Recent CMU Ammonia Modeling and Emissions Inventory

Prof. Peter J. Adams Center for Atmospheric Particle Studies (CAPS) Carnegie Mellon University

June 19, 2017

Alyssa McQuilling

Ammonia, PM2.5, and Health

Heo et al. (2016), Environ. Sci. Technol. 2016, 50, 6061-6070.

Ammonia Emissions: Variability

- Emissions depend on a variety of factors including:
 - meteorology
 - management practices
 - manure characteristics
- Lots of variability how to build inventory?
- Our approach: emissions model rather than direct emissions factors

3

Scatter-plot of fraction of input nitrogen volatilized as ammonia, comparing application sub-model predictions and experimental data showing range of measured data (Pinder, et al., 2004)

Process-based Models

- Track nitrogen through manure management
- Includes:
 - mass balances
 - mass transfer laws
- Goal is that such a model can capture variability seen in measurements

Philosophy and Goals

- We are air quality modelers looking to build national emissions inventories
- Therefore, we focus on:
 - emission factors unbiased compared to literature
 - seasonal cycle (daily variability would be nice...)
 - regional-scale variability in emission factors
 - computational efficiency
 - scalability: do we have national data on inputs?
 - ...leads to following compromises
 - tune model to measurements rather than "first principles"
 - omit "details" (e.g. ventilation rates) when we don't have national data (or no systematic regional variation)
 - predicting EFs for "average" farm rather than specific farm

5

Versus Other Approaches

Historical Measurement Campaigns

- Short-term monitoring deployments
- Many researchers, many farms
- Limited monitoring reporting of farm and measurement conditions

National Air Emissions Monitoring Study

- 1-3 years of data collection (long-term measurements of seasonal cycles)
- Consistent measurement techniques
- Extensive monitoring of meteorological and farm management conditions

Objectives

- Build process-based farm emissions models (FEMs) for all livestock types
- Evaluate ... especially for seasonal (and daily) variability (e.g. NAEMS data)
- Build national inventory
- Provide some feedback on needs from air quality modeler standpoint

- Each farm has a manure management train with mass balances on: 1) ammoniacal N; 2) urea; 3) manure volume
- Each component (e.g. housing, storage) has NH3 volatilization ... emissions

9

Methods: Details

Methods: Details

Methods: Summary

- How we get seasonal (daily) variability
 - resistance depends on meteorological variables
- How we get variability due to practices
 - separate resistance sub-model for each
 - livestock type
 - manure management stage: housing, storage, application
 - major practice: e.g. deep pit and shallow pit swine housing
 - Other differences (e.g. frequency of housing clean out)
- Regional variation is combination of meteorology and practices

FEM: Tuning and Evaluation

- Unbiased (because tuned)
- R² values range from 0.21 for beef to 0.7 for layers
- Model EF is within a factor of two of measured ... at farm scale
- Not an independent evaluation ... assesses how well simple model captures more complex reality

Role of "Contextual Information"

- Not all studies report all required input parameters (e.g. feed or manure nitrogen)
- Measurements need to report feed N, other practices, and meteorological conditions to put results in context and be
- 14 useful to process-based models and inventories

Open vs Enclosed Sources

• Open (outdoor) sources are more difficult to measure ... need to infer emissions rate from downwind concentrations

Evaluation: Seasonal Cycle

Evaluation: Daily Variability

- Daily variability in housing emissions tends to be better characterized by the model than storage emissions
- Multiple open-source measurement techniques from NAEMS do not always agree

National Emissions Inventory

Meteorology

Management Practices

National Climate Data Center:

- Temperature, Precipitation, Wind Speed
- Daily time resolution, Climate Division spatial resolution
 National Animal Health Monitoring

Survey:

- Housing type, Storage type, Application methods
- Multi-state regional spatial resolution

Animal Population

USDA Agricultural Census:

• County-level animal numbers from 2012

Regional Farming Practices

20

- Regional variation in housing, storage, and application practices
- Swine shown as example
- Previously, we obtained animal health survey data from USDA
- Now, we only get very high-level summaries

- 1. Run FEM model for county-specific meteorology to produce daily emission factors.
 - Repeat for all farm practices
- 2. Compute a county composite EF as weighted average across all manure management practices in that county.
 - ➢ Repeat for all animal types.
- 3. Emissions = (emission factor) x (animal population)
- 4. Result is ammonia emissions with
 - Daily temporal resolution
 - County spatial resolution
 - ... by livestock type, management stage, practice

2011 Results: National Totals

- Seasonal and daily variability apparent
- Summer emissions dominated by swine production
- Beef and broilers are more important during wintertime (relative to swine)
- Layer emissions have reverse seasonal emission pattern

Spatial Distribution

Regional Emission Factors

- Higher emission factors in warmer places
- Differences in practice less significant than T differences

Animal Contributions vs 2011 NEI

- Similar magnitude of emissions in 2011 FEM inventory and 2011 NEI
- Much greater swine emissions in our inventory (swine storage emissions higher in NAEMS compared to prior literature)
- Much smaller contribution from dairy

Conclusions 1

- Framework: process-based model tuned to observed emissions factors
 - captures regional and seasonal variability
 - unbiased overall compared to EFs used in tuning
- FEM captures seasonal cycle and practice differences; limited on daily variability
- First national inventory based on processbased modeling
 - similar total emissions as NEI 2011
 - swine ↑ but dairy ↓
 - stronger seasonal cycle

Conclusions 2

- EF measurements should report "context"
 - meteorology, pH, manure N, etc.
- EF measurements from open sources problematic due to dispersion assumptions
- Manure management / farm practice data is as much of a limiting factor as EF measurements
- Beef on pasture seems under-measured

