An economic perspective on improving public health outcomes during smoke events

the dismal science

Benefits of Reduced Wildfire Smoke Exposure Change inhealth outcome =f(wildfire smoke exposure)

X

Unit Value:

- Medical expenses
- Lost wages
- Averting/Mitigating expenses
- Disutility

We know a few things....

Wildfire smoke makes people sick and can kill them (change in Health Outcome)

There are economic costs (Unit Value)

- 2003 Southern CA fires: \$173M \$173B in mortality cost (\$124 M in suppression)
- 2007 Southern CA fires morbidity: Excess hospital admissions + emergency department visits ~\$3.4 M

Issues....

- Very few studies in US of the economic cost of wildfire smoke exposure
- Most economic studies use cost of illness
 - Assume no behavioral response to smoke
 - Some cases observe high PM levels but no change (or decrease) in emergency department visits (Kochi et al. forthcoming)

- Do not know much about averting behavior (1 study from Station Fire 2010, CA)
 - Willingness to pay for 1 less symptom day ~\$90 vs \$3 daily cost of illness (\$17 if include lost leisure)

Moving forward...

Improve Cost of Illness Estimates

- Extent of population exposed
- Is it ok to use standard air quality dose/response fn?
- Actual smoke exposure (indoor/outdoor)
- Better measures of lost wages/leisure
- Medical costs (total cost, out of pocket)

Averting/Mitigating Behavior

- How prevalent?
- Why?
 - ✓ Messaging?
 - ✓ Experience?
 - ✓ Health?
- What are the behavioral responses?
- How does averting/mitigating affect health?

