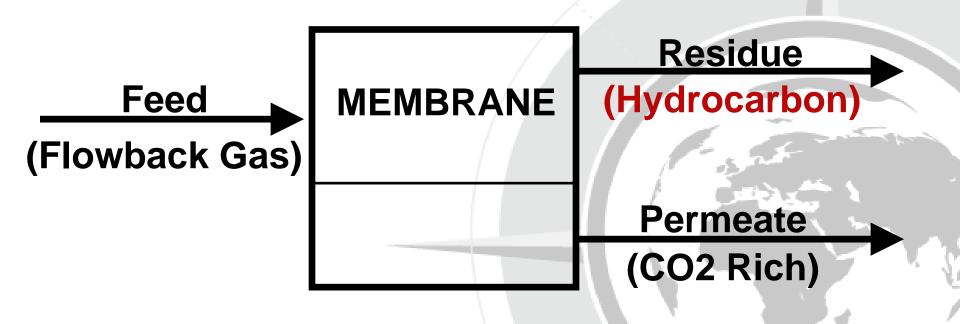


Reducing Vented Flowback Emissions from CO2 Fractured Gas Wells Using Membrane Technology

By: Janelle Wadas

Environmental Engineer, Corporate Climate Policy


Agenda

- General flowback details
- Benefits of using a membrane system
- Noble's green flowback pilot project assumptions and results
- Factors that affect future use of a membrane system

Flowback Emissions From CO2 Fractured Well: Without Membrane

- Mixture of CO2 and methane emissions
- Multiple days of venting/flaring
- Sold once CO2 concentration decreases to pipeline specification

Membrane Separation Process

Flowback Emissions From CO2 Fractured Well: With Membrane

- Decreased venting/flaring
- Increased sales gas
- Potential for carbon credits
- Environmental stewardship

Portable Membrane System

CO2 separation unit

Assumptions

- Gas savings is defined as "traditionally flared gas that is sold instead"
- Acceptable pipeline CO2 concentration of 4%_v
- Gas sales price = \$3.12 / mmbtu

Noble's Green Flowback Pilot Project

Net profit = \$340,000

Gas savings = 170 MMcf

Cost = \$325,000

10 Noble flowbacks

Noble's Green Flowback Pilot Project – Average Per Flowback

Net profit = \$34,000

Gas savings = 17 mmcf

Cost = \$33,000

Potential For Carbon Credits

Potential
Carbon
Credits

Flowback Emissions
Without Membrane

Flowback Emissions
With Membrane

Gas
Savings

1300 to 5300 tonnes CO2eq earned per flowback

Many Factors Affect Future Membrane Use

- Commodity prices
- Rental cost
- Availability of unit
- Ability to improve logistics
- Ability to comingle flowbacks from multiple wells

Questions

