

Energy Efficiency and Fugitive Emission Management Program

Roxanne Pettipas P. Eng.

OVERVIEW

- Energy Efficiency
- Fugitive Emission Pilot Study Findings
 - Source Data
 - Facility Comparison
 - Economics
- PATH FORWARD

Energy Efficiency

- Energy Efficiency and Product Recovery Team
 - Steering Committee
 - Planning and Implementation
- Areas of focus
 - Identify opportunities for improved Energy Efficiency
 - Pilot projects
 - Developing Programs (fugitives emissions)

Fugitive Emission Management Pilot Study (ConocoPhillips Canada)

FUGITIVE EMISSIONS

Losses (leaks) of HC product

(methane, propane, VOC's)

UNINTENTIONAL FUGITIVES

- normal wear and tear / damage
- improper or incomplete assembly of components
- inadequate material specification
- manufacturing defects

INTENTIONAL FUGITIVES

venting (tanks, controllers, comp. seals, stacks, etc.)

"Why worry about some little leaks?" (ConocoPhillips Canada)

- On average natural gas processing plants lose between 0.05 to 0.5% of their total production to fugitive emissions
- Based on ConocoPhillips Canada production, fugitive gas loses may amount to between \$2,000,000 and \$20,000,000 USD per year
- This provides a significant opportunity to increase production through fugitive emission reduction
- Majority of fugitive emissions arise from a minority of leaking components

What is the Problem?... "Gas leaks are *invisible* and *go unnoticed*"

PILOT STUDY OBJECTIVE (ConocoPhillips Canada)

Evaluate new leak detection and measurement technologies and determine actual facility fugitive emission rates

Drivers

- Increase production & reduce costs by recovering lost gas
- New regulations in Canada
- Increase operations Health & Safety
- Reduce GHG emissions
- Part of ConocoPhillips Canada goals and programs E/E, Gas Star Program, and BIC Initiative

DETECTION TECHNOLOGY

GasfindIR[®]

- optical emission technology
- infrared video camera with hydrocarbon/VOC filter
- provides visible images of a HC gas emissions in real-time
 Suggested Benefits :
- Rapid, accurate and safe detection
- Scan hard-to-reach components from a distance
- Assessments performed without interruption of operations
- Inspection times are minimal, which can keep costs down.
- With exact leak source info, repairs are less time consuming and less expensive.
- Cost-effectively scan hundreds of components simultaneously

MEASUREMENT TECHNOLOGY

Hi Flow® Sampler

- volumetric leak measurement
- vacuum flow rate detection uses dual-element hydrocarbon (methane) detector
- measures hydrocarbon concentrations in the captured air stream and determines the leak flow rate (+- 10%)

Suggested Benefits :

- offers a much higher accuracy of measurement (compared to conventional methods)
- allows an objective cost-benefit analysis of each repair opportunity

Pilot Study Scope

- Evaluate 22 facilities (9 gas plants and 13 comp. stns.) from various asset areas
- Obtain fugitive emission data
- Complete repair cost/benefit analysis
- Create recommendations for applying a Canada-wide program (Canadian Association of Petroleum Producers "CAPP" Best Management Practice)

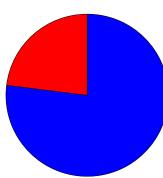
Pilot Study Results		a cale
Average Payback (years)	0.37	
NPV (US\$)	~\$2 million	
CO ₂ e Emission Rate	21,000	
(tonnes/year)		
ing for Illustration Purposes \$5.50 USD/mmbtu	and \$25.00 USD/tonne CO ₂ e	ConocoPhi

*

Pilot Study SOURCE INFO

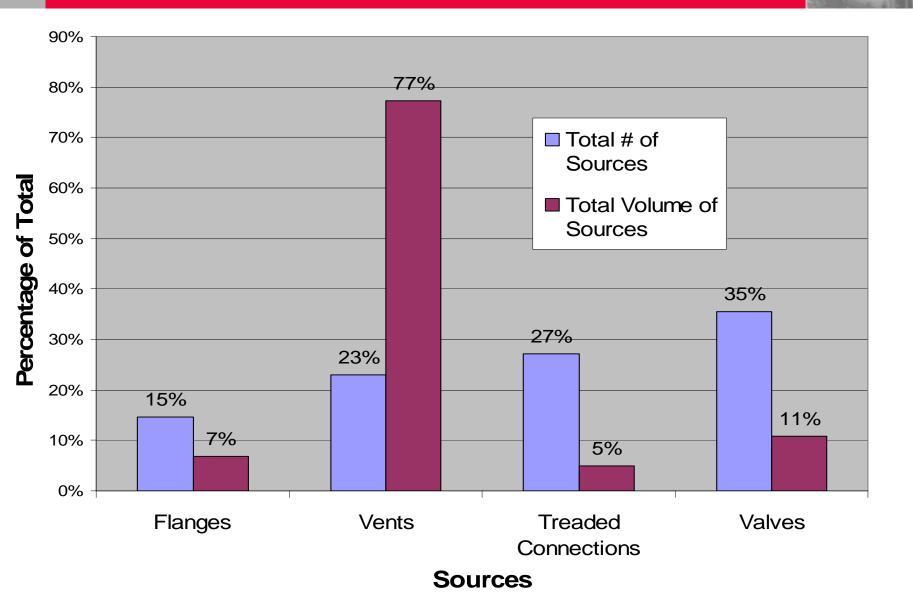
of Sources

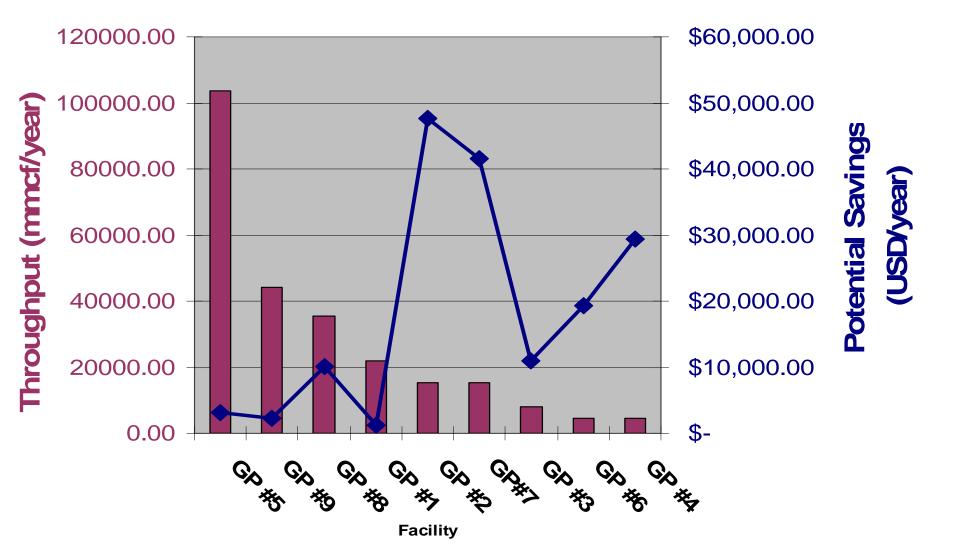
- 77% leaking components (111)
- 23% other fugitive emission sources (33)
- 92% economical to repair (133)

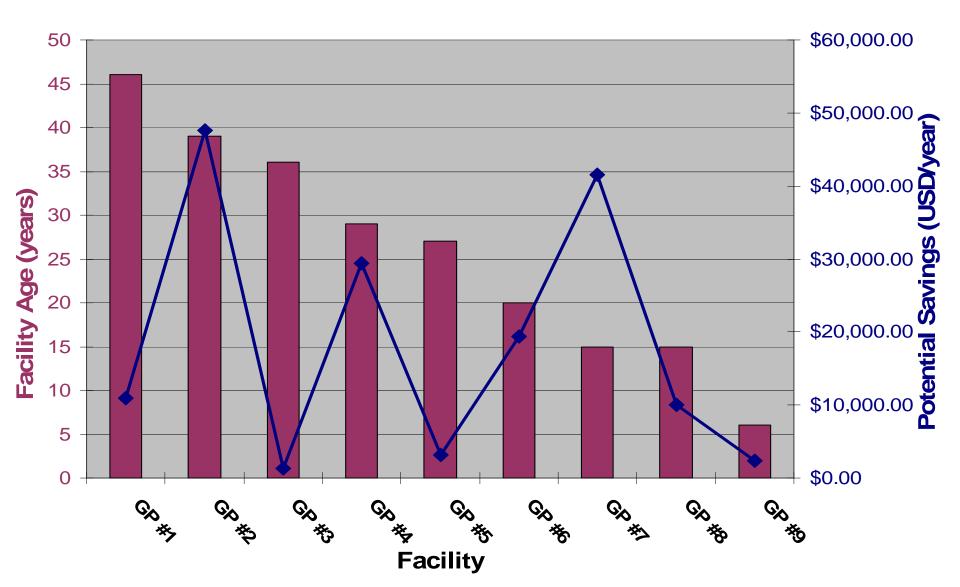

Composition

- 75% Process gas (108)
- 21% Fuel gas (30)
- 4% Propane (6)

Location


- 72% Compressor Buildings
- 20% Process Buildings
- 4% Outside piping
- 4% Tanks




Pilot Study SOURCE TYPES

GAS PLANT THROUGHPUT COMPARISON

GAS PLANT AGE COMPARISON

ECONOMIC PROJECTION Cond	ocoPhillips Canada	
	~\$16,000	
Average Total Cost/Facility (US\$/year)	\$8,000	
(assessment and repairs)		1 2 3 3
Total Est. NPV (US\$/year)	~\$35,000,000	The second secon
CO2e/year Reduction (tonnes)	~630,000	
		ConocoP

* Using for Illustration Purposes \$5.50 USD/mmbtu and \$25.00 USD/tonne CO₂e

PATH FORWARD

Fugitive Emission Management Program

- Field assessments started in September 2007
- 2 year testing cycle
- 2 outsourced vendors
- Individual report/results for each facility or area
- Imbed into Operations and Facility Design
- Develop repair tracking system and refine data management system
- Evaluate pipeline & wellsite opportunities within Energy Efficiency and Product Recovery Team
- Education / Knowledge Sharing
- Energy Efficiency and Product Recovery Team identify other opportunities for ConocoPhillips Canada

QUESTIONS?

CONTACT INFO:

Roxanne Pettipas, P.Eng 403-233-4221

Roxanne.m.pettipas@conocophillips.com

