

IMPROVING SAFETY
MAXIMIZING PROFITS
REDUCING EMISSIONS
MAINTAINING COMPLIANCE

Natural Gas STAR's 2009 Annual Implementation Workshop

Fugitive Emission Management in the Transmission Sector

Terence Trefiak, P.Eng. Oct. 20, 2009

OVERVIEW

- BACKGROUND
- DETECTION & MEASUREMENT TECHNOLOGY
- FUGITIVE EMISSION MANAGEMENT PROGRAM (FEMP) COMPONENTS
- FEMP CONSIDERATIONS
- REGULATIONS
- CASE STUDY DATA

UNDERSTANDING THE ISSUE

Fugitive Emissions

intentional

 intended/designed venting (i.e. venting from tanks, controllers, compressor seals, stacks, etc.)

unintentional

- leaks due to normal wear and tear, improper or incomplete assembly of components, inadequate material specification, manufacturing defects, damage during installation or use, corrosion, fouling and environmental effects
- potentially cost industry hundreds of millions to billions of dollars in lost product and can pose safety risks to workers and the public
- account for a significant amount of the total inventory of greenhouse gases emitted by industry

DRIVERS

Improving Health & Safety

Identify and eliminate hazards (Fire & Explosions and Exposure)

Reduce LEL (lower explosive limit) levels within facilities

Maximizing Profits

Recover lost product

Increase production

Reduce costs

Reducing Emissions

Reduce GHG (methane) emissions

Reduce BTEX and other VOC emissions

Solve offsite odor problems

Maintaining Regulatory Compliance

Meet or exceed requirements

Arm company with new technologies used by regulators

CONVENTIONAL LEAK DETECTION

Gas Sniffer

- •US EPA Method 21 using a hydrocarbon detection sensor to obtains ppm, or LEL.
- Ranging from a personal safety monitors to TVA VOC analyzer
- Each connection must be assessed separately

Bubble Test

Using soap solution on a connection to detect leak

Ultrasonic Testing

Detects frequency of turbulent flow from leaks

DETECTION TECHNOLOGIES

Primary:

Optical Infrared Detection ThermaCAM® GasFindIR

- New leading FE technology
- Proven and reliable technology
- Significant increase in ability to find emissions
- Significant decrease in the time/money needed to assess facilities
- IR scanning now approved by EPA as alternative to conventional methods

Secondary:

Gas Detector (EC, PID/FID, IR, etc.)

- Provides ppm level detection of gas leaks
- Building entry, hazardous gas detection, etc.
- Supplementary confirmation of emission type, source, and size

DETECTION TECHNOLOGIES

Auxiliary / Specialized:

- Laser Methane Gas Detector
 - Long range & Remote detection
 - High sensitivity for Methane (100-10,000 ppm*m)
 - Ultra fast response
 - Use with mobile survey (pipeline)

Ultrasonic Internal Valve Leak Detection

- detects through-valve leakage based on ultrasonic frequency
- Quantitative estimation of leak volume


MEASUREMENT TECHNOLOGIES

Primary:

- Hi flow Sampler
 - very high accuracy and efficiency
 - allows an objective cost-benefit analysis
 - always have at least one backup unit

Secondary:

- Vane Anemometer
- Calibrated volume bag
- Flow Meters

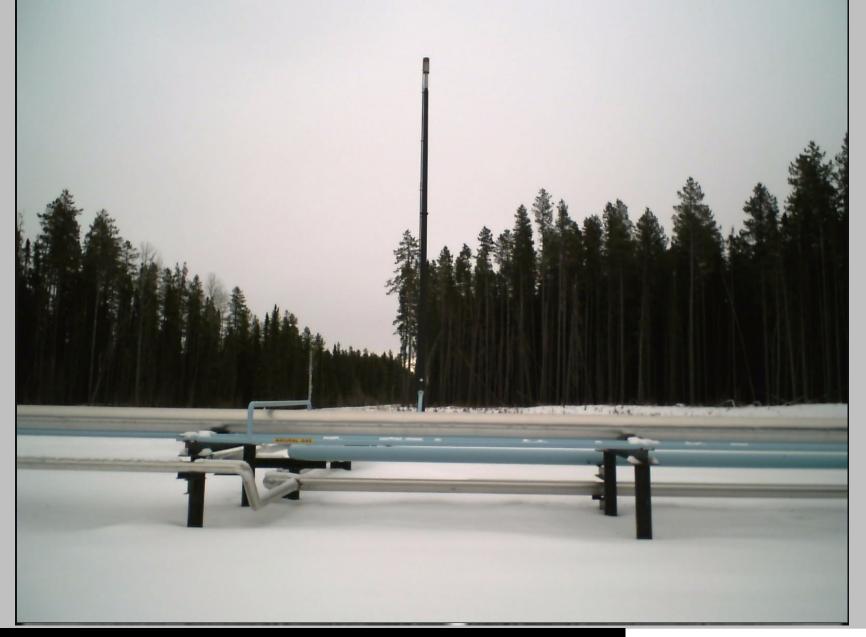
Let us help you "see" what you are missing!

What you see...

What we see...

THREADED CONNECTION

0.45 ft³/min.


VALVE STEM 0.65 ft³/min.

Pig Trap Cap 3.50 ft³/min.

DUMP VALVE LEAK (VENT STACK)

OVER 60.0 ft³/min.

HOLE IN BLOCK FLANGE 1.20 ft³/min.

COOLER PIPING LEAK
20.00 ft³/min.

FEMP

Roles and Responsibilities

Communication System

Data Collection Management

QA/QC

COMPREHENSIVE FACILITY ASSESSMENTS

- Baseline selection
- •Technology & Resource selection
- Scheduling
- Communication & Follow-up

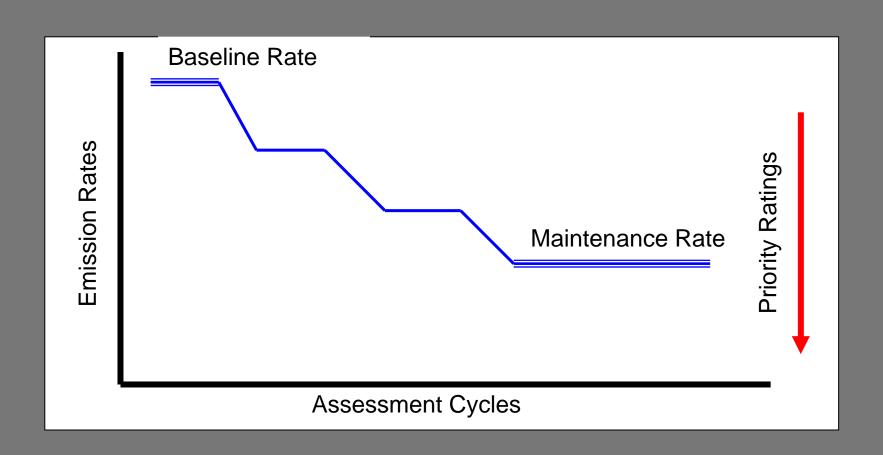
DIRECTED MONITORING AND PREVENTION

- Priority Monitoring
 - Component Specific
 - Routine
 - Installed
 - Post Modification
- •Facility Design & Ops. Standards

COMPREHENSIVE FACILITY ASSESSMENTS

Facility Baseline Selection (threshold)

Perform Assessments


Results Communication

Set Ongoing Schedule

Facility & Component Prioritization

Repair Tracking

FEMP TIMELINE

IMPORTANT CONSIDERATIONS

QA/QC - protocols for procedures, equipment maintenance, data collection and storage, and training

COMMUNICATION – effective reporting system to transfer data to individuals responsible for action

DATA CONSISTENCY - ensure that all source data is captured and consistently recorded

AUDITABILITY –consistent and repeatable results

VERIFIABLE - eligible to apply for GHG credits and/or offsets via independent verification (ISO 14064-1, 2, & 3)

EXPERIENCE –trained (certified), experienced and tested in the use of fugitive equipment and processes

HEALTH & SAFETY —work presents a set of hazards that must be controlled

IMPORTANT CONSIDERATIONS

RESOURCES

- external vs. internal (LODI)
- expertise in emission management
- a good tool is not a program

CORPORATE COMMITMENT

- bottom down approach will help ensure buy-in and follow through of implementation
- the program approach has large impact on success
- Imbed into corporate, facility and individual goal setting

REPAIR TRACKING

- develop a workable tracking system before program implementation
- incorporate existing data management systems
- effective feed-back system for repair tracking

FEMP APPROACHES

BASELINE

- threshold levels vary
- some starting at larger/older facilities only
- some companies doing wide cross section

FREQUENCY

 most companies are following a facility priority system, while other facility plans range from bi-annual to every 3 years

REPAIR TRACKING

split between existing work order system and external tracking system

RESOURCES

- most companies are using third party, a few have started internal programs
- Operator involvement is low

US CONSIDERATIONS

EPA Proposed Mandatory Greenhouse Gas Reporting Rule (March 10, 2009)

(http://www.epa.gov/climatechange/emissions/ghgrulemaking.html)

W. Oil and Natural Gas Systems

- facilities with emissions **greater than 25,000** metric tons CO2e per year be subject to reporting (**annual leak assessments**)
- identifies relevant facilities and outlines methods and procedures for calculating and reporting fugitive emissions
- fugitive emissions defined as unintentional equipment emissions and intentional or designed releases of <u>CH4 and CO2</u>
- propose that facilities would be required to <u>detect</u> <u>and then quantify</u> emissions
- Emission Source, Monitoring Method Type, Emissions Quantification Methods

US CONSIDERATIONS

Proposed Mandatory Greenhouse Gas Reporting Rule (cont.)

- lists advantages/disadvantages of specific technologies (<u>cost-effective</u> <u>detection technologies such as infrared fugitive emissions detection</u> instruments in conjunction with direct measurement methodologies)
- direct measurement using Method 21 was not found suitable for fugitive emissions measurement under this reporting rule
- engineering estimates only used of variable or unsafe to monitor sources
- the mass balance is often not recommended because of the uncertainties surrounding meter readings and the large volumes of throughput relative to fugitive emissions.
- emissions detected and measured would be assumed to continue throughout the reporting year, unless no emissions detection is recorded at an earlier and/or later point in the reporting period.

CASE STUDY DATA

FACILITY TYPE	#	Avg. Cumulative HP	Avg. Assessment Time
COMPRESSOR STATIONS	100	5000	8 hours (0.65 day)

\$5.00

CASE STUDY DATA

	TOTAL	EMISSION TYPE	TOTAL # OF SOURCES	TOTAL ANNUAL RATE (mcf/yr)	TOTAL ANNUAL GAS VALUE (\$)	TOTAL NET PRESENT VALUE OF LEAK REPAIRS	ANNUAL CO2E RATE (tonnes/yr)
		Leaks	1300	180,000	\$950,000	\$2,200,000	66,000
		Vents	2500	630,000	\$3,370,000	\$7,350,000	234,000
		TOTAL	3800	810,000	\$4,320,000	\$9,550,000	300,000
	AVERAGE / FACILITY	EMISSION TYPE	TOTAL # OF SOURCES	TOTAL ANNUAL RATE (mcf/yr)	TOTAL ANNUAL GAS VALUE (\$)	TOTAL NET PRESENT VALUE OF LEAK REPAIRS	ANNUAL CO2E RATE (tonnes/yr)
		Leaks	13	1,800	\$9,500	\$22,000	660
		Vents	25	6,300	\$33,700	\$73,500	2,340
		TOTAL	38	8,100	\$43,200	\$95,500	3,000
L							
	AVERAGE / DAY	EMISSION TYPE	TOTAL # OF SOURCES	TOTAL ANNUAL RATE (mcf/yr)	TOTAL ANNUAL GAS VALUE (\$)	TOTAL NET PRESENT VALUE OF LEAK REPAIRS	ANNUAL CO2E RATE (tonnes/yr)
		Leaks	20	2,800	\$14,600	\$33,800	1,000
		Vents	38	9,700	\$51,800	\$113,000	3,600
		TOTAL	58	12,500	\$66,400	\$146,800	4,600

STATISTICS

- % Economical Leaks (POP <1.5 years) = 92%
- % Economical Vents (POP <1.5 years) = 70%
- % of emissions that are Safety Concern =
 4%
- Top 10% of leaks makes up 73% total volume
- Top 10% of vents makes up 62% total volume

CONTACT INFO

PHONE: (403) 225-8755

EMAIL: target@envirotecheng.com

WEBSITE: www.targetemission.com