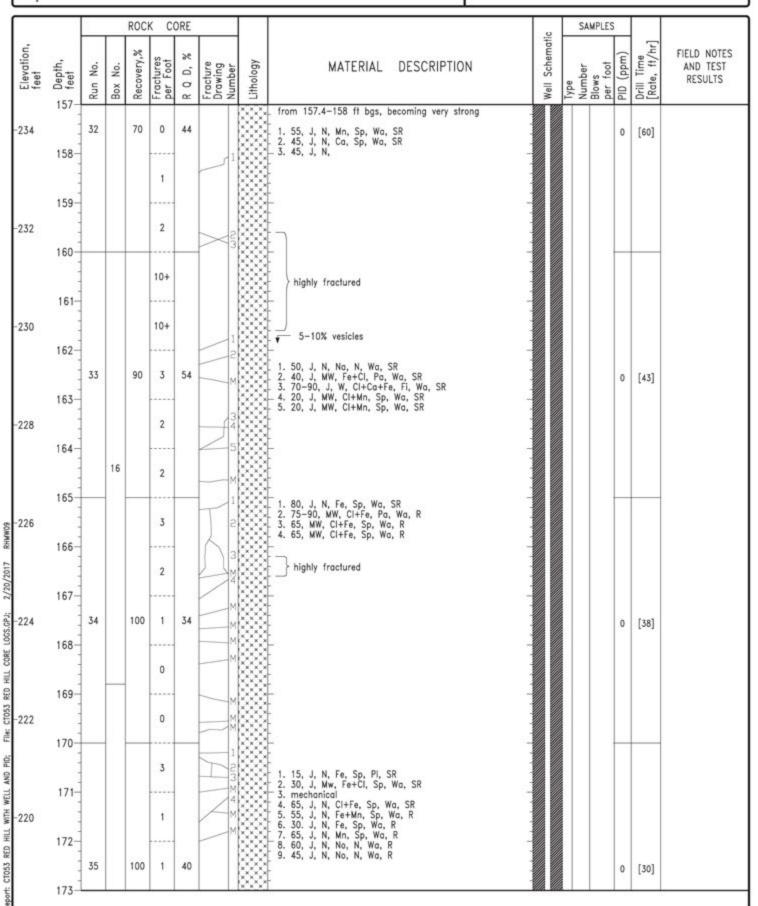
	Ť			ROCI	K C	ORE				. <u>o</u>	S	AMPLES	S		
Elevation, feet	Depth, feet	Run No.	Box No.	Recovery,%	Fractures per Foot	R Q D, %	Fracture Drawing Number	Lithology	MATERIAL DESCRIPTION	Well Schematic	Type	Blows per foot	PID (ppm)	Drill Time [Rate, ft/hr]	FIELD NOTES AND TEST RESULTS
298					NA				BASALT Welded a'a Clinker Dark reddish brown (10R 3/4), variegated color of clasts, moderately to highly weathered, weak						
	94-								clasts, moderately to highly weathered, weak						
		18		100	NA	0							0	[50]	
	95-					_	- 1								
96					NA										
	96-							S S S S S S S S S S S S S S S S S S S	BASALT Massive a'a Reddish brown (108 4/6) completely weathered						
			9		0			XXXX XXXX XXXX	BASALT Massive a a Reddish brown (10R 4/6), completely weathered, weak, vesicles infilled with clay grayish red (10R 4/2), moderately weathered, 10-15% vesicles						
	97-								10-15% vesicles 1. 70, J, Vn, Cl, Fi, Wa, SR 2. 20, J, T, Fe, Su, Wa, R 3, 90, J, N, Cl, Fi, Pl, SR						
94		19		100	1	0	Ι,		3, 90, J, N, CI, FI, PI, SR				0	[43]	
	98-						M		-						
					1			XXXX	highly weathered, with 1% vesicles						
	99-							××××							
92					1			X X X X X X X X X X X X X X X X X X X							
	100-						1		medium gray (N4), slighly weathered, 20% large vesicles						
					2				√ 1% vesicles						
99	101-						3 M		1. 80, J, N, Fe+Cl, Pa, Wa, SR 2. 45, J, N, Fe+Cl, Pa, Wa, SR						
90					10		M	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	1. 80, J, N, Fe+Cl, Pa, Wa, SR 2. 45, J, N, Fe+Cl, Pa, Wa, SR 3. 30, J, N, Cl, Su, Wa, SR 4. 40, J, T, H, No, Pl, SR 5. 45, J, Mw, Fe+Cl, Fl, Wa, SR 6. 20, J, Mw, Fe, Sp, Wa, SR						
	102-	20		100			45	\$\$\$\$\$ \$\$\$\$\$	6. 20, J, Mw, Fe, Sp, Wa, SR						
	103-	20		100	2	0	6	X X X X X X X X X X X X X X X X X X X	breccieated				0	[60]	
88	103-				0		- M	X0XX							
00	104-							× × × ×	- note brown (SYR 5/6 slightly weathered strong						
					0				pale brown (5YR 5/6, slightly weathered, strong, less than 1% vesicles						
	105-		10					X X X X X X X X X X X X X X X X X X X							
86			1.0		NA			0000	BASALT Volcanic Breccia Pale reddish-brown (10R 5/4), highly weathered, weak to moderately strong; note clayey matrix in weaker						Water in core rods dropped from 63.18 to
	106-							20.00	zones, stronger zones appear welded						rods dropped from 63.18 to 78 ft bgs in 5 minutes; no perched water
					NA			230							
	107-							2000							
84		21		100	NA	0		8.0.0					0	[60]	
	108							0 A 8	-						
					NA			02.0							
	109-							8*0* 8*					L		2


Project Location: CT053 Project Number: 60481245 Log of Boring RHMW09

Sheet 8 of 26

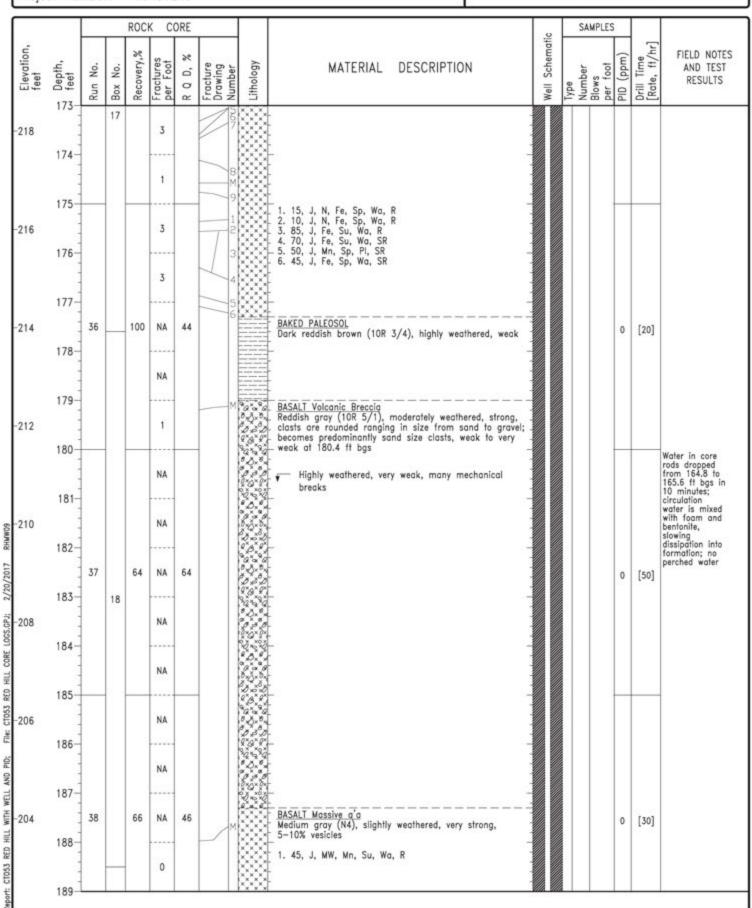

Project Location: CT053 Project Number: 60481245 Log of Boring RHMW09

Sheet 9 of 26


Project Location: CT053 Project Number: 60481245 Log of Boring RHMW09

Sheet 10 of 26

Project Location: CT053 Project Number: 60481245 Log of Boring RHMW09

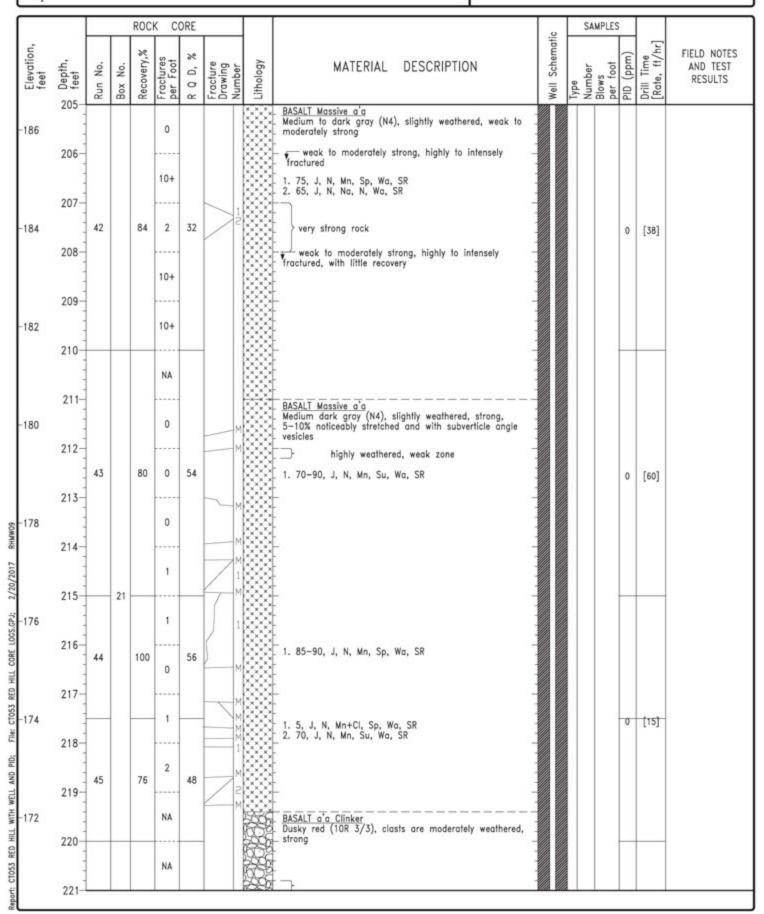

Sheet 11 of 26

Project Location: CT053 Project Number: 60481245

Log of Boring RHMW09

Sheet 12 of 26

Project Location: CT053


Sheet 13 of 26 Project Number: 60481245

Log of Boring RHMW09

		1		ROC	K C	ORE				.0	S	AMPLE	S		
Elevation, feet	Depth, feet feet	Run No.	Box No.	Recovery,%	Fractures per Foot	R Q D, %	Fracture Drawing Number	Lithology	MATERIAL DESCRIPTION	Well Schematic	Type	Blows per foot	PID (ppm)	Drill Time [Rate, ft/hr]	FIELD NOTES AND TEST RESULTS
202					1		1								
	190-			_	-0								Н		Water in core
					0										rods dropped from 147.6 to
	191-						M	X X X X X X X X X X X X X X X X X X X							Water in core rods dropped from 147.6 to 153.3 ft bgs over 23 minutes; circulation water is mixed with foom and bentanite
200					0		М.								water is mixed with foam and
	192-						м								bentonite, slowing dissipation into formation; no perched water
		39		90	10+	44	м						0	[50]	formation; no perched water
	193-								becomes moderately weathered weak rock, moderately oxidized with some vesicles filled with						
98	3		19		10+			× × ×	Fe+Mn						
	194-								-						
					NA			\$355 \$355							
	195-			7								1	H		
96					NA			XXXX							
	196-							****	becomes slightly to moderately weathered, strong						
					1			\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$							
	197-						M	XXXX XXXX	1. 80, J, Mw, Fe, Sp, Wa, R 2. 70-90, J, N, Fe, Su, Wa, SR -3. 70, J, N, Fe, Sp, Wa, SR 4. 55, J, N, Wn, Sp, Wa, SR						
94		40		80	2	30	1/2		4. 55, 5, 11, 111, 5p, 114, 5h				0	[43]	
	198-						1/3								
					2	- 8	K 4								
	199-					. 5	M		→ Highly weathered						
92					NA		M	X X X X X X X X X X X X X X X X X X X							
	200-		3 3	_		_		× × × ×	BASALT Massive a'a Medium gray (N4), highly weathered, very weak						Water in core
					NA										rods dropped from 162.7 to
	201														167 ft bgs over 36 minutes; circulation water is mixed
90					NA				no recovery						with foam and bentonite,
	202							****							slowing dissipation into formation; no
		41		44	NA	20	м		slightly weathered, very strong, 1-5% vesicles				0	[43]	perched water; stop drilling due to sheared rod at 130 ft bgs, repaired on 7/23/16
	203-						M								at 130 ft bgs, repaired on 7/23/16
88					0	9	М								
	204-		20				M								
					10+				highly broken/fractured						
	205-							XXXX	The state of the second st						

Project Location: CT053 Project Number: 60481245 Log of Boring RHMW09

Sheet 14 of 26

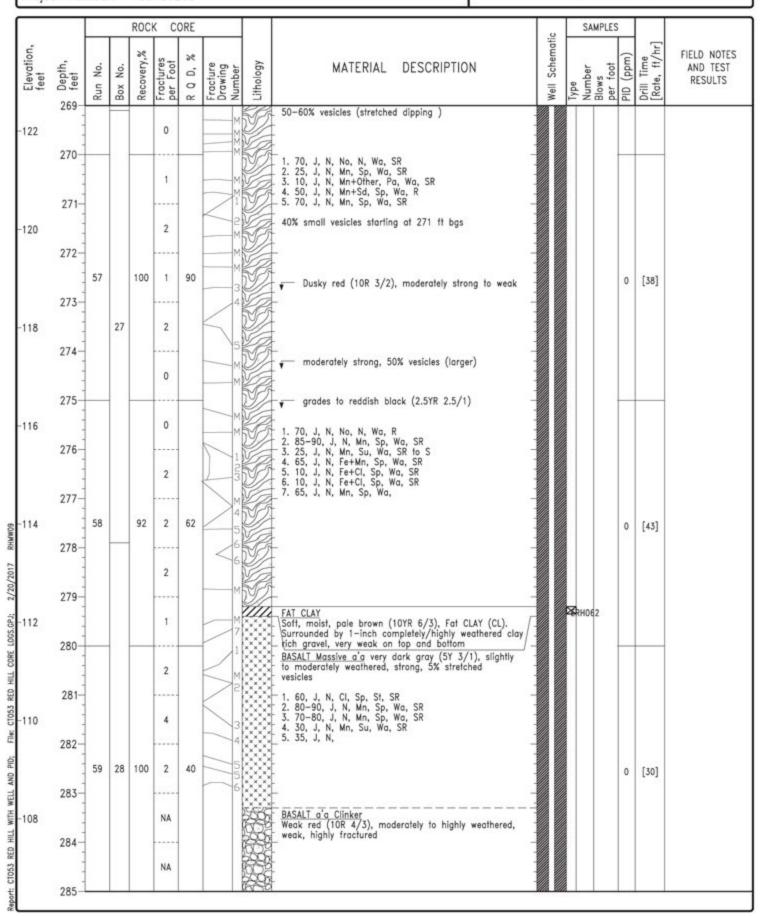
Project Location: CT053 Project Number: 60481245 Log of Boring RHMW09

Sheet 15 of 26

Project Location: CT053 Project Number: 60481245 Log of Boring RHMW09

Sheet 16 of 26

				ROCH	K C	ORE				· o	S	AMPLE	S		
Elevation, feet	Depth, feet	Run No.	Box No.	Recovery,%	Fractures per Foot	R Q D, %	Fracture Drawing Number	Lithology	MATERIAL DESCRIPTION	Well Schematic	Type	Blows per foot	PID (ppm)	Drill Time [Rate, ft/hr]	FIELD NOTES AND TEST RESULTS
154	201	49		100	2	60	M						0	[25]	
	238-						5						ľ	[20]	
					1	3			BASALT Pohoehoe						
	239-		23					22	Dark reddish brown (2.5 YR 2.5/4), moderately weathered, moderately strong to strong, 50% vesicles (unstretched); 3-inch zone of completely weathered at						
52					2				(unstretched); 3—inch zone of completely weathered at 238.8 ft bgs						
	240-						7								
					10		1	M2							
	241-						2	1	vesicles become partially filled with clay grades to very dark gray (5YR, 3/1), slightly weathered						
50	70000				1	8	M		weathered						
550	242-	50		93		78		M	. 70 10 1 1 1 1 1 0						
	5370000	3423903			0	8333			1. 70-30, J, N, Mn, Sp, IR, R 2. 65, J, N, CI, Sp, Wa, R				0	[17]	
	243-						M	192	29					find	
48					0		l M	No.							
,,,	244-								50-60% vesicles, moderately strong to weak.				L		
		51		100	0	100	M	M	50-60% vesicles, moderately strong to weak, increase in mechanical fractures				0	[60]	
	245-						M						Ľ	[oo]	
46					1		1		1. 80-90, J, N, No, N, Wa, R 2. 25, J, N, Fe, Su, IR, SR 3. 10, J, N, Fe+Mn, Su, Wa, SR 4. 20, J, N, Mn, Sp, Wa, SR 5. 15-20, J, N, Mn+Fe, Sp, Wa, SR						
	246-							MA	4. 20, J, N, Mn, Sp, Wa, SR - 5. 15-20, J, N, Mn+Fe, Sp, Wa, SR						
					0		M								
	247-						M								
44		52	24	100	10	80	M	NO.					0	[43]	
	248-	100000	· **				- 2		slightly oxidized					[,,0]	
					2	15	34	Y)	Jangini, Oxidized						
	249-						M	W.S							
44					1		M		-						
	250-			. 1				Y	▼ moderately strong						
					0			Van							
	251-								zone of large vesicles						
40					2		1	NO.	1 30 I N 50 Sp We D						
	252-					ß	× 2	1	1. 30, J, N, Fe, Sp, Wa, R 2. 45, J, N, No, N, Wa, R 3. 45, J, N, No, N, Wa, R						
		53		100	2	86	3	Y)					0	[50]	
	253-						M	1	weak with lots of mechanical fractures				ľ	1,30,1	


Project Location: CT053 Project Number: 60481245 Log of Boring RHMW09

Sheet 17 of 26

		1		ROC	K C	ORE				ပ	S	AMPLES	5		
Elevation, feet	Depth, feet 753	Run No.	Box No.	Recovery,%	Fractures per Foot	R Q D, %	Fracture Drawing Number	Lithology	MATERIAL DESCRIPTION	Well Schematic	Type	Blows per foot	PID (ppm)	Drill Time [Rate, ft/hr]	FIELD NOTES AND TEST RESULTS
138	200				0		M	100							
	254-						M								
	-				0		M								
	255-						M	100	moderately strong with 50% vesicles						Water level
36					1		M		1 60 J Wn Sn Wn SR						recoreded to 242.9 ft bgs; End of drilling 7/26/16; begin 7/27/16 - no water
	256-		25						1. 60, J, Mn, Sp, Wa, SR 2. 55, J, N, No, N, Wa, SR 3. 65, J, N, No, N, Wa, SR						7/26/16; begin 7/27/16 - no
					1		ľ l	M							encountered to bottom of hole
	257						M								
34	-	54		100	0	98							0	[50]	
	258-						M	No	1						
					2		2		small zone of stretched vesicles, 30% (258.6-259.2 ft						
	259-							VZ	_ bgs)						
32					1			No.							
	260-						1		1. 35, J, Fe, Sp, Wa, R						
					2		KI	12	1. 35, J, Fe, Sp, Wo, R 2. 80, J, N, No, N, Wa, R 3. 35, J, N, Fe+Cl, Wa, SR 4. 70, J, N, No, N, Wa, R 5. 40, J, N, No, N, Wa, R						
	261-						N.	No.	- 5. 40, J, N, No, N, Wa, R						
130	0000				1										
	262-							M							
		55		100	1	98	M	1					0	[50]	
	263-						3								
128	264-				2		1 45	V	zone of stretched vesicles, 20%						
	204		26		1			No.							
	265		20						becomes weak (many mechanical breaks), 50%						
126					10+			Y	becomes weak (many mechanical breaks), 50% vesicles						
S705.()	266-						M	1	1. 35, J, N, No, N, Wa, R 2. 90, J, N, No, N, Wa, R						
					1		1								
	267-						M	10	becomes dusk red (10R 3/2)						
124		56		90	1	90	N a	VA.	seconds dust led (top of a)				0	[38]	
	268-						- N							ar . A	
					0		- N	M	Reddish black (2.5YR 2.5/1) with large vesicles [partially filled with clay (10% filled)], moderately strong moderately weathered, moderately strong,						
	269						M	Va	moderately weathered, moderately strong,		Š		L		

Project Location: CT053 Project Number: 60481245 Log of Boring RHMW09

Sheet 18 of 26

Project Location: CT053 Project Number: 60481245 Log of Boring RHMW09

Sheet 19 of 26

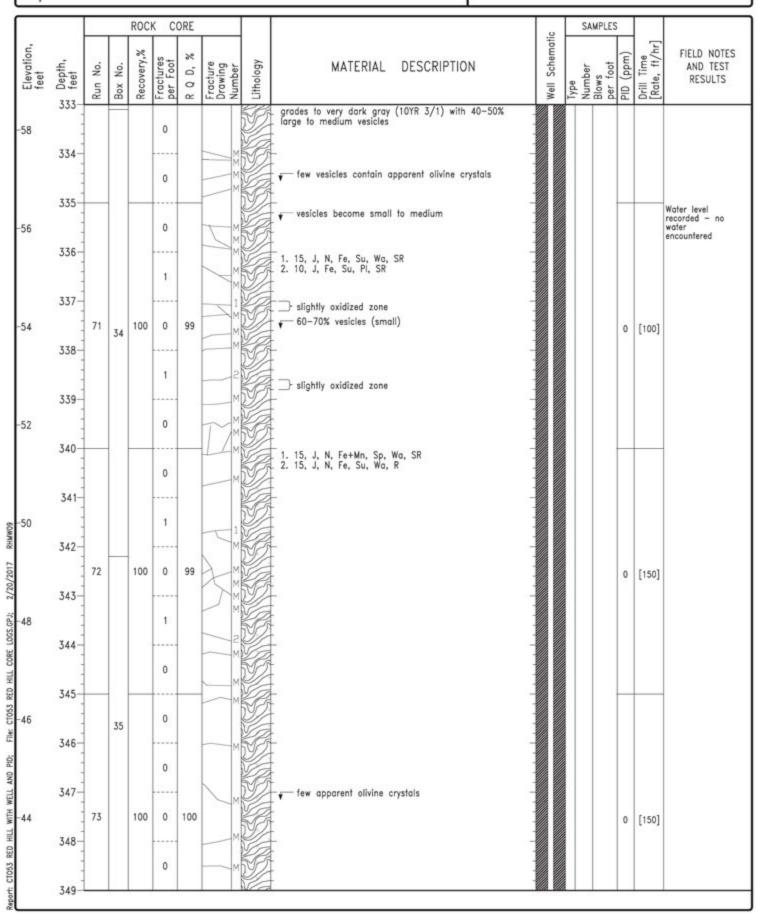
			_	ROC	K C	ORE				್ತಲ	S	AMPLES	_		
Elevation, feet	Depth, feet feet	Run No.	Box No.	Recovery,%	Fractures per Foot	R Q D, %	Fracture Drawing Number	Lithology	MATERIAL DESCRIPTION	Well Schematic	Type	Blows per foot	PID (ppm)	Drill Time [Rate, ft/hr]	FIELD NOTES AND TEST RESULTS
106	200				NA										Water recorded - 284.4 ft bgs and dropping
100	286-							83							una uropping
	200-						M		BASALT Massive a'a						
					0		N N	XXX	BASALT Massive a'a Very dark gray (10YR 3/1), highly weathered, weak, 5-10% vesicles						
	287-						1		_ 1. 70-90, J, N, Cl, Sp, Wa, R _ 2. 50-60, J, N, Mn, Sp, Wa, SR _ 3. 30, J, N, Mn, Sp, Wa, SR						
104		60		80	10	48		× × × × × × × × × × × × × × × × × × ×	5. 50, J, N, MN, SP, WG, SK				0	[33]	
	288-						1		-						
					3		1	2000							
	289							XXX	r.						
102					2		N		moderately strong to weak (many mechanical fractures)						
	290-						- 3 M	3333	fractures)			1			
					1		N	****							
	291-						E N	× × × ×							
100					0			× × ×							
100	292-						/ N		vesicles (5%) become large and irregular shaped with mechanical breaks along vesicles						
	292		29	70		7.0			with mechanical breaks along vesicles					25 EX	
		61	23	76	0	70	M						0	[33]	
	293-							888							
98					0		M								
	294-							\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$							
					NA				BASALT a'a Clinker Dark reddish brown (2.5YR 3/3), moderately to highly weathered, weak, highly fractured						
	295-			-					weathered, weak, highly fractured				Н		Water in core
96					NA				no recovery						rods dropped from 294 to 29 ft bgs in 10
	296-	62		50		0		83							minutes; no pereched water
					NA								0	[20]	
	297-			_											
94					NA				no recovery						
4.53	298-		>				1	XXXX	BASALT Massive a'a Very dark gray (10YR 3/1), slightly weathered, moderately strong, 10% vesicles						
		63		83	1	70		X X X X X X X X X X X X X X X X X X X					2	fact	
	200	03		03		,0	M	XXXX XXXX	1. 70, J, N, Fe+Mn, Sp, Wa, R				0	[36]	
200	299-					7		XXXXX							
92					0			XXXX XXXX							
	300-							NO.	BASALT Pahoehoe Dark red (10R 3/6), moderately weathered, weak,						
		1			NA			8	60-70% vesicles; no recovery from 300-300.4 ft bgs; grades to dark gray (N3), moderately weathered,		3				
	301-	_						KR	group to dain gray (no); industrially meditioned,	M M		_			

Project Location: CT053 Project Number: 60481245

Number: 60481245 Sheet 20 of 26

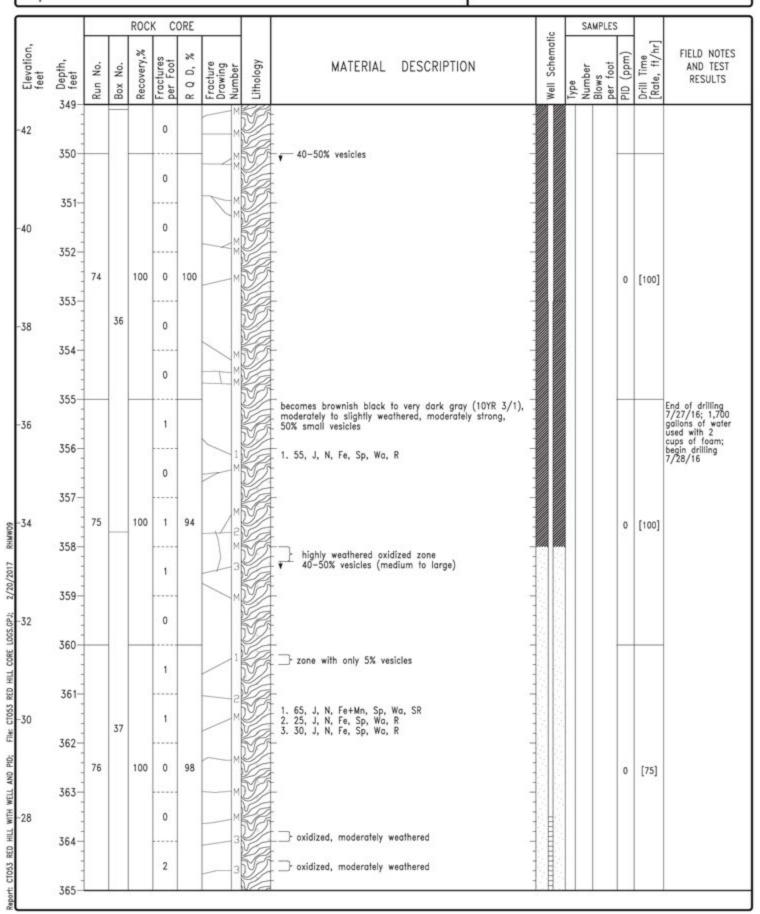
Log of Boring RHMW09

		2)		ROC	K C	ORE				್ತಲ	SA	MPLES	$\overline{}$		
Elevation, feet	Depth, feet	Run No.	Box No.	Recovery,%	Fractures per Foot	R Q D, %	Fracture Drawing Number	Lithology	MATERIAL DESCRIPTION	Well Schematic	Type	Blows per foot	PID (ppm)	Drill Time [Rate, ft/hr]	FIELD NOTES AND TEST RESULTS
220	301				-2		1	M	moderately strong at 300.8 ft bgs						
90					1			V/D	1. 30, J, N, Mn+Cl, Sp, Wa, SR 2. 10, J, N, Fe, Sp, Pl, SR						
	302-	2.57					M	10							
		64	30	90	0	80	M	1	zone with large vesicles				0	[50]	
	303-														
88					2		7 2	No.							
	304-						М								
					1		3	Y	slightly oxidized, 50-60% vesicles						
	305-			_		- 1	M	1	1. 30-40. J. N. Fe. Sp. Wa. R			5		_	
86					0		M	V)	1. 30-40, J, N, Fe, Sp, Wa, R 2. 70, J, N, Fe+Cl, Sp, Wa, R						
	306-							NS.	-						
					1		M								
	307-						1	MO							
84		65		100	1	95	M	Van	dark reddish brown (2.5YR 3/3), weak (many mechanical fractures/breaks)					[nel	
04	308-	00		100		33		Y)	ST SEX				0	[75]	
	300						M	1							
	700				1		M								
	309-						T SM	M							
82	-				0		7 8								
	310-							Y	very dark gray (7.5YR 3/1), moderately weathered, moderately strong, with 50-60% vesicles						
					1		1	1	1. 30, J, N-MW, Fe+Mn, Su, Wa, S+Slk						
	311-						TM		1. 30, J, N-MW, Fe+Mn, Su, Wa, S+Slk 2. 20, J, N, Fe, Sp, Wa, R 3. 65, J, N, Cl+Sa, Sp, Wa, R						
80			31		NA		Z M	NO.	moderately to highly weathered, oxidized, weak						
	312-						M M		P-						
	- 2	66		100	1	76	M	Y					0	[100]	
	313						2	Vp							
78					NA		M	3	7						
	314-							1	moderately to highly weathered, oxidized, weak zone						
					1		3		50% vesicles, vesicles become medium to large						
	315-							Mo							
76					0		M	Va	1. 20, J, N, Fe, Su, Wa-PI, SR 2. 65, J, N, Fe, Mn, Sp, Wa, SR						
/0	716						M	Y)							
	316-					1	М	1							
76					0		M	2							
	317-							W	2	110. 110				-	


Project Location: CT053 Project Number: 60481245 Log of Boring RHMW09

Sheet 21 of 26

	T I			ROCI	K C	ORE			5	. <u>o</u>	S	MPLES			
Elevation, feet	Depth, feet	Run No.	Box No.	Recovery,%	Fractures per Foot	R Q D, %	Fracture Drawing Number	Lithology	MATERIAL DESCRIPTION	Well Schematic	Type	Blows per foot	PID (ppm)	Drill Time [Rate, ft/hr]	FIELD NOTES AND TEST RESULTS
-74	318	67		100	1	95	1 M M	50	— moderately strong to weak (many mechanical fractures)				0	[75]	
-72	319				1		M M								
	320		32		0										
-70	321				0		Z M M M M	Y)							
	322-	68		100	0	80		7	1. 80-90, J, N, Mn, Sp, Wa, R 2. 5, J, N, M+Fe, Sp, Wa, SR 3. 50-90, J, N, Mn+Sa, Wa, R				0	[100]	
-68	324				2	9	M 1 2								
66	325			-	1		M 1	Y							
-66	326				2		23		grades to dark reddish brown (2.5YR 3/4), 50-60% vesicles 1. 20-40, J, N, Fe+Cl, Sp, IR, R 2. 60, J, N, Fe, Sp, Wa, SR 3. 20, J, N, Mn, Sp, Wa, SR 4. 50-70, J, N, Fe, Su, Wa, SR to S						
-64	327	69		100	0	90	A M	7	moderately to highly weathered zone with some vesicles filled with clay or CaCO3				0	[100]	
-64	328		33		0		M M	9	▼ moderately weathered, moderately strong						
-62	329		6 3		0		MM	50	dark reddish gray (10R 3/1), with 40% vesicles						
	331				1		1	9	(large) ✓ discrete change from large to small/medium vesicles, 50-60% (possible pahoehoe flow contact) 1. 5, B, N, No, N, Wa, R						
-60	332				0		M MM	90	← 60% vesicles (small)						
	333	70		100	0	100	M		•				0	[75]	


Project Location: CT053 Project Number: 60481245 Log of Boring RHMW09

Sheet 22 of 26

Project Location: CT053 Project Number: 60481245 Log of Boring RHMW09

Sheet 23 of 26

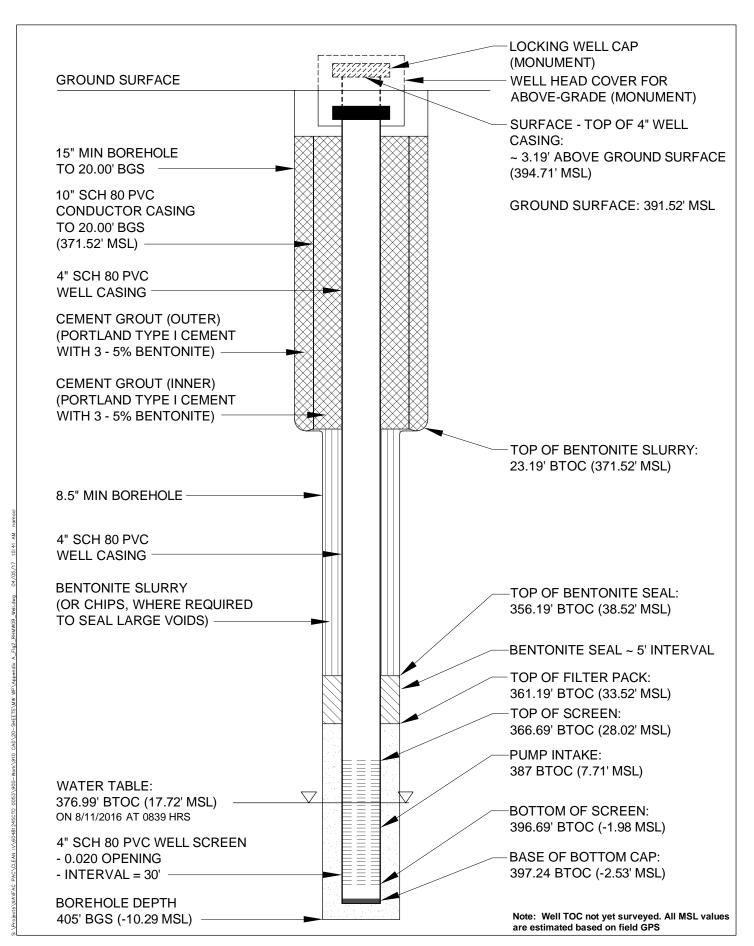
Project Location: CT053 Project Number: 60481245 Log of Boring RHMW09

Sheet 24 of 26

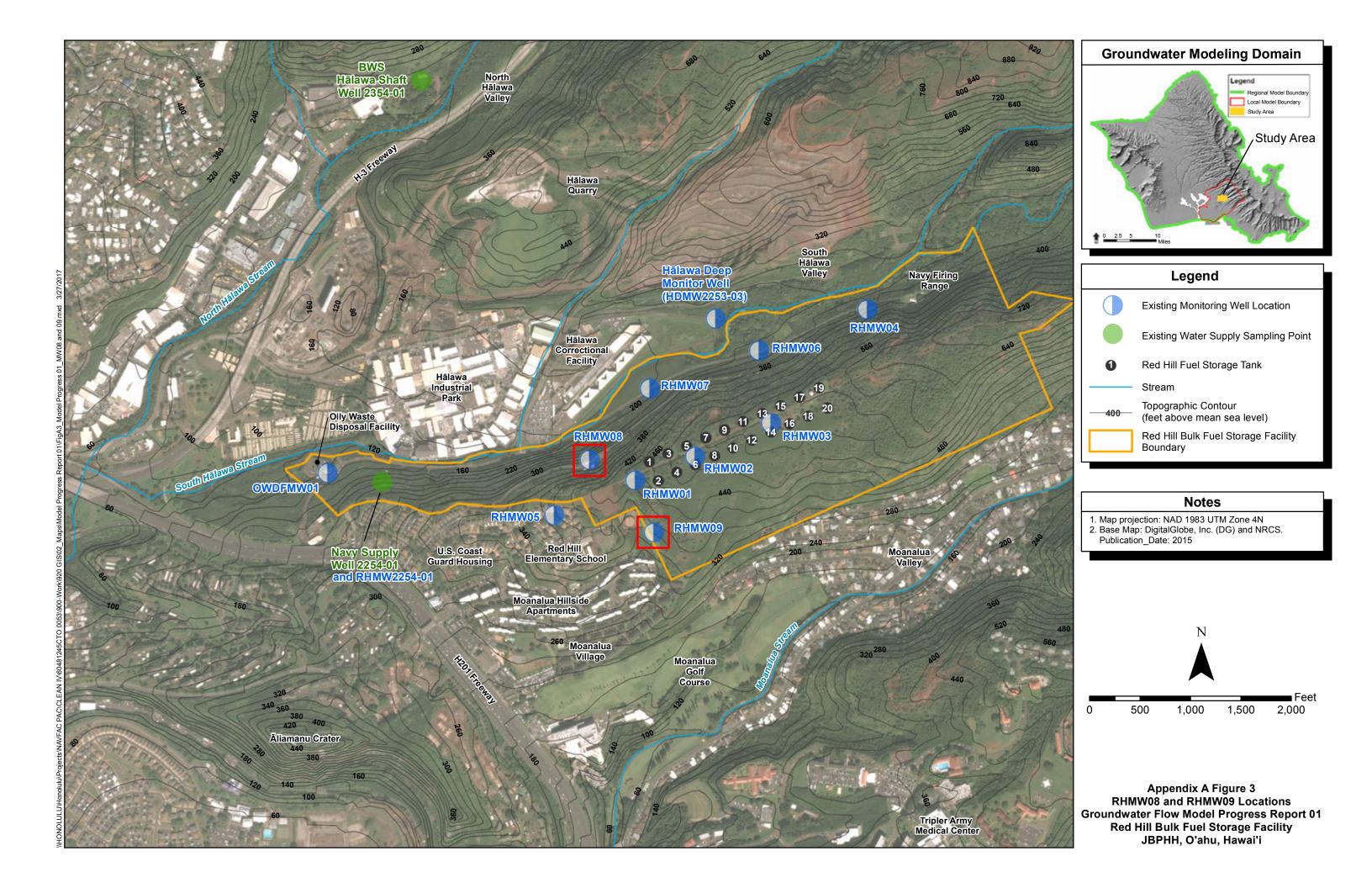
				ROC	C	ORE		1 1			SA	MPLES	$\overline{}$		
Elevation, feet	Depth,	Run No.	Box No.	Recovery,%	Fractures per Foot	R Q D, %	Fracture Drawing Number	Lithology	MATERIAL DESCRIPTION	Туре	Number	Blows per foot	PID (ppm)	Drill Time [Rate, ft/hr]	FIELD NOTES AND TEST RESULTS
26	303				0			50	1. 80, J, N, Mn+Cl, Sp, Wa, R					TANK B	Water in core rods dropped from 352.1 to 357.9 over 20 minutes; no perched water
	366-								1						357.9 over 20 minutes; no perched water
					0										
	367-							Y	-						
4		77		100	1	90	1						0	[75]	
	368-						X,		-				7.5	o, Telestic	
					0		N	10							
	369						H.		highly weathered, oxidized						
2			38		0		1		highly weathered, oxidized grades to very dark gray (5YR 3/1), moderately weathered, moderately strong, 40% vesicles (medium) 1. 45, J, MW, Fe+H, Fi, Wa, SR 2. 0, J, MW, Fe, Su, Wa, SR						
	370-							M	grades to very dark gray (5YR 3/1), moderately weathered, moderately strong, 40% vesicles (medium)						
					0		N N		1. 45, J, MW, Fe+H, Fi, Wa, SR 2. 0, J, MW, Fe, Su, Wa, SR						
	371-														
0					2			M	1						
	372-			922			1		1					95 ES	
	777	78		100	0	94							0	[100]	
0	373-				0			M							
8	374-								Y						
					1		1		highly weathered, oxidized						
	375-						N N	M							
6					0				1. 20, J, MW, Fe+Mn, Fi, Wa, SR						
	376-								slighly oxidized, weak to moderately strong (many mechanical breaks) 1. 15, J, N, Fe, Su, Wa, R 2. 65, J, N, Fe, Su, Wa, R						
					0			5							
6	377		39						- 1						
4		79		100	0	99							0	[100]	
	378-							1							
					0		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		1:1						
	379-						- N								
2					1		-T1	50	slighly oxidized, weak to moderately strong (many mechanical breaks)						
	380-						H		1. 15, J, N, Fe, Su, Wa, R 2. 65, J, N, Fe, Su, Wa, R						
	1				1			29/	1 1	8					

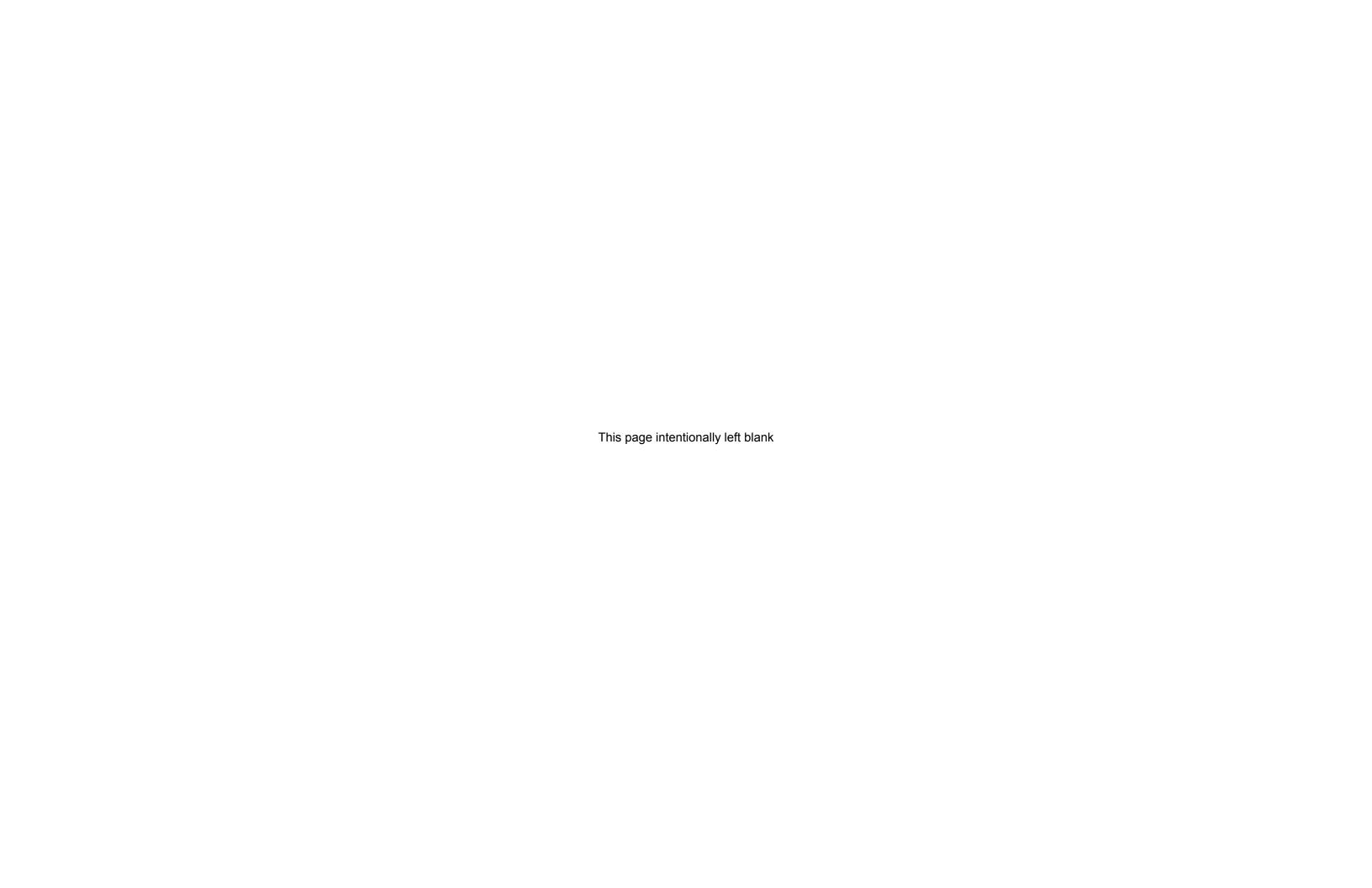
Project Location: CT053 Project Number: 60481245 Log of Boring RHMW09

Sheet 25 of 26


				ROC	K C	ORE				ပ	S	AMPLES	5		
Elevation, feet	Depth, feet	Run No.	Box No.	Recovery,%	Fractures per Foot	R Q D, %	Fracture Drawing Number	Lithology	MATERIAL DESCRIPTION	Well Schematic	Type	Blows per foot	PID (ppm)	Drill Time [Rate, ft/hr]	FIELD NOTES AND TEST RESULTS
10	382	80		100	0	99	W M	9	vesicles partially filled with Fe oxide				0	[100]	
3	383				0		M M M M								
5	385		40		0		M M M M	5	1. 20, J, N, Cl, Sp, Wa, SR, 30% of vesicles filled with clay 2. 20, J, N, Fe, Su, Wa, SR-R, small bands of Fe						Water level recorded - Steady at 373.5
5	386				0			50	weathering above 3. 30, J, N, Cl, Sp, Wa, SR, 20% of vesicles filled with a clay						ft bgs after multiple readings
	387	81		100	1	99	1 2		30% vesicles				0	[75]	
	389				1				moderately to highly weathered, oxidized, increase to 50% vesicles, oxidized 2mm-thick bands of reddish brown (10R 4/6)						
	390 391				1		M M		1. 10, J, N, Cl+Fe+Mn, Sp, Wa, SR, vesicles partially filled 2. 10, J, N, Cl+Mn, Sp, Wa, SR-R, 10% of vesicles with spotty Cl+Mn infilling						
	392				0		M		highly fractured, weak (possible void) vesicles(large) decrease to 20-30% highly fractured						
2	393	82	983	80	2	44	M			-			0	[100]	
	394		41		NA.		2	55	no recovery vesicles decrease to 15%, become large, minimally stretched						
4	395 396				0		M M M		vesicles significantly decrease to less than 5%						
	397				0			V							

Project Location: CT053 Project Number: 60481245


Log of Boring RHMW09


Sheet 26 of 26

		2	_	ROC	K C	ORE		4		. <u>÷</u>	S	AMPLE	S	_	
Elevation, feet	Depth, feet	Run No.	Box No.	Recovery,%	Fractures per Foot	R Q D, %	Fracture Drawing Number	Lithology	MATERIAL DESCRIPTION	Well Schematic	Type	Blows per foot	PID (ppm)	Drill Time [Rate, ft/hr]	FIELD NOTES AND TEST RESULTS
-6	398	83		80	0	80	N M	50	20-30% vesicles (medium)				0	[75]	
-8	399				NA			75	becomes highly weathered, oxidized no recovery						
	400-				10+				dark red (10R 4/8), highly weathered, highly fractured, weak with 15% of vesicles filled with coralline fine-medium sand 1. 50, J, N, Sd, Sp, Wa, SR						
10	402	84	42	94	10+	60	1 M						0	[75]	
12	403				0			My My						[,0]	
	404-			7	0		M		Bottom of Boring; TD = 405 ft bgs						Complete
14	406								Solidir of Borning, 10 = 400 H Egs						Complete drilling 7/28/16 1,150 gallons of water used downhole, 550 gallons of water-foam mix including 2 cups of foam injected from top of casing
16	407-								Used a total of 14,000 gallons of circulation water; 1,300 gallons of water-foam mix with 3.3 gallons of foam, added from top of casing; 235 gallons of MaxGel-water slurry with 5, 50-lb bags of MaxGel bentonite powder.						cups of foam injected from top of casing
18	409														
	411														
20	412														
	413	_								1					

Appendix A Figure 2
Cross Section of RHMW09 Monitoring Well
Red Hill Bulk Fuel Storage Facility
JBPHH, O'ahu, Hawai'i

